Midterm 1 Review Sheet

Vector spaces

Definition. A vector space \(V \) over a field \(F \) is a set with two operations, addition and scalar multiplication, (so for any \(x, y \in V \) and \(a \in F \), \(x + y \) and \(ax \) are in \(V \)) such that the following conditions hold:

1. \(x + y = y + x \) for all \(x, y \in V \) (commutativity)
2. \((x + y) + z = x + (y + z) \) for all \(x, y, z \in V \) (associativity)
3. There exists an element 0 in \(V \) such that \(x + 0 = x \) for all \(x \in V \) (identity)
4. For each \(x \in V \) there is an element \(y \) in \(V \) such that \(x + y = 0 \) (\(y \) is an inverse of \(x \))
5. \(1 \cdot x = x \) for all \(x \in V \) (where 1 is the multiplicative identity of \(F \))
6. \(a(bx) = (ab)x \) for all \(a, b \in F \) and \(x \in V \)
7. \(a(x + y) = ax + ay \) for all \(a \in F \) and \(x, y \in V \)
8. \((a + b)x = ax + bx \) for all \(a, b \in F \) and \(x \in V \)

Elements of \(V \) are called vectors.
Elements of \(F \) are called scalars.

Theorem 1 (Cancellation law)

Let \(V \) be a vs. and let \(x, y, z \in V \).

If \(x + z = y + z \), then \(x = y \).

Corollary
1) In any vector space \(V \), there is a unique element 0 satisfying (1) — the zero vector of \(V \).
2) For any vs. \(V \) and any \(x \in V \), there is a unique element \(y \) in \(V \) satisfying (1).
It is called the inverse of \(x \) and denoted by \(-x\).

Theorem 12
Let \(V \) be a vs. over \(F \).

For all \(x \in V \) and \(a \in F \) we have:

1) \(0 \cdot x = 0 \) (Note: the 1st 0 is a scalar in \(F \), the 2nd one is the zero vector in \(V \)).
2) \((-a) \cdot x = -(a \cdot x) \)
3) \(a \cdot 0 = 0 \) (Note: this is the zero vector of \(V \) on both sides).

Subspaces

Definition. Let \(V \) be a vs. A subset \(W \subseteq V \) is a subspace of \(V \) if \(W \) itself is a vs. with respect to the addition and scalar multiplication defined on \(V \).

Theorem 13
Let \(V \) be a vs., and let \(W \subseteq V \) be a subset of \(V \).

Then \(W \) is a subspace of \(V \) if and only if all of the following conditions hold:

(a) \(0 \in W \)
(b) \(x + y \in W \) for all \(x, y \in W \) (\(W \) is closed under addition)
(c) \(c \cdot x \in W \) for all \(c \in F \) and \(x \in W \) (\(W \) is closed under scalar multiplication).

Theorem 14
Let \(V \) be a vs. over \(F \).

If \(W_1, \ldots, W_n \) are subspaces of \(V \), then the set \(W = W_1 \cap W_2 \cap \cdots \cap W_n \) is also a subspace of \(V \).

Linear combinations

Definition. Let \(V \) be a vs., and let \(S \subseteq V \) be a non-empty subset of \(V \).

A vector \(v \) in \(V \) is a linear combination of \(S \) if one can write

\[v = a_1 u_1 + a_2 u_2 + \cdots + a_n u_n \]

for some vectors \(u_1, \ldots, u_n \) in \(S \) and some scalars \(a_1, \ldots, a_n \) in \(F \).
2) The span of S, denoted $\text{Span}(S)$, is the subset of V consisting precisely of all linear combinations of S. That is,
\[\text{Span}(S) = \{ \sum_{i=1}^{n} a_i u_i : n \in \mathbb{N}, a_i \in F, u_i \in S \} \]
For convenience, we define $\text{Span}(\emptyset) = \{0\}$.

Theorem 1.5. Let S be any subset of a v.s. V. Then:
1) $\text{Span}(S)$ is a subset of V.
2) Any subset of V that contains S must also contain $\text{Span}(S)$.

Definition. Let V be a v.s. and S a subset of V.
We say that S generates (or spans) V if $\text{Span}(S) = V$.

Definition. A subset S of a v.s. V is linearly dependent if there exist a finite number of distinct vectors u_1, \ldots, u_m in S and scalars $a_1, \ldots, a_m \in F$, with at least one $a_i \neq 0$, such that
\[a_1 u_1 + \cdots + a_m u_m = 0. \]
We say S is linearly independent if it is not linearly dependent.

Theorem 1.6. Let V be a v.s. and $S, S_2 \subseteq V$ be two subsets of V.
1) If S_2 is linear dependent, then $S \cup S_2$ is also linearly dependent.
2) If S_2 is linear independent, then S is also linear independent.

Theorem 1.7. Let S be a linearly independent subset of a vector space V.
Let V be any vector in V not contained in S.
Then $S \cup \{v\}$ is linearly independent if and only if $v \in \text{Span}(S)$.

Bases and dimension.

Definition. A **basis** for a v.s. V is a subset of V which is linearly independent and generates V.

Theorem 1.8. A subset $\{u_1, \ldots, u_n\}$ of a v.s. V is a basis if and only if every vector $v \in V$ can be written uniquely in the form
\[v = a_1 u_1 + \cdots + a_n u_n, \]
where $a_i \in F$.
(“uniquely” here means that there is only one possible choice of the scalars $a_i, \ldots, a_n \in F$ satisfying the equality)

Theorem 1.9. If $v \in \text{span}(S)$ is generated by a finite subset S, then some subset of S is a basis.
It follows that every finitely generated v.s. has a basis.

Theorem 1.10. (Replacement Theorem)
Let V be a v.s. generated by a set $G \subseteq V$ with $|G| = n$, and let L be a linearly independent subset of V.
Then $m \leq n$, and there exists $H \subseteq G$ with $|H| = m$ such that $L \cup H$ generates V.

Corollary 1. Let V be a finitely generated v.s. Then every basis for V has the same number of elements.

Definition. A v.s. V is finite-dimensional if it has a finite basis.

The (unique) number of vectors in a basis for V is called the **dimension** of V, denoted $\dim(V)$.

If there is no finite basis, then V is **infinite-dimensional**.

Corollary 2. Let V be a v.s. of dimension n. Then:
a) Any generating set for V must contain at least n vectors.

b) Any linearly independent subset of V with n elements is a basis.

c) Every linearly independent subset of V can be extended to a basis for V.

Theorem 1.3 Let W be a subspace of a vector space V with $\dim(V) \geq n$.

Then $\dim(W) \leq \dim(V)$.

Moreover, if $\dim(W) = \dim(V)$, then $V = W$.