MATH 115B (CHERNIKOV), SPRING 2019 **PROBLEM SET 4** DUE FRIDAY, MAY 3

Problem 1. For each of the following inner product spaces V and linear operators T on V, evaluate T^* at the given vector in V.

- (1) $V = \mathbb{R}^2$, T(a, b) = (2a + b, a 3b) and x = (3, 5).
- (2) $V = \mathbb{C}^2$, $T(z_1, z_2) = (2z_1 + iz_2, (1-i)z_1)$ and x = (3-i, 1+2i).
- (3) $V = P_1(\mathbb{R})$ with the inner product $\langle f, g \rangle = \int_{-1}^{1} f(t) g(t) dt$, T(f) = f' + 3f, f(t) = 4 - 2t.

Problem 2. Let T be a linear operator on an inner product space V.

- (1) Let $U_1 = T + T^*$ and $U_2 = TT^*$. Prove that $U_1 = U_1^*$ and $U_2 = U_2^*$. (2) Prove that $T^*T = T_0$ implies $T = T_0$.
- - Is the same result true if we assume that $TT^* = T_0$?

Problem 3. Give an example of a linear operator T on an inner product space Vsuch that $N(T) \neq N(T^*)$.

Problem 4. Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Prove that if T is invertible, then T^* is invertible and $(T^*)^{-1} = (T^{-1})^*.$

Problem 5. Let V be a finite-dimensional vector space.

Definition. If $V = W_1 \oplus W_2$, then a linear operator T on V is the projection on W_1 along W_2 if, whenever $x = x_1 + x_2$ with $x_1 \in W_1$ and $x_2 \in W_2$, then we have $T(x) = x_1.$

We say that T is a projection if it is a projection on W_1 along W_2 for some subspaces W_1 and W_2 of V.

- (1) Show that $R(T) = W_1$ and $N(T) = W_2$.
 - Hence $V = R(T) \oplus N(T)$.
- (2) Prove that $T \in \mathcal{L}(V)$ is a projection if and only if $T = T^2$.

Problem 6. Let V be a finite dimensional inner product space, and let W be a subspace.

- (1) Prove that $V = W \oplus W^{\perp}$.
- (2) Show that if T is a projection on W along W^{\perp} , then $T = T^*$.

Problem 7. Let T be a linear operator on an inner product space V. Prove that ||T(x)|| = ||x|| for all $x \in V$ if and only if $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$.

MATH 115B (CHERNIKOV), SPRING 2019 PROBLEM SET 4 DUE FRIDAY, MAY 3 2

Problem 8. Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Prove the following results.

- (1) $R(T^*)^{\perp} = N(T)$ and $R(T^*) = N(T)^{\perp}$. (2) $N(T^*T) = N(T)$, and deduce from it that rank $(T^*T) = \operatorname{rank}(T)$.
- (3) rank $(T) = \operatorname{rank}(T^*)$, and deduce from (2) that rank $(TT^*) = \operatorname{rank}(T)$.
- (4) For any $n \times n$ matrix A, rank $(A^*A) = \operatorname{rank}(AA^*) = \operatorname{rank}(A)$.