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VC-dimension

I Let F be a family of subsets of a set X .

I For a set B ⊆ X , let F ∩ B = {A ∩ B : A ∈ F}.
I We say that B ⊆ X is shattered by F if F ∩ B = 2B .
I Let the Vapnik-Chervonenkis dimension (VC dimension) of F

be the largest integer n such that some subset of S of size n is
shattered by F (otherwise ∞).

I Let πF (n) = max {|F ∩ B| : B ⊂ S , |B| = n}.
I If the VC dimension of F is infinite, then πF (n) = 2n for all n.

However,

Fact
[Sauer-Shelah lemma] If F has VC dimension ≤ d, then for n ≥ d
we have πF (n) ≤

∑
i≤d
(n

i

)
= O

(
nd).

I The bound is tight: consider all subsets of {1, . . . , n} of
cardinality less that d .
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VC-dimension

I Computational learning theory (PAC),
I computational geometry,
I functional analysis (Bourgain-Fremlin-Talagrand theory),
I model theory (NIP),
I abstract topological dynamics (tame dynamical systems), ...



Some examples

I X = R, F = all unbounded intervals. Then VC (F) = 2.

I X = R2, F = all half-spaces. Then VC (F) = 3.
I X = Rd , F = half-spaces in Rd . Then VC (F) = d + 1.
I The class of families of finite VC-dimension is closed under

boolean combinations.

I X = R2, F = all convex n-gons. Then VC (F) = 2n + 1.
I But: X = R2, F = all convex polygons. Then VC (F) =∞.
I X = R, F = semialgebraic sets of bounded complexity. Then

VC (F) is finite.
I Model theory gives a lot of new and more general examples

from outside of combinatorial real geometry (a bit later).
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The law of large numbers

I Let (X , µ) be a probability space.
I Given a set S ⊆ X and x1, . . . , xn ∈ X , we define

Av (x1, . . . , xn; S) = 1
n |S ∩ {x1, . . . , xn}|.

I For n ∈ ω, let µn be the product measure on X n.

Fact
(Weak law of large numbers) Let S ⊆ X be measurable and fix
ε > 0. Then for any n ∈ ω we have:

µn (x̄ ∈ X n : |Av (x1, . . . , xn; S)− µ (S)| ≥ ε) ≤ 1
4nε2

→ 0 when n→∞.

I (i.e., with high probability, sampling on a tuple (x1, . . . , xn)
selected at random gives a good estimate of the measure of S .)
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VC-theorem

Fact
[VC theorem] Let (X , µ) be a probability space, and let F be a
family of subsets of X of finite VC-dimension such that:
1. Every S ∈ F is measurable;

2. for each n, the function
fn (x1, . . . , xn) = supS∈F |Av (x1, . . . , xn; S)− µ (S)| is a
measurable function from X n to R;

3. for each n, the function gn (x1, . . . , xn, x ′1, . . . , x
′
n) =

supS∈F |Av (x1, . . . , xn; S)− Av (x ′1, . . . , x
′
n; S)| from X 2n to R

is measurable.
Then for every ε > 0 and n ∈ ω we have:

µn
(
sup
S∈F
|Av (x1, . . . , xn; S)− µ (S)| > ε

)
≤ 8πF (n) exp

(
−nε2

32

)
.



VC-theorem

Fact
[VC theorem] Let (X , µ) be a probability space, and let F be a
family of subsets of X of finite VC-dimension such that:
1. Every S ∈ F is measurable;
2. for each n, the function

fn (x1, . . . , xn) = supS∈F |Av (x1, . . . , xn; S)− µ (S)| is a
measurable function from X n to R;

3. for each n, the function gn (x1, . . . , xn, x ′1, . . . , x
′
n) =

supS∈F |Av (x1, . . . , xn; S)− Av (x ′1, . . . , x
′
n; S)| from X 2n to R

is measurable.
Then for every ε > 0 and n ∈ ω we have:

µn
(
sup
S∈F
|Av (x1, . . . , xn; S)− µ (S)| > ε

)
≤ 8πF (n) exp

(
−nε2

32

)
.



VC-theorem

Fact
[VC theorem] Let (X , µ) be a probability space, and let F be a
family of subsets of X of finite VC-dimension such that:
1. Every S ∈ F is measurable;
2. for each n, the function

fn (x1, . . . , xn) = supS∈F |Av (x1, . . . , xn; S)− µ (S)| is a
measurable function from X n to R;

3. for each n, the function gn (x1, . . . , xn, x ′1, . . . , x
′
n) =

supS∈F |Av (x1, . . . , xn; S)− Av (x ′1, . . . , x
′
n; S)| from X 2n to R

is measurable.

Then for every ε > 0 and n ∈ ω we have:

µn
(
sup
S∈F
|Av (x1, . . . , xn; S)− µ (S)| > ε

)
≤ 8πF (n) exp

(
−nε2

32

)
.



VC-theorem

Fact
[VC theorem] Let (X , µ) be a probability space, and let F be a
family of subsets of X of finite VC-dimension such that:
1. Every S ∈ F is measurable;
2. for each n, the function

fn (x1, . . . , xn) = supS∈F |Av (x1, . . . , xn; S)− µ (S)| is a
measurable function from X n to R;

3. for each n, the function gn (x1, . . . , xn, x ′1, . . . , x
′
n) =

supS∈F |Av (x1, . . . , xn; S)− Av (x ′1, . . . , x
′
n; S)| from X 2n to R

is measurable.
Then for every ε > 0 and n ∈ ω we have:

µn
(
sup
S∈F
|Av (x1, . . . , xn; S)− µ (S)| > ε

)
≤ 8πF (n) exp

(
−nε2

32

)
.



VC-theorem and ε-nets
I −→ 0 when n −→∞ (as πF (n) is polynomially bounded by

Sauer-Shelah).

I Of course (1),(2) and (3) hold for any family of subsets of a
finite set X . Also if F is countable then (1) implies (2) and
(3).

I Consider X = ω1, let B be the σ-algebra generated by the
intervals, and define µ (A) = 1 if A contains an end segment of
X and 0 otherwise. Take F to be the family of intervals of X .
Then VC (F) = 2 but the VC -theorem does not hold for F .

I A subset A of X is called an ε-net for F with respect to µ if
A ∩ S 6= ∅ for all S ∈ F with µ (S) ≥ ε.

Fact
[ε-nets] If (X , µ) is a probability space and F is a family of
measurable subsets of X with VC (F) ≤ d, then for any r ≥ 1
there is a 1

r -net for (X ,F) with respect to µ of size at most
Cdr ln r , where C is an absolute constant.
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Compression schemes and Warmuth conjecture
I As before, let F ⊆ 2X be given. Let F|fin denote⋃

{F ∩ B : B a finite subset of X with |B| ≥ 2}.

Definition
F is said to have a d-compression scheme if there is a compression
function κ : F|fin → X d and a finite set R of reconstruction
functions ρ : X d → 2X such that for every f ∈ F|fin we have:
1. range (κ (f )) ⊆ dom (f ),
2. f = ρ (κ (f )) |dom(f ) for at least one ρ ∈ R.

I Existence of a compression scheme for F implies finite
VC-dimension.

I Problem [Warmuth]. Does every family F of finite
VC-dimension admit a compression scheme? (and if yes, does
it admit a VC (F)-compression scheme?)

I Turns out that combining model theory with some more results
from combinatorics gives a quite general result towards it.



Compression schemes and Warmuth conjecture
I As before, let F ⊆ 2X be given. Let F|fin denote⋃

{F ∩ B : B a finite subset of X with |B| ≥ 2}.

Definition
F is said to have a d-compression scheme if there is a compression
function κ : F|fin → X d and a finite set R of reconstruction
functions ρ : X d → 2X such that for every f ∈ F|fin we have:
1. range (κ (f )) ⊆ dom (f ),

2. f = ρ (κ (f )) |dom(f ) for at least one ρ ∈ R.

I Existence of a compression scheme for F implies finite
VC-dimension.

I Problem [Warmuth]. Does every family F of finite
VC-dimension admit a compression scheme? (and if yes, does
it admit a VC (F)-compression scheme?)

I Turns out that combining model theory with some more results
from combinatorics gives a quite general result towards it.



Compression schemes and Warmuth conjecture
I As before, let F ⊆ 2X be given. Let F|fin denote⋃

{F ∩ B : B a finite subset of X with |B| ≥ 2}.

Definition
F is said to have a d-compression scheme if there is a compression
function κ : F|fin → X d and a finite set R of reconstruction
functions ρ : X d → 2X such that for every f ∈ F|fin we have:
1. range (κ (f )) ⊆ dom (f ),
2. f = ρ (κ (f )) |dom(f ) for at least one ρ ∈ R.

I Existence of a compression scheme for F implies finite
VC-dimension.

I Problem [Warmuth]. Does every family F of finite
VC-dimension admit a compression scheme? (and if yes, does
it admit a VC (F)-compression scheme?)

I Turns out that combining model theory with some more results
from combinatorics gives a quite general result towards it.



Compression schemes and Warmuth conjecture
I As before, let F ⊆ 2X be given. Let F|fin denote⋃

{F ∩ B : B a finite subset of X with |B| ≥ 2}.

Definition
F is said to have a d-compression scheme if there is a compression
function κ : F|fin → X d and a finite set R of reconstruction
functions ρ : X d → 2X such that for every f ∈ F|fin we have:
1. range (κ (f )) ⊆ dom (f ),
2. f = ρ (κ (f )) |dom(f ) for at least one ρ ∈ R.

I Existence of a compression scheme for F implies finite
VC-dimension.

I Problem [Warmuth]. Does every family F of finite
VC-dimension admit a compression scheme? (and if yes, does
it admit a VC (F)-compression scheme?)

I Turns out that combining model theory with some more results
from combinatorics gives a quite general result towards it.



Compression schemes and Warmuth conjecture
I As before, let F ⊆ 2X be given. Let F|fin denote⋃

{F ∩ B : B a finite subset of X with |B| ≥ 2}.

Definition
F is said to have a d-compression scheme if there is a compression
function κ : F|fin → X d and a finite set R of reconstruction
functions ρ : X d → 2X such that for every f ∈ F|fin we have:
1. range (κ (f )) ⊆ dom (f ),
2. f = ρ (κ (f )) |dom(f ) for at least one ρ ∈ R.

I Existence of a compression scheme for F implies finite
VC-dimension.

I Problem [Warmuth]. Does every family F of finite
VC-dimension admit a compression scheme? (and if yes, does
it admit a VC (F)-compression scheme?)

I Turns out that combining model theory with some more results
from combinatorics gives a quite general result towards it.



Compression schemes and Warmuth conjecture
I As before, let F ⊆ 2X be given. Let F|fin denote⋃

{F ∩ B : B a finite subset of X with |B| ≥ 2}.

Definition
F is said to have a d-compression scheme if there is a compression
function κ : F|fin → X d and a finite set R of reconstruction
functions ρ : X d → 2X such that for every f ∈ F|fin we have:
1. range (κ (f )) ⊆ dom (f ),
2. f = ρ (κ (f )) |dom(f ) for at least one ρ ∈ R.

I Existence of a compression scheme for F implies finite
VC-dimension.

I Problem [Warmuth]. Does every family F of finite
VC-dimension admit a compression scheme? (and if yes, does
it admit a VC (F)-compression scheme?)

I Turns out that combining model theory with some more results
from combinatorics gives a quite general result towards it.



Model theoretic classification: something completely
different?

I Let T be a complete first-order theory in a countable language
L. For an infinite cardinal κ, let IT (κ) denote the number of
models of T of size κ, up to an isomorphism.

I Note: 1 ≤ IT (κ) ≤ 2κ for all κ.

I Morley’s theorem: If IT (κ) = 1 for some uncountable κ, then
IT (κ) = 1 for all uncountable κ.

I Morley’s conjecture: IT (κ) is a non-decreasing function on
uncountable cardinals.

I Shelah’s approach: isolate dividing lines, expressed as the
ability to encode certain families of graphs in a definable way,
such that one can prove existence of many models on the
non-structure side of a dividing line and develop some theory
on the structure side (forking, weight, prime models, etc). E.g.
stability or NIP.

I Led to a proof of Morley’s conjecture. By later work of [Hart,
Hrushovski, Laskowski] we know all possible values of IT (κ).



Model theoretic classification: something completely
different?

I Let T be a complete first-order theory in a countable language
L. For an infinite cardinal κ, let IT (κ) denote the number of
models of T of size κ, up to an isomorphism.

I Note: 1 ≤ IT (κ) ≤ 2κ for all κ.
I Morley’s theorem: If IT (κ) = 1 for some uncountable κ, then

IT (κ) = 1 for all uncountable κ.
I Morley’s conjecture: IT (κ) is a non-decreasing function on

uncountable cardinals.

I Shelah’s approach: isolate dividing lines, expressed as the
ability to encode certain families of graphs in a definable way,
such that one can prove existence of many models on the
non-structure side of a dividing line and develop some theory
on the structure side (forking, weight, prime models, etc). E.g.
stability or NIP.

I Led to a proof of Morley’s conjecture. By later work of [Hart,
Hrushovski, Laskowski] we know all possible values of IT (κ).



Model theoretic classification: something completely
different?

I Let T be a complete first-order theory in a countable language
L. For an infinite cardinal κ, let IT (κ) denote the number of
models of T of size κ, up to an isomorphism.

I Note: 1 ≤ IT (κ) ≤ 2κ for all κ.
I Morley’s theorem: If IT (κ) = 1 for some uncountable κ, then

IT (κ) = 1 for all uncountable κ.
I Morley’s conjecture: IT (κ) is a non-decreasing function on

uncountable cardinals.
I Shelah’s approach: isolate dividing lines, expressed as the

ability to encode certain families of graphs in a definable way,
such that one can prove existence of many models on the
non-structure side of a dividing line and develop some theory
on the structure side (forking, weight, prime models, etc). E.g.
stability or NIP.

I Led to a proof of Morley’s conjecture. By later work of [Hart,
Hrushovski, Laskowski] we know all possible values of IT (κ).



Model theoretic classification: something completely
different?

I Let T be a complete first-order theory in a countable language
L. For an infinite cardinal κ, let IT (κ) denote the number of
models of T of size κ, up to an isomorphism.

I Note: 1 ≤ IT (κ) ≤ 2κ for all κ.
I Morley’s theorem: If IT (κ) = 1 for some uncountable κ, then

IT (κ) = 1 for all uncountable κ.
I Morley’s conjecture: IT (κ) is a non-decreasing function on

uncountable cardinals.
I Shelah’s approach: isolate dividing lines, expressed as the

ability to encode certain families of graphs in a definable way,
such that one can prove existence of many models on the
non-structure side of a dividing line and develop some theory
on the structure side (forking, weight, prime models, etc). E.g.
stability or NIP.

I Led to a proof of Morley’s conjecture. By later work of [Hart,
Hrushovski, Laskowski] we know all possible values of IT (κ).



NIP theories

I A formula φ (x , y) ∈ L (where x , y are tuples of variables) is
NIP in a structure M if the family
Fφ = {φ (x , a) ∩M : a ∈ M} has finite VC-dimension.

I Note that this is a property of the theory of M, i.e. if N is
elementarily equivalent to M then φ (x , y) is NIP in N as well.

I T is NIP if it implies that every formula φ (x , y) ∈ L is NIP.
I Fact [Shelah]. If T is not NIP, then it has 2κ models for any

infinite cardinal κ.

Fact
[Shelah] T is NIP iff every formula φ (x , y) with |x | = 1 is NIP.

I Curious original proof: holds in some model of ZFC +
absoluteness; since then had been finitized using Ramsey
theorem.
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New examples of VC-families

I Examples of NIP theories:
I stable theories (e.g. algebraically / separably / differentially

closed fields, free groups (Sela), planar graphs),

I o-minimal theories (e.g. real closed fields with exponentiation
and analytic functions restricted to [0, 1]),

I ordered abelian groups (Gurevich, Schmitt),
I algebraically closed valued fields, p-adics.

I Non-examples: the theory of the random graph, pseudo-finite
fields, ...
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Model-theoretic compression schemes

I Given a formula φ (x , y) and a set of parameters A, a φ-type
p (x) over A is a maximal consistent collection of formulas of
the form φ (x , a) or ¬φ (x , a), for a ∈ A.

I A type p (x) ∈ Sφ (A) is definable if there is some ψ (y , z) ∈ L
and b ∈ A|b| such that for any a ∈ A, φ (x , a) ∈ p ⇔ ψ (a, b)
holds.

I We say that φ-types are uniformly definable if ψ (y , z) can be
chosen independently of A and p.

I Definability of types over arbitrary sets is a characteristic
property of stable theories, and usually fails in NIP (consider
(Q, <)).

I Laskowski observed that uniform definability of types over
finite sets implies Warmuth conjecture (and is essentially a
model-theoretic version of it).
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Model-theoretic compression schemes

Theorem
[Ch., Simon] If T is NIP, then for any formula φ (x , y), φ-types are
uniformly definable over finite sets. This implies that every
uniformly definable family of sets in an NIP structure admits a
compression scheme.

I Note that we require not only the family F itself to be of
bounded VC-dimension, but also certain families produced
from it in a definable way, and that the bound on the size of
the compression scheme is not constructive.

I Main ingredients of the proof:
I invariant types, indiscernible sequences, honest definitions in

NIP (all these tools are quite infinitary),
I careful use of logical compactness,
I The (p, q)-theorem.
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Transversals and the (p, q)-theorem
Definition
We say that F satisfies the (p, q)-property, where p ≥ q, if for
every F ′ ⊆ F with |F ′| ≥ p there is some F ′′ ⊆ F ′ with |F ′′| ≥ q
such that

⋂
{A ∈ F ′′} 6= ∅.

Fact
Assume that p ≥ q > d. Then there is an N = N (p, q) such that
if F is a finite family of subsets of X of finite VC-codimension d
and satisfies the (p, q)-property, then there are b0, . . . , bN ∈ X
such that for every A ∈ F , bi ∈ A for some i < N.

I Was proved for families of convex subsets of the Euclidian
space by Alon and Kleitman solving a long-standing open
problem

I Then for families of finite VC- dimension by Matousek
(combining ε-nets with the existence of fractional Helly
numbers for VC-families)

I Closely connected to a finitary version of forking from model
theory.
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Set theory: counting cuts in linear orders

I There are some questions of descriptive set theory character
around VC-dimension and generalizations of PAC learning
(Pestov), but I’ll concentrate on connections to cardinal
arithmetic.

I Let κ be an infinite cardinal.

Definition
dedκ = sup{|I |: I is a linear order with a dense subset of size ≤ κ}.

I In general the supremum need not be attained.
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Equivalent ways to compute dedκ

The following cardinals are the same:
1. dedκ,

2. sup{λ: exists a linear order I of size ≤ κ with λ Dedekind
cuts},

3. sup{λ: exists a regular µ and a linear order of size ≤ κ with λ
cuts of cofinality µ on both sides}
(by a theorem of Kramer, Shelah, Tent and Thomas),

4. sup{λ: exists a regular µ and a tree T of size ≤ κ with λ
branches of length µ}.
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Some basic properties of dedκ

I κ < dedκ ≤ 2κ for every infinite κ
(for the first inequality, let µ be minimal such that 2µ > κ,
and consider the tree 2<µ)

I dedℵ0 = 2ℵ0

(as Q ⊆ R is dense)
I Assuming GCH, dedκ = 2κ for all κ.
I [Baumgartner] If 2κ = κ+n (i.e. the nth sucessor of κ) for

some n ∈ ω, then dedκ = 2κ.
I So is dedκ the same as 2κ in general?

Fact
[Mitchell] For any κ with cf κ > ℵ0 it is consistent with ZFC that
dedκ < 2κ.
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Counting types
I Let T be an arbitrary complete first-order theory in a

countable language L.
I For a model M, ST (M) denotes the space of types over M

(i.e. the space of ultrafilters on the boolean algebra of
definable subsets of M).

I We define fT (κ) = sup {|ST (M)| : M |= T , |M| = κ}.

Fact
[Keisler], [Shelah] For any countable T , fT is one of the following
functions: κ, κ+ 2ℵ0 , κℵ0 , dedκ, (dedκ)ℵ0 , 2κ (and each of these
functions occurs for some T).

I These functions are distinguished by combinatorial dividing
lines, resp. ω-stability, superstability, stability, non-multi-order,
NIP.

I In fact, the last dichotomy is an “infinite Shelah-Sauer lemma”
(on finite values, number of brunches in a tree is polynomial)
⇒ reduction to 1 variable.
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Further properties of dedκ

I So we have κ < dedκ ≤ (dedκ)ℵ0 ≤ 2ℵ0 and dedκ = 2κ

under GCH.

I [Keisler, 1976] Is it consistent that dedκ < (dedκ)ℵ0?

Theorem
[Ch., Kaplan, Shelah] It is consistent with ZFC that
dedκ < (dedκ)ℵ0 for some κ.

I Our proof uses Easton forcing and elaborates on Mitchell’s
argument. We show that e.g. consistently dedℵω = ℵω+ω and
(dedℵω)ℵ0 = ℵω+ω+1.

I Problem. Is it consistent that dedκ < (dedκ)ℵ0 < 2κ at the
same time for some κ?
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Bounding exponent in terms of dedκ

I Recall that by Mitchell consistently dedκ < 2κ. However:

Theorem
[Ch., Shelah] 2κ ≤ ded (ded (ded (dedκ))) for all infinite κ.

I The proof uses Shelah’s PCF theory.
I Problem. What is the minimal number of iterations which

works for all models of ZFC (or for some classes of cardinals)?
At least 2, and 4 is enough.
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Tame topological dynamics

I Stable group theory: genericity, stabilizers, Hrushovski’s
reconstruction of groups from generic data (e.g. various
generalizations of these are used in his results on approximate
subgroups).

I Groups definable in o-minimal structures: real Lie groups,
Pillay’s conjecture, etc.

I Common generalization: study of NIP groups, leads to
considering questions of “definable” topological dynamics.

I Parallel program: actions of automorphism groups of
ω-categorical theories (recent connections to stability by Ben
Yaacov, Tsankov, Ibarlucia) - some things are very similar, but
we concentrate on the definable case for now.
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Definable actions

I Let M |= T and G is an M-definable group (e.g. GL (n,R),
SL (n,R), SO (n,R) etc).

I G acts by homeomorphisms on SG (M), its space of types -
this is a universal flow with respect to “definable” actions, we
try to understand this system: minimal flows, generics,
measures, etc.

Definition
An action of a definable group G on a compact space X is called
definable if:

I G acts by homeomorphisms,
I for each x ∈ X , the map fx : G → X taking x to gx is

definable (a function f from a definable set Y ⊆ M to X is
definable if for any closed disjoint C1,C2 ⊆ X there is an
M-definable D ⊆ Y such that f −1 (C1) ⊆ D and
D ∩ f −1 (C2) = ∅).



Definable actions

I Let M |= T and G is an M-definable group (e.g. GL (n,R),
SL (n,R), SO (n,R) etc).

I G acts by homeomorphisms on SG (M), its space of types -
this is a universal flow with respect to “definable” actions, we
try to understand this system: minimal flows, generics,
measures, etc.

Definition
An action of a definable group G on a compact space X is called
definable if:

I G acts by homeomorphisms,
I for each x ∈ X , the map fx : G → X taking x to gx is

definable (a function f from a definable set Y ⊆ M to X is
definable if for any closed disjoint C1,C2 ⊆ X there is an
M-definable D ⊆ Y such that f −1 (C1) ⊆ D and
D ∩ f −1 (C2) = ∅).



Definable actions

I Let M |= T and G is an M-definable group (e.g. GL (n,R),
SL (n,R), SO (n,R) etc).

I G acts by homeomorphisms on SG (M), its space of types -
this is a universal flow with respect to “definable” actions, we
try to understand this system: minimal flows, generics,
measures, etc.

Definition
An action of a definable group G on a compact space X is called
definable if:

I G acts by homeomorphisms,

I for each x ∈ X , the map fx : G → X taking x to gx is
definable (a function f from a definable set Y ⊆ M to X is
definable if for any closed disjoint C1,C2 ⊆ X there is an
M-definable D ⊆ Y such that f −1 (C1) ⊆ D and
D ∩ f −1 (C2) = ∅).



Definable actions

I Let M |= T and G is an M-definable group (e.g. GL (n,R),
SL (n,R), SO (n,R) etc).

I G acts by homeomorphisms on SG (M), its space of types -
this is a universal flow with respect to “definable” actions, we
try to understand this system: minimal flows, generics,
measures, etc.

Definition
An action of a definable group G on a compact space X is called
definable if:

I G acts by homeomorphisms,
I for each x ∈ X , the map fx : G → X taking x to gx is

definable (a function f from a definable set Y ⊆ M to X is
definable if for any closed disjoint C1,C2 ⊆ X there is an
M-definable D ⊆ Y such that f −1 (C1) ⊆ D and
D ∩ f −1 (C2) = ∅).



Definably amenable groups

I Let MG (M) denote the totally disconnected compact space of
probability measures on SG (M) (we view it as a closed subset
of [0, 1]L(M) with the product topology, coincides with the
weak∗-topology).

I Now (G , SG (M)) is a universal ambit for the definable actions
of G , and G is definably (extremely) amenable iff every
definable action admits a G -invariant measure (a G -fixed
point).

I Equivalently, G is definably amenable if there is a global (left)
G -invariant finitely additive measure on the boolean algebra of
definable subsets of G (can be extended from clopens in
SG (M) to Borel sets by regularity).
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Definably amenable groups

Example
The following groups are definably amenable:

I Any definable group which is amenable as a discrete group
(e.g. solvable groups),

I Any definably compact group in an o-minimal theory (e.g.
SO3 (R) is definably amenable, despite Banach-Tarski).

I Any stable group. In particular the free group F2 is known by
the work of Sela to be stable as a pure group, and hence is
definably amenable.

I Any pseudo-finite group.

I If K is an algebraically closed valued field or a real closed field
and n > 1, then SL (n,K ) is not definably amenable.
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Connected components
I In an algebraic group over ACF, one can consider a connected

component of 1 with repsect to the Zariski topology. In RCF,
consider infinitesimals.

Definition
Let A be a small subset of M (a monster model for T ). We define:

I G 0
A =

⋂
{H ≤ G : H is A-definable, of finite index}.

I G 00
A =⋂
{H ≤ G : H is type-definable over A, of bounded index}.

I In general depend on A and can get smaller as A grows.

Fact
Let T be NIP. Then for every small set A we have:

I [Baldwin-Saxl] G 0
∅ = G 0

A,
I [Shelah] G 00

∅ = G 00
A ,

I Both are normal Aut (M)-invariant subgroups of G of bounded
index.
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The logic topology on G/G 00

I Let π : G → G/G 00 be the quotient map.
I We endow G/G 00 with the logic topology: a set S ⊆ G/G 00

is closed iff π−1 (S) is type-definable over some (any) small
model M.

I With this topology, G/G 00 is a compact topological group.
I If G 0 = G 00 (e.g. G is a stable group), then G/G 00 is a

profinite group: it is the inverse image of the groups G/H,
where H ranges over all definable subgroups of finite index.
E.g. If G = (Z ,+), then G 00 = G 0 is the set of elements
divisible by all n. The quotient G/G 00 is isomorphic as a
topological group to Ẑ = lim←−Z/nZ.

I If G = SO (2,R) is the circle group defined in a real closed
field R, then G 00 is the set of infinitesimal elements of G and
G/G 00 is canonically isomorphic to the standard circle group
SO (2,R). Note also that G 0 = G , so 6= G 00.
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I If G = SO (2,R) is the circle group defined in a real closed
field R, then G 00 is the set of infinitesimal elements of G and
G/G 00 is canonically isomorphic to the standard circle group
SO (2,R). Note also that G 0 = G , so 6= G 00.



Some results for definably amenable NIP groups (joint work
with Pierre Simon)

I Ergodic measures are liftings of the Haar measure on G/G 00

via certain invariant types.

I There is a coherent theory of genericity extending the stable
case.

I Proofs use VC theory along with forking calculus in NIP
theories.
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Ellis group
I Let (G ,X ) be a dynamical system, and for g ∈ G let
πg : X → X be the corresponding homeomorphism.

I Let E (X ) be the closure of {πg (x) : g ∈ G} in the compact
space XX .

I Then (E (X ) , ·), where · is composition, is a semigroup (called
the Ellis enveloping semigroup of (G ,X )).

I Note: E (X ) is a compact Hausdorff topological space such
that · is continuous in the first coordinate, namely for each
b ∈ E (X ) the map taking x to x · b is continuous.

I Also (G ,E (X )) is a flow as well, G acts on E (X ) by πg ◦ f .
I The minimal closed left ideals in (E (X ) , ·) coincide with the

minimal subflows of (G ,E (X )) (nonempty closed subset I of S
such that a · I ⊆ I for all a ∈ E (X )).

I For any closed left ideal I , there is an idempotent u ∈ I .
I If I is minimal and u ∈ I idempotent, then u · I is a group.
I Moreover, as u, I vary, these groups are isomorphic.
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Ellis group conjecture
I Applying this construction to our definable group G acting on

the space of its types, (G , SG (M)), we obtain some Ellis
group u · I .

I There is a natural surjective group homomorphism
π : u · I → G/G 00. Newelski conjectured that in NIP, it is an
isomorphism. But SL (2,R) is a counterexample.

I Corrected Ellis group conjecture [Pillay]. Suppose G is a
definably amenable NIP group. Then the restriction of
π : SG (M0)→ G/G 00 to u · I is an isomorphism, for some/any
minimal subflow I of SG (M0) and idempotent u ∈ I (i.e. π is
injective).

I Some partial results (including the o-minimal case) in a joint
work [Ch., Pillay, Simon].

Theorem
[Ch., Simon] The Ellis group conjecture is true.

I We can recover G/G 00 abstractly from the action and the Ellis
group does not depend on the model of T .
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Ellis group conjecture

I Main ingredients of the proof:
I fine analysis of Borel definability of invariant types in NIP

theories,
I generic compact domination for the Baire ideal (a more

general version of the unique ergodicity for tame minimal
systems of Glasner, in the definable category).


