Model theoretic approach to de Finetti theory

Artem Chernikov

Hebrew University of Jerusalem

Interactions between Logic, Topological structures and Banach spaces theory Eilat, May 23, 2013 Joint work with Itaï Ben Yaacov.

Model theory

- ▶ We fix a complete countable first-order theory T in a language L.
- Let \mathbb{M} be a monster model of T (i.e. κ^* -saturated and κ^* -homogeneous for some sufficiently large cardinal κ^*).
- ▶ Given a set $A \subseteq \mathbb{M}$, we let S(A) denote the space of types over A (i.e. the Stone space of ultrafilters on the Boolean algebra of A-definable subsets of \mathbb{M}).

Shelah's classification

- ▶ Morley's theorem: for a countable *T*, if it has only one model of some uncountable cardinality (up to isomorphism), then it has only one model of every uncountable cardinality.
- Morley's conjecture: for a countable theory T, the number of its models of size κ is non-decreasing on uncountable κ .
- In his work on Morley's conjecture, Shelah had isolated an important class of stable theories and had developed a lot of machinery to analyze types and models of stable theories.

Stability

Definition

- 1. We say that T encodes a linear order if there is a formula $\phi(\bar{x}, \bar{y}) \in L$ and $(\bar{a}_i : i \in \omega)$ in \mathbb{M} such that $\mathbb{M} \models \phi(\bar{a}_i, \bar{a}_j) \Leftrightarrow i < j$.
- 2. A theory T is stable if it cannot encode a linear order.
- Examples of first-order theories: equivalence relations, modules, algebraically closed fields, separably closed fields (Wood), free groups (Sela), planar graphs (Podewski and Ziegler).

Stability: number of types

Fact

The following are equivalent:

- 1. T is stable.
- 2. For some cardinal κ we have $\sup \{ |S(M)| : M \models T, |M| = \kappa \} = \kappa.$
- 3. For every cardinal κ we have $\sup \{ |S(M)| : M \models T, |M| = \kappa \} \le \kappa^{|T|}$.

Stability: indiscernible sequences

Definition

- 1. $(a_i : i \in \omega)$ is an *indiscernible sequence* over a set B if $\operatorname{tp}(a_{i_0} \dots a_{i_n}/B) = \operatorname{tp}(a_{j_0} \dots a_{j_n}/B)$ for any $i_0 < \dots < i_n$ and $j_0 < \dots < j_n$ from ω .
- 2. $(a_i : i \in \omega)$ is an indiscernible set over B if $\operatorname{tp}(a_{i_0} \dots a_{i_n}/B) = \operatorname{tp}(a_{\sigma(i_0)} \dots a_{\sigma(i_n)}/B)$ for any $\sigma \in S_{\infty}$.

Fact

The following are equivalent:

- 1. T is stable.
- 2. Every indiscernible sequence is an indiscernible set.

Stability: the independence relation

Fact

The following are equivalent:

- 1. T is stable.
- 2. There is an independence relation \bigcup on small subsets of \mathbb{M} (i.e. of cardinality $< \kappa^*$) satisfying the following axioms:
 - ▶ Invariance: $A \downarrow_{C} B$, $\sigma \in Aut(\mathbb{M}) \Rightarrow \sigma(A) \downarrow_{\sigma(C)} \sigma(B)$.
 - Symmetry: $A \downarrow_C B \Leftrightarrow B \downarrow_C A$.
 - ▶ Monotonicity: $A \downarrow_C B$, $A' \subseteq A$, $B' \subseteq B \Rightarrow A' \downarrow_C B'$.
 - ▶ Base monotonicity: $A \downarrow_D BC \Rightarrow A \downarrow_D C B$.
 - ► Transitivity: $A \downarrow_{CD} B$, $A \downarrow_{D} C \Rightarrow A \downarrow_{D} BC$.
 - ► Extension: $A \downarrow_C B$, $D \supseteq B \Rightarrow \exists A'$ such that $\operatorname{tp}(A'/BC) = \operatorname{tp}(A/BC)$ and $A' \downarrow_C D$.
 - ▶ Boundedness: For every $B \supseteq C$ and finite n we have $\left| \left\{ \operatorname{tp} (A/B) : |A| = n, A \bigcup_{C} B \right\} \right| \le 2^{|C|}$.
 - ▶ Finite character: $A' \downarrow_C B$ for all finite $A' \subseteq A \Rightarrow A \downarrow_C B$.
 - ▶ Local character: For every finite A and any B, there is some $C \subseteq B$, $|C| \le |T|$ such that $A \bigcup_C B$.

Stability: independence relation

- ▶ In fact, if such a relation exists then it has to come from Shelah's *non-forking* a canonically defined way of producing "generic" extensions of types.
- ► Examples: linear independence in vector spaces, algebraic independence in algebraically closed fields.

Stability tools

Definition

A sequence $(a_i)_{i\in\omega}$ in $\mathbb M$ is a *Morley sequence* in a type $p\in S(B)$ if it is a sequence of realizations of p indiscernible over B and such that moreover $a_i\bigcup_B a_{< i}$ for all $i\in\omega$.

Fact

In a stable theory, every type admits a Morley sequence (Erdős-Rado + compactness + properties of forking independence).

- ▶ An important technical tool in the development of stability.
- Example: an infinite basis in a vector space.

Stability tools

Definition

In a stable theory, every stationary type has a canonical base — a small set such that every automorphism of \mathbb{M} fixing it fixes the global non-forking extension of p.

- ▶ If we want every type to have a canonical base, we might have to add imaginary elements for classes of definable equivalence relations to the structure, but this is a tame procedure.
- ▶ The *definable closure* of a set $A \subseteq \mathbb{M}$: $dcl(A) = \{b \in \mathbb{M} : \exists \phi(x) \in L(A) \text{ s.t. } \models \phi(b) \land |\phi(\mathbb{M}, b)| = 1\}.$

Theorem

(Folklore) Every indiscernible sequence $(a_i)_{i\in\omega}$ is Morley over the canonical base of the limit type, which is equal to $\bigcap_{n\in\omega}\operatorname{dcl}^{\operatorname{eq}}(a_{\geq n})$.

Exchangeable sequences of random variables

- Let $(\Omega, \mathcal{F}, \mu)$ be a probability space.
- Let $\bar{X} = (X_i)_{i \in \omega}$ be a sequence of [0, 1]-valued random variables on Ω .
- ▶ \bar{X} is exchangeable if $(X_{i_0}, \dots, X_{i_n}) \stackrel{d}{=} (X_0, \dots, X_n)$ for any $i_0 \neq \dots \neq i_n$ and $n \in \omega$.
- Example: A sequence of i.i.d. (independent, identically distributed) random variables.
- Question: Is the converse true?

Classical de Finetti's theorem

Fact

A sequence of random variables $(X_i)_{i\in\omega}$ is exchangeable if and only if it is i.i.d. over its tail σ -algebra $T=\bigcap_{n\in\omega}\sigma(X_{\geq n})$.

Continuous logic

- ▶ Reference: Ben Yaacov, Berenstein, Henson, Usvyatsov "Model theory for metric structures".
- ► Every structure *M* is a complete metric space of bounded diameter, with metric *d*.
- Signature:
 - function symbols with given moduli of uniform continuity (correspond to uniformly continuous functions from Mⁿ to M),
 - ▶ predicate symbols with given moduli of uniform continuity (uniformly continuous functions from M to [0,1]).
- ▶ Connectives: the set of all continuous functions from $[0,1] \rightarrow [0,1]$, or any subfamily which generates a dense subset (e.g. $\left\{\neg,\frac{\times}{2},\stackrel{\cdot}{-}\right\}$).
- ▶ Quantifiers: sup for \forall , inf for \exists .
- ▶ This logic admits a compactness theorem, etc.

Stability in continuous logic

- Summary: everything is essentially the same as in the classical case (Ben Yaacov, Usvyatsov "Continuous first-order logic and local stability").
- ▶ Of course, modulo some natural changes: cardinality is replaced by the density character, in acl "finite" is replaced by "compact", some equivalences are replaced by the ability to approximate uniformly, etc.

The theory of random variables

- Let $(\Omega, \mathcal{F}, \mu)$ be a probability space, and let $L^1((\Omega, \mathcal{F}; \mu), [0, 1])$ be the space of [0, 1]-valued random variables on it.
- We consider it as a continuous structure in the language $L_{\text{RV}} = \left\{0, \neg, \frac{x}{2}, \dot{-}\right\}$ with the natural interpretation of the connectives (e.g. $\left(X Y\right)(\omega) = X(\omega) Y(\omega)$) and the distance $d(X, Y) = \mathbf{E}\left[|X Y|\right] = \int_{\Omega} |X Y| \, d\mu$.

The theory of random variables

- Consider the following continuous theory RV in the language L_{RV} , we write 1 as an abbreviation for $\neg 0$, E(x) for d(0,x) and $x \land y$ for $x \dot{-} (x \dot{-} y)$:
 - $E(x) = E(x y) + E(y \wedge x)$
 - E(1) = 1
 - d(x,y) = E(x y) + E(y x)
 - $\tau = 0$ for every term τ which can be deduced in the propositional continuous logic.
- ► The theory ARV is defined by adding:
 - ► Atomlessness: $\inf_{y} \left(E\left(y \land \neg y \right) \lor \left| E\left(y \land x \right) \frac{E(x)}{2} \right| \right) = 0.$

The theory of random variables: basic properties

Definition

Let $\sigma(A) \subseteq \mathcal{F}$ denote the minimal complete subalgebra with respect to which every $X \in A$ is measurable.

Fact

[Ben Yaacov, "On theories of random variables"]

- 1. $M \models \mathsf{RV} \Leftrightarrow it \text{ is isomorphic to } L^1(\Omega,[0,1]) \text{ for some probability space } (\Omega,\mathcal{F},\mu).$
- 2. $M \models \mathsf{ARV} \Leftrightarrow it \ is \ isomorphic \ L^1(\Omega,[0,1]) \ for \ some \ atomless probability \ space (\Omega,\mathcal{F},\mu).$
- 3. ARV is the model completion of the universal theory RV (so every probability space embeds into a model of ARV).
- 4. ARV eliminates quantifiers, and two tuples have the same type over a set $A \subseteq M$ if and only if they have the same joint conditional distribution as random variables over $\sigma(A)$.

The theory of random variables: stability

Fact

[Ben Yaacov, "On theories of random variables"]

- 1. ARV is \aleph_0 -categorical (i.e., there is a unique separable model) and complete.
- 2. ARV is stable (and in fact \aleph_0 -stable).
- 3. ARV eliminates imaginaries.
- 4. If $M \models \mathsf{ARV}$ and $A \subseteq M$, then $\mathsf{dcl}(A) = \mathsf{acl}(A) = L^1(\sigma(A), [0, 1]) \subseteq M$.
- 5. Model-theoretic independence coincides with probabilistic independence: $A \downarrow_B C \Leftrightarrow \mathbb{P}[X|\sigma(BC)] = \mathbb{P}[X|\sigma(B)]$ for every $X \in \sigma(A)$. Moreover, every type is stationary.

Back to de Finetti

- As every model of RV embeds into a model of ARV, wlog our sequence of random variables is from M ⊨ ARV.
- Recall: In a stable theory, every indiscernible sequence is an indiscernible set.

Corollary

(Ryll-Nardzewski) A sequence of random variables is exchangeable iff it is contractable (i.e. $X_{i_0} \dots X_{i_n} \stackrel{d}{=} X_0 \dots X_n$).

► Recall: In a stable theory, every indiscernible sequence is a Morley sequence over the definable tail closure.

Corollary

De Finetti's theorem.

Multi-dimensional de Finetti

A reformulation of de Finetti's theorem:

Fact

 $(X_i)_{i\in\omega}$ is exchangeable iff there is a measurable function $f:[0,1]^2\to\Omega$ and some i.i.d. U(0,1) random variables α and $(\xi_i)_{i\in\omega}$ such that a.s. $X_n=f(\alpha,\xi_i)$.

f is not unique here, and we might have to extend the basic probability space.

Multi-dimensional de Finetti

- ► So, 1-dimensional case was already folklore in stability theory.
- ► Multi-dimensional case, exchangeable arrays:

Fact

[Aldous, Hoover] An array of random variables $X = (X_{i,j})$ is exchangeable iff there exist a measurable function $f: [0,1]^4 \to \Omega$ and some i.i.d. U(0,1) random variables $\alpha, \xi_i, \eta_j, \zeta_{i,j}$ such that a.s. $X_{i,j} = f(\alpha, \xi_i, \eta_j, \zeta_{i,j})$.

- ▶ Kallenberg for *n*-dimensional case.
- Again, an exercise in forking calculus gives the required statement about probabilistic independence, and basic model theoretic properties of ARV allow to conclude.

Directions

- ▶ Keisler randomization: instead of sampling from [0,1] we can be sampling from a model of an arbitrary stable (continuous) first-order theory (ARV can be viewed as a "randomization of the equality").
- Non-commutative probability theory: no longer stable, no model complete theory and no quantifier elimination, but there is an appropriate notion of independence on quantifier-free types.