Fields and model-theoretic classification, 2

Artem Chernikov

UCLA

Model Theory conference Stellenbosch, South Africa, Jan 11 2017

NIP

Definition

Let T be a complete first-order theory in a language \mathcal{L} .

1. A (partitioned) formula $\phi(x, y)$ is *NIP* (No Independence Property) if there are no $\mathcal{M} \models T$ and $(a_i)_{i \in \mathbb{N}}$ from $\mathcal{M}^{|x|}$ and $(b_J)_{J \subseteq \mathbb{N}}$ such that

$$\mathcal{M} \models \phi(\mathbf{a}_i, \mathbf{b}_J) \iff i \in J.$$

- 2. T is NIP if it implies that all formulas are NIP.
- 3. \mathcal{M} is NIP if Th (\mathcal{M}) is NIP.
- ► The class of NIP theories was introduced by Shelah, later noticed by Laskowski that φ(x, y) is NIP ⇐⇒ {φ(M, b) : b ∈ M^{|y|}} has finite Vapnik-Chervonenkis dimension from statistical learning theory.
- Attracted a lot of attention in model theory (new important algebraic examples + generalizing methods of stability).

Examples of NIP theories

- T stable \implies T is NIP.
- ▶ [Shelah] *T* is NIP if all formulas $\phi(x, y)$ with |x| = 1 are NIP.
- ► Using it (and that Boolean combinations of NIP formulas are NIP), easy to see that every *o*-minimal theory is NIP*. In particular, (ℝ, +, ·, 0, 1).
- (Q_p, +, ·, 0, 1) eliminates quantifiers in the language expanded by v (x) ≤ v (y) and P_n(x) ⇔ ∃y (x = yⁿ) for all n ≥ 2 [Macintyre]. Using it, not hard to check NIP.

More examples: Delon's theorem, etc.

Fact

[Delon] + [Gurevich-Schmitt] Let (K, v) be a henselian valued field of residue characteristic char (k) = 0. Then (K, v) is NIP $\iff k$ is NIP (as a pure field).

- Can also work in the Denef-Pas language or in the RV language.
- Various versions in positive characteristic: Belair, Jahnke-Simon.

What do we know about NIP fields

- Are these all examples?
- Conjecture. [Shelah, and others] Let K be an NIP field. Then K is either separably closed, or real closed, or admits a non-trivial henselian valuation.
- ► [Johnson] In the dp-minimal case, yes (see later).
- In general, what do we know about NIP fields (and groups)?

Definable families of subgroups Baldwin-Saxl

- Let G be a group definable in an NIP structure \mathcal{M} .
- ▶ By a uniformly definable family of subgroups of G we mean a family of subgroups $(H_i : i \in I)$ of G such that for some $\phi(x, y)$ we have $H_i = \phi(M, a_i)$ for some parameter a_i , for all $i \in I$.

Baldwin-Saxl, 1

Fact

[Baldwin-Saxl] Let G be an NIP group. For every formula $\phi(x, y)$ there is some number $m = m(\phi) \in \omega$ such that if I is finite and $(H_i : i \in I)$ is a uniformly definable family of subgroups of G of the form $H_i = \phi(\mathbb{M}, a_i)$ for some parameters a_i , then $\bigcap_{i \in I} H_i = \bigcap_{i \in I_0} H_i$ for some $I_0 \subseteq I$ with $|I_0| \leq m$.

Proof.

Otherwise for each $m \in \omega$ there are some subgroups $(H_i : i \leq m)$ such that $H_i = \phi(\mathbb{M}, a_i)$ and $\bigcap_{i \leq m} H_i \subsetneq \bigcap_{i \leq m, i \neq j} H_i$ for every $j \leq m$. Let b_j be an element from the set on the right hand side and not in the set on the left hand side. Now, if $I \subseteq \{0, 1, \ldots, m\}$ is arbitrary, define $b_I := \prod_{j \in I} b_j$. It follows that $\models \phi(b_I, a_i) \iff i \notin I$. This implies that $\phi(x, y)$ is not NIP.

Connected components and generics

- As in the ω-stable case, implies existence of connected components: G⁰, G⁰⁰, G[∞] (however, now G⁰ is only type-definable).
- ► Study of groups in NIP brings to the picture connections to topological dynamics, measure theory, etc (G/G⁰⁰ is a compact topological group explaining a lot about G itself).
- [Hrushovski, Pillay], [C., Simon] Definably amenable NIP groups admit a satisfactory theory of generics (generalizing stable and o-minimal cases).

Artin-Schreier extensions

Let k be a field, char (k) = p. Let ρ be the polynomial X^p − X.

Fact

[Artin-Schreier]

- 1. Given $a \in k$, either the polynomial ρ a has a root in k, in which case all its roots are in k, or it is irreducible. In the latter case, if α is a root then $k(\alpha)$ is cyclic of degree p over k.
- 2. Conversely, let K be a cyclic extension of k of degree p. Then there exists $\alpha \in K$ such that $K = k(\alpha)$ and for some $a \in k$, $\rho(\alpha) = a$.
- Such extensions are called Artin-Schreier extensions.

Fact

[Kaplan-Scanlon-Wagner, 2010] Let K be an infinite NIP field of characteristic p > 0. Then K is Artin-Schreier closed (i.e. no proper A-S extensions, that is ρ is onto).

- [Hempel, 2015] generalized this to *n*-dependent fields.
- We will sketch the proof in the NIP case.

Corollary

If L/K is a Galois extension, then p does not divide [L : K].

Corollary

K contains $\mathbb{F}_p^{\mathrm{alg}}$.

1. Let F be an algebraically closed field containing K. 2. For $n \in \mathbb{N}$ and $\overline{b} \in F^{n+1}$, define

$$G_{\overline{b}} := \left\{ (t, x_1, \dots, x_n) : t = b_i \left(x_i^p - x_i \right) \text{ for } 1 \le i \le n \right\}$$

- 3. $G_{\bar{b}}$ is an algebraic subgroup of $(F, +)^{n+1}$.
- 4. If *b* ∈ *K*, then by Baldwin-Saxl, for some *n*₀ ∈ N, for every finite tuple *b*, there is a sub-*n*₀-tuple *b*' such that the projection *π* : *G_b*(*K*) → *G_{b'}*(*K*) is onto. (Consider the family of subgroups of (*K*, +) of the form {*t* : ∃*x t* = *a*(*x^p* − *x*)} for *a* ∈ *K*.)

Claim 1. Let F be an algebraically closed field. Suppose $\overline{b} \in F^{\times}$ is algebraically independent, then $G_{\overline{b}}$ is a connected group.

Claim 2. Let *F* be an algebraically closed field of characteristic *p*, and let $f : F \to F$ be an additive polynomial (i.e. f(x+y) = f(x) + f(y)). Then *f* is of the form $\sum a_i x^{p^i}$. Moreover, if ker $(f) = \mathbb{F}_p$ then $f = (a(x^p - x))^{p^n}$ for some $n < \omega, a \in F^{\times}$.

Fact. Let *k* be a perfect field, and *G* a closed 1-dimensional connected algebraic subgroup of $(k^{alg}, +)^n$ defined over *k*, for some $n < \omega$. Then *G* is isomorphic over *k* to $(k^{alg}, +)$.

- We may assume that K is \aleph_0 -saturated.
- Let $k = \bigcap_{n \in \omega} K^{p^n}$, k is an infinite perfect field.
- Choose an algebraically independent tuple $\bar{b} \in k^{n_0+1}$.
- By Baldwin-Saxl, there is some sub-n₀-tuple b̄' such that the projection π : G_{b̄}(K) → G_{b̄'}(K) is onto.
- ▶ By the first claim, both $G_{\bar{b}}$ and $G_{\bar{b}'}$ are connected. And their dimension is 1.

- By the Fact, both these groups are isomorphic over k to (K^{alg}, +).
- So we have some $\nu \in k[x]$ such that

$$\begin{array}{c} G_{\overline{b}}(K^{alg}) \xrightarrow{\pi} G_{\overline{b}'}(K^{alg}) \\ \downarrow & \downarrow \\ (K^{alg}, +) \xrightarrow{\nu} (K^{alg}, +) \end{array}$$

commutes.

► As the sides are isomorphisms defined over $k \subseteq K$, we can restrict them to K. As $\pi \upharpoonright G_{\overline{b}}(k)$ is onto $G_{\overline{b}'}(K)$, then so is $\nu \upharpoonright K$.

•
$$|\ker(\nu)| = p = |\ker(\pi)|$$
 (even when restricted to k).

- Suppose that $0 \neq c \in \ker(\nu) \subseteq k$. Let $\nu' := \nu \circ m_c$, where $m_c(x) = c \cdot x$.
- ν' is an additive polynomial over K whose kernel is 𝔽_p. So
 WLOG ker (ν) = 𝔽_p.
- By Claim 2, ν is of the form $a \cdot (x^p x)^{p^n}$ for $a \in K^{\times}$.
- But ν is onto, hence so is ρ (given $y \in K$, there is some $x \in K$ such that $a \cdot (x^p x)^{p^n} = a \cdot y^{p^n}$).

Distal structures, 1

- The class of *distal theories* was introduced by [Simon, 2011] in order to capture the class of NIP structures without any infinite stable "part".
- The original definition is in terms of a certain property of indiscernible sequences.
- [C., Simon, 2012] give a combinatorial characterization of distality:

Distal structures, 2

▶ **Theorem/Definition** An NIP structure *M* is *distal* if and only if for every definable family $\{\phi(x, b) : b \in M^d\}$ of subsets of *M* there is a definable family $\{\psi(x, c) : c \in M^{kd}\}$ such that for every $a \in M$ and every finite set $B \subset M^d$ there is some $c \in B^k$ such that $a \in \psi(x, c)$ and for every $a' \in \psi(x, c)$ we have $a' \in \phi(x, b) \Leftrightarrow a \in \phi(x, b)$, for all $b \in B$.

Examples of distal structures

- Distality can be thought of as a combinatorial abstraction of a cell decomposition.
- ▶ All (weakly) *o*-minimal structures, e.g. $M = (\mathbb{R}, +, \times, e^x)$.
- Presburger arithmetic.
- Any *p*-minimal theory with Skolem functions is distal. E.g. (ℚ_p, +, ×) for each prime *p* is distal (e.g. due to the *p*-adic cell decomposition of Denef).
- [Aschenbrenner, C.] The (valued differential) field of transseries.

Also, an analog of Delon's theorem holds for distality.

Example: o-minimal implies distal

- Let \mathcal{M} be *o*-minimal and $\phi(x, \overline{y})$ given.
- For any b
 ∈ M^{|y|}, φ(x, b) is a finite union of intervals whose endpoints are of the form f_i(b) for some definable functions f₀(y),..., f_k(y).
- Given a finite set $B \subseteq M^{|\bar{y}|}$, the set of points $\{f_i(\bar{b}) : i < k, \bar{b} \in B\}$ divides M into finitely many intervals, and any two points in the same interval have the same ϕ -type over B.
- ▶ Thus, for any $a \in M$, either $a = f_i(\bar{b})$ for some i < k and $\bar{b} \in B$, or $f_i(\bar{b}) < x < f_j(\bar{b}') \vdash \operatorname{tp}_{\phi}(a/B)$ for some i, j < k and $\bar{b}, \bar{b}' \in B$.

Strong Erdős-Hajnal property in distal structures, 1

Fact

[C., Starchenko, 2015]

- Let *M* be a distal structure. For every definable relation
 R ⊆ M^{d₁} × M^{d₂} there is some real ε > 0 such that:
 for every finite A ⊆ M^{d₁}, B ⊆ M^{d₂} there are some
 A' ⊆ A, B' ⊆ B such that |A'| ≥ ε |A|, |B'| ≥ ε |B| and
 (A', B') is R-homogeneous.
 Moreover, A' = A ∩ S₁ and B' = B ∩ S₂, where S₁, S₂ are
 definable by an instance of a certain formula depending just on
 the formula defining R (and not on its parameters).
- 2. Conversely, if all definable relations in \mathcal{M} satisfy this property, then \mathcal{M} is distal.

Strong Erdős-Hajnal property in distal structures, 2

- Part (1) was known in the following special cases:
- ► [Alon, Pach, Pinchasi, Radoičić, Sharir, 1995] *M* = (ℝ, +, ×, 0, 1).
- [Basu, 2007] Topologically closed graphs in *o*-minimal expansions of real closed fields.

Strong EH fails in ACF_p

- ► Without requiring definability of the homogeneous sets, strong EH holds in algebraically closed fields of char 0 — as (C, ×, +) is interpreted in (R², ×, +).
- For a finite field 𝔽_q, let P_q be the set of all points in 𝔽²_q and let L_q be the set of all lines in 𝔽²_q.
- Let I ⊆ P_q × L_q be the incidence relation. Using the fact that the bound |I (P_q, L_q)| ≤ |L_q| |P_q|^{1/2} + |P_q| is known to be optimal in finite fields, one can check:
- ▶ Claim. For any fixed $\delta > 0$, for all large enough q if $L_0 \subseteq L_q$ and $P_0 \subseteq P_q$ with $|P_0| \ge \delta q^2$ and $|L_0| \ge \delta q^2$ then $I(P_0, L_0) \neq \emptyset$.
- As every finite field of char p can be embedded into 𝔽^{alg}_p, it follows that strong EH fails in 𝔽^{alg}_p (even without requiring definability of the homogeneous pieces) for *I* the incidence relation.

Infinite distal fields have characteristic 0

► As by Kaplan, Scanlon, Wagner, every NIP field of positive characteristic p contains F^{alg}_p, we have:

Corollary

[C., Starchenko] Every infinite field interpretable in a distal structure has characteristic 0.

dp-minimal fields, 1

Definition

A theory T is *dp-minimal* if it is NIP of "rank 1" (will define precisely later).

► Examples of dp-minimal theories: strongly minimal, (weakly) o-minimal, C-minimal, finite extensions of Q_p, Henselian valued fields of char (0,0) with dp-minimal residue field and value group.

Fact

[Johnson, 2015] Let K be a dp-minimal field. Then K is either algebraically closed, or real closed, or admits a non-trivial henselian valuation (+ a more explicit characterization of dp-minimal fields).

dp-minimal fields, 2

- Key ideas:
 - Given an infinite dp-minimal field K which is not strongly minimal, then $\{X X : X \subseteq K \text{ definable and infinite}\}$ is a neighborhood basis of 0 for a Hausdorff non-discrete definable field topology such that if $0 \notin \overline{X}$, then $0 \notin \overline{X \cdot X}$ for $X \subseteq K$ (so called V-topology).
 - By [Kowalsky, Dürbaum], such a topology must arise from a non-trivial valuation or an absolute value on K (need not be definable or unique).
- ► Let O be the intersection of all Ø-definable valuation rings on K. Then, in particular relying on [Jahnke, Koenigsmann, 2015] work on defining henselian valuations, O is henselian, induces the canonical topology on K and the residue field is finite, algebraically closed, or real closed.