On the number of Dedekind cuts

Artem Chernikov

Hebrew University of Jerusalem

Logic Colloquium Evora, 23 July 2013

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• Let κ be an *infinite* cardinal.

Definition

ded $\kappa = \sup\{|I|: I \text{ is a linear order with a dense subset of size } \leq \kappa\}.$

- In general the supremum need not be attained.
- In model theory this function arises naturally when one wants to count types.

▲□▶ ▲□▶ ★ □▶ ★ □▶ = ● ● ●

Equivalent ways to compute

The following cardinals are the same:

- 1. ded κ ,
- 2. sup{ λ : exists a linear order I of size $\leq \kappa$ with λ Dedekind cuts},
- sup{λ: exists a regular μ and a linear order of size ≤ κ with λ cuts of *cofinality* μ on both sides}
 (by a theorem of Kramer, Shelah, Tent and Thomas),

4. sup{ λ : exists a regular μ and a tree T of size $\leq \kappa$ with λ branches of length μ }.

Some basic properties of ded κ

- κ < ded κ ≤ 2^κ for every infinite κ
 (for the first inequality, let μ be minimal such that 2^μ > κ,
 and consider the tree 2^{<μ})
- ded $\aleph_0 = 2^{\aleph_0}$ (as $\mathbb{Q} \subseteq \mathbb{R}$ is dense)
- Assuming GCH, ded $\kappa = 2^{\kappa}$ for all κ .
- [Baumgartner] If 2^κ = κ⁺ⁿ (i.e. the *n*th successor of κ) for some n ∈ ω, then ded κ = 2^κ.
- So is ded κ the same as 2^κ in general?

Fact

[Mitchell] For any κ with cf $\kappa > \aleph_0$ it is consistent with ZFC that ded $\kappa < 2^{\kappa}$.

Counting types

- ► Let T be an arbitrary complete first-order theory in a countable language L.
- ► For a model M, S_T (M) denotes the space of types over M (i.e. the space of ultrafilters on the boolean algebra of definable subsets of M).
- We define $f_T(\kappa) = \sup \{ |S_T(M)| : M \models T, |M| = \kappa \}.$

Fact

[Keisler], [Shelah] For any countable T, f_T is one of the following functions: κ , $\kappa + 2^{\aleph_0}$, κ^{\aleph_0} , ded κ , $(\text{ded }\kappa)^{\aleph_0}$, 2^{κ} (and each of these functions occurs for some T).

These functions are distinguished by combinatorial dividing lines of Shelah, resp. ω-stability, superstability, stability, non-multi-order, NIP (more later).

Further properties of ded κ

- So we have κ < ded κ ≤ (ded κ)^{ℵ₀} ≤ 2^{ℵ₀} and ded κ = 2^κ under GCH.
- [Keisler, 1976] Is it consistent that ded κ < (ded κ)^{ℵ0}?

Theorem (*) [Ch., Kaplan, Shelah] It is consistent with ZFC that ded $\kappa < (\text{ded } \kappa)^{\aleph_0}$ for some κ .

- Our proof uses Easton forcing and elaborates on Mitchell's argument. We show that e.g. consistently ded ℵ_ω = ℵ_{ω+ω} and (ded ℵ_ω)^{ℵ₀} = ℵ_{ω+ω+1}.
- Problem. Is it consistent that ded κ < (ded κ)^{ℵ0} < 2^κ at the same time for some κ.

Bounding exponent in terms of ded κ

▶ Recall that by Mitchell consistently ded $\kappa < 2^{\kappa}$. However:

Theorem (**) [Ch., Shelah] $2^{\kappa} \leq \text{ded} (\text{ded} (\text{ded} \kappa)))$ for all infinite κ .

- The proof uses Shelah's PCF theory.
- Problem. What is the minimal number of iterations which works for all models of ZFC? At least 2, and 4 is enough.

ション ふゆ く 山 マ チャット しょうくしゃ

Two-cardinal models

- As always, T is a first-order theory in a countable language L, and let P (x) be a predicate from L.
- ▶ For cardinals $\kappa \ge \lambda$ we say that $M \models T$ is a (κ, λ) -model if $|M| = \kappa$ and $|P(M)| = \lambda$.
- A classical question is to determine implications between existence of two-cardinal models for different pairs of cardinals (Vaught, Chang, Morley, Shelah, ...).

(日) (伊) (日) (日) (日) (0) (0)

Arbitrary large gaps

Fact

[Vaught] Assume that for some κ , T admits a $(\beth_n(\kappa), \kappa)$ -model for all $n \in \omega$. Then T admits a (κ', λ') -model for any $\kappa' \ge \lambda'$.

Example

Vaught's theorem is optimal. Fix $n \in \omega$, and consider a structure M in the language $L = \{P_0(x), \ldots, P_n(x), \in_0, \ldots, \in_{n-1}\}$ in which $P_0(M) = \omega$, $P_{i+1}(M)$ is the set of subsets of $P_i(M)$, and $\in_i \subseteq P_i \times P_{i+1}$ is the belonging relation. Let T = Th(M). Then M is a (\beth_n, \aleph_0) -model of T, but it is easy to see by "extensionality" that for any $M' \models T$ we have $|M'| \leq \beth_n (|P_0(M')|)$.

However, the theory in the example is wild from the model theoretic point of view, and stronger transfer principles hold for tame classes of theories. Two-cardinal transfer for "tame" classes of theories

A theory is stable if f_T (κ) ≤ κ^{ℵ₀} for all κ. Examples: (ℂ, +, ×, 0, 1), equivalence relations, abelian groups, free groups, planar graphs, ...

Fact

[Lachlan], [Shelah] If T is stable and admits a (κ, λ) -model for some $\kappa > \lambda$, then it admits a (κ', λ') -model for any $\kappa' \ge \lambda'$.

► A theory is *o*-minimal if every definable set is a finite union of points and intervals with respect to a fixed definable linear order (e.g. (ℝ, +, ×, 0, 1, exp)).

Fact

[T. Bays] If T is o-minimal and admits a (κ, λ) -model for some $\kappa > \lambda$, then it admits a (κ', λ') -model for any $\kappa' \ge \lambda'$.

NIP theories

Definition

A theory is NIP (No Independence Property) if it cannot encode subsets of an infinite set. That is, there are **no** model $M \models T$, tuples $(a_i)_{i \in \omega}, (b_s)_{s \subseteq \omega}$ and formula $\phi(x, y)$ such that $M \models \phi(a_i, b_s)$ holds if and only if $i \in s$.

 Equivalently, uniform families of definable sets have finite VC-dimension.

Fact

[Shelah] T is NIP if and only if $f_T(\kappa) \leq (\operatorname{ded} \kappa)^{\aleph_0}$ for all κ .

Example

The following theories are NIP:

- Stable theories,
- o-minimal theories,
- colored linear orders, trees, algebraically closed valued fields, p-adics.

Vaught's bound is optimal for NIP

So can one get a better bound in Vaught's theorem restricting to NIP theories?

Theorem (***)

[Ch., Shelah] For every $n \in \omega$ there is an NIP theory T which admits a (\beth_n, \aleph_0) -model, but no (\beth_ω, \aleph_0) -models.

Proof.

- 1. Consider $T = \text{Th}(\mathbb{R}, \mathbb{Q}, <)$ with P(x) naming \mathbb{Q} , it is NIP. Then T admits a $(2^{\aleph_0}, \aleph_0)$ -model, but for every $M \models T$ we have $|M| \le \text{ded}(|P(M)|)$, as P(M) is dense in M. The idea is to iterate this construction.
- 2. Picture.
- Doing this generically, we can ensure that T eliminates quantifiers and is NIP. In n steps we get a (dedⁿ ℵ₀, ℵ₀)-model. Applying Theorem (**) we see that in 4n steps we get a (□_n, ℵ₀)-model, but of course no (□_ω, ℵ₀)-models.

Comments

- Elaborating on the same technique we can show that the Hanf number for omitting a type is as large in NIP theories as in arbitrary theories (again unlike the stable and the *o*-minimal cases where it is much smaller).
- Problem. Transfer between cardinals close to each other. Let *T* be NIP and assume that it admits a (κ, λ)-model for some κ > λ. Does it imply that it admits a (κ', λ)-model for all λ ≤ κ' ≤ ded λ?
- Conjecture. There is a better bound in the finite dp-rank case (connected to the existence of an indiscernible subsequence in every sufficiently long sequence).

Tree exponent

Definition

For two cardinals λ and μ , let $\lambda^{\mu, \text{tr}} = \sup\{\kappa: \text{ there is a tree } T \text{ with } \lambda \text{ many nodes and } \kappa \text{ branches of length } \mu\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Note that
$$\kappa^{\kappa, tr} = \operatorname{ded} \kappa$$
.

Finer counting of types

Let κ ≥ λ be infinite cardinals, T a complete countable theory as always.

Definition

 $g_{\mathcal{T}}(\kappa, \lambda) = \sup\{|P|: P \text{ is a family of pairwise-contradictory partial types, each of size <math>\leq \kappa$, over some A with $|A| \leq \lambda\}$.

- Note that $g_T(\kappa,\kappa) = f_T(\kappa)$.
- **Conjecture**. There are finitely many possibilities for g_T .

Theorem

[Ch., Shelah] True assuming GCH or assuming $\lambda \gg \kappa$.

• The remaining problem: show that if T is NIP then $g_T(\kappa, \lambda) \leq \lambda^{\kappa, \text{tr}}$.

Some comments

- 1. T is ω -stable $\Rightarrow g_T(\kappa, \lambda) = \lambda$ for all $\lambda \ge \kappa \ge \aleph_0$.
- 2. *T* is superstable, not ω -stable $\Rightarrow g_T(\kappa, \lambda) = \lambda + 2^{\aleph_0}$ for all $\lambda \ge \kappa \ge \aleph_0$.
- 3. *T* is stable, not superstable $\Rightarrow g_T(\kappa, \lambda) = \lambda^{\aleph_0}$ for all $\lambda \ge \kappa \ge \aleph_0$.
- 4. *T* is supersimple, unstable $\Rightarrow g_T(\kappa, \lambda) = \lambda + 2^{\kappa}$ for all $\lambda \ge \kappa \ge \aleph_0$.
- 5. *T* is simple, not supersimple $\Rightarrow g_T(\kappa, \lambda) = \lambda^{\aleph_0} + 2^{\kappa}$ for all $\lambda \ge \kappa \ge \aleph_0$.
- 6. T is not simple, not NIP $\Rightarrow g_T(\kappa, \lambda) = \lambda^{\kappa}$ for all $\lambda \ge \kappa \ge \aleph_0$.
- 7. T is NIP, not simple:
 - $g_T(\kappa, \lambda) = \lambda^{\kappa}$ for $\lambda^{\kappa} > \lambda + 2^{\kappa}$ (by set theory),
 - ▶ for $\lambda \leq 2^{\kappa}$ we have $g_{T}(\kappa, \lambda) \geq \lambda^{\kappa, \text{tr}}$. So if ded $\kappa = 2^{\kappa}$ then we are done.

References

- James E. Baumgartner. "Almost-disjoint sets, the dense set problem and the partition calculus", Ann. Math. Logic, 9(4): 401–439, 1976
- 2. William Mitchell. "Aronszajn trees and the independence of the transfer property". Ann. Math. Logic, 5:21-46, 1972/73.
- 3. Saharon Shelah. "Classification theory and the Number of Non-Isomorphic Models"
- H. Jerome Keisler. "Six classes of theories", J. Austral. Math. Soc. Ser. A, 21(3):257–266, 1976.
- 5. Artem Chernikov, Itay Kaplan and Saharon Shelah. "On non-forking spectra", submitted (arXiv: 1205.3101).
- 6. Artem Chernikov and Saharon Shelah. "On the number of Dedekind cuts and two-cardinal models of dependent theories", in preparation.