Math 32A - Winter 2019
Practice Final Exam

Full Name: ________________________________

UID: ______________________________________

Circle the name of your TA and the day of your discussion:
Qi Guo Talon Stark Tianqi (Tim) Wu
Tuesday Thursday

Instructions:
• Read each problem carefully.
• Show all work clearly and circle or box your final answer where appropriate.
• Justify your answers. A correct final answer without valid reasoning will not receive credit.
• Simplify your answers as much as possible.
• Include units with your answer where applicable.
• Calculators are not allowed but you may have a 3 × 5 inch notecard.

<table>
<thead>
<tr>
<th>Page</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Bonus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
1. (2 points) Suppose \mathbf{u} is a unit vector and \mathbf{v} is a vector with $||\mathbf{v}|| = 5$. If the angle θ between \mathbf{u} and \mathbf{v} has $\sin \theta = \frac{3}{5}$, find the length of $\mathbf{u} \times \mathbf{v}$.

2. (3 points) Given a curve with binormal \mathbf{B}, show that $\frac{d\mathbf{B}}{ds}$ is perpendicular to \mathbf{B}.

3. (5 points) Consider the planes $3x - 2y + z = 1$ and $2x + y - 3z = 3$, which intersect in a line L.

 (a) Notice that the point $P = (1, 1, 0)$ is in the intersection of the planes and so is on L. Use P to find a vector equation for L.

 (b) If θ is the angle between the planes, find $\cos \theta$.

Page 1
4. (5 points) Find the equation of the plane that passes through the point (1, 2, 3) and contains the line given by the parametric equations \(x = 3t, y = 1 + t, z = 2 - t \).

5. (2 points) Suppose that \(w = f(x, y, z), y = g(s, t), \) and \(z = h(t) \). Write down the form of the chain rule you would use to compute \(\frac{\partial w}{\partial s} \) and \(\frac{\partial w}{\partial t} \).

6. (3 points) Find parametric equations for the line normal to the surface \(\sin(xyz) = x + 2y + 3z \) at the point (2, -1, 0).
7. (3 points) For what values of x are the following vectors orthogonal?

$$\mathbf{v} = \langle x, x - 1, x + 1 \rangle \quad \mathbf{w} = \langle 1 - x, x + 3, 3x \rangle$$

8. (5 points) Reparametrize the following curve with respect to arc length.

$$\mathbf{r}(t) = \left(\frac{2}{t^2 + 1} - 1 \right) \mathbf{i} + \left(\frac{2t}{t^2 + 1} \right) \mathbf{j}$$
9. (5 points) The radius of a cylindrical can with top and bottom is increasing at the rate of 4 cm/sec but its total surface area remains constant at 600π cm2. At what rate is the height changing when the radius is 10 cm?

10. (2 points) Show that the following function is not continuous at $(0, 0)$.

\[f(x, y) = \begin{cases}
\frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\
0 & \text{if } (x, y) = (0, 0)
\end{cases} \]

11. (3 points) Show the following limit does not exist.

\[\lim_{(x,y,z) \to (0,0,0)} \frac{xy + yz}{x^2 + y^2 + z^2} \]
12. (6 points) Let $F(x, y, z) = xy + 2xz - y^2 + z^2$.

(a) Find the directional derivative of $F(x, y, z)$ at the point $(1, -2, 1)$ in the direction of the vector $v = \langle 1, 1, 2 \rangle$.

(b) Find the maximum rate of change of $F(x, y, z)$ at the point $(1, -2, 1)$.

13. (6 points) Find and classify all critical points of the function $f(x, y) = 2x^2y - 8xy + y^2 + 5$.
14. (12 points) Use Lagrange multipliers to find the points on the surface $x^2 + xy + y^2 + z^2 = 1$ that are closest to the origin.
15. (12 points) Let \(f(x, y) = 3 + xy - x - 2y \) and \(T \) be the closed triangular region with vertices \((1, 0), (5, 0), \) and \((1, 4)\). Find the absolute maximum and absolute minimum values of \(f \) on \(T \). Be sure to justify your answer.
16. (5 points) Find the linearization $L(x, y)$ to $f(x, y) = 1 + x \ln(xy - 5)$ at the point $(2, 3)$ and use it to approximate $f(2.01, 2.95)$.

17. (5 points) Consider the function $f(x, y, z) = z^2$ restricted to the surface $x^2 + y^2 - z = 0$. Show the method of Lagrange multipliers only gives one candidate for an extremum. Show this candidate is where f has its minimum value on the surface and that f has no maximum on the surface.
18. (2 points) Find and sketch the domain of the function \(f(x, y) = \sqrt{1 + x - y^2} \).

19. (2 points) For \(f(x, y) = \cos(x) - y \), sketch and label the level curves \(z = -1 \), \(z = 0 \), and \(z = 1 \).

20. (2 points) Is the following domain closed? Is it bounded?

\[\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \leq z \leq 4 + x + y\} \]
21. (10 points) Consider the contour plot for $f(x, y)$ below.

(a) If a person walked from the point $(1, -1)$ to $(1, 0)$, would they be walking uphill or downhill?

(b) If a person walked from the point $(0, 0)$ to $(1, 1)$, would they be walking uphill or downhill?

(c) Is the slope steeper at $(0, -1)$ or $(2, -2)$?

(d) Is f_y positive or negative at $(-1, 1)$?

(e) Determine the sign of each of the following derivatives.

\[
\begin{align*}
 f_x(1, -1) & \quad f_y(1, -1) \\
 f_{xx}(1, -1) & \quad f_{xy}(1, -1) & \quad f_{yy}(1, -1)
\end{align*}
\]

(f) Give the components of a unit vector in the direction of ∇f at the point $(-1, 1)$. (You may estimate as necessary.)