Fields and model-theoretic classification, 1

Artem Chernikov
UCLA

Model Theory conference

Stellenbosch, South Africa, Jan 9 2017



Definable sets

>

Let M = (M, R;, f;, c;) denote a first-order structure with
some distinguished relations R; C M¥ functions f; : Mk — M
and constants ¢; € M. Here £ = (R;, f;, ¢;) is the language of
M.

For example, a group is naturally viewed as a structure

(G, L 1), as well as any ring (R, +,-,0,1), ordered set

(X, <), graph (X, E), etc.

A (partitioned) first-order formula ¢ (x, y) is an expression of
the form Vz13z ... Vzop_13220% (x, y, Z), where 1 is a
Boolean combination of the (superpositions of) basic relations
and functions, and x, y are tuples of variables.

Given some parameters b € M|, ¢ (x, b) is an instance of ¢
and defines a set ¢ (M, b) = {a € MX : M = ¢ (a, b)}.
Subsets of M" of this form are called definable and form a
Boolean algebra.

E.g. in a group G, the set of solutions of a formula

¢(x) =Vy(x-y =y-x)is the center of G.



Complete theories

» If formula with no free variables is called a sentence, and it is
either true or false in M.

» The theory of M, or Th (M), is the collection of all sentences
that are true in M.

» Two L-structures M, N are elementarily equivalent if
Th(M) =Th(N).

» If M C N and for every formula ¢ (x) € £ and a € M,
ME ¢(a) < N | ¢(a), then M is an elementary
substructure of A/, denoted M < N

» In first approximation, model theory studies complete theories
T (equivalently, structures up to elementary equivalence) and
their corresponding categories of definable sets.

» |n second approximation, up to bi-interpretability.



Godelian phenomena

>

Consider (N, +, x,0,1). The more quantifiers we allow, the
more complicated sets we can define (e.g. non-computable
sets, and in fact a large part of mathematics can be encoded
— "Godelian phenomena”).

Similarly, by a result of Julia Robinson, the field (Q, +, x,0,1)
interprets (N, +, x,0,1), so it is as complicated.

In particular, no hope of describing the structure of definable
sets in any kind of “geometric’ manner.

On the other hand, definable sets in (C, +, x,0, 1) are within
the scope of algebraic geometry, and admit a beautiful and
elaborate theory (see later).

Hence, the Boolean algebra of definable sets is “wild" in the
first case, and “tame” in the second.

How to make this distinction between wild and tame structures
precise and independent of the specific language in which
these structures are considered?



Model theoretic classification

> [Morley, 1965] Let T be a countable first-order theory. Assume
T has a unique model (up to isomorphism) of size x for some
uncountable cardinal k. Then for any uncountable cardinal A
it has a unique model of size \.

» Morley's conjecture: for any T, the function

frie—=|{M: M T,|M| =k}

is non-decreasing on uncountable cardinals.

» Shelah’s “dividing lines” solution: describe all possible
functions, distinguished by T being able to encode certain
explicit combinatorial configurations in a definable manner. If
it does, demonstrate that there are as many models as
possible, if it doesn't, develop some dimension theory to
describe its models.

» Later, Zilber, Hrushovski and others — geometric stability
theory. In order to understand arbitrary theories, it is essential
to understand groups and fields definable in them.



(Partial) Classification picture
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Model theoretic classification of groups and fields

» Hence, understanding tame groups and fields not only provides
important examples, but is also essential for the general theory.

» Classifying groups is as complicated as classifying arbitrary
theories:

» [Mekler, 81] For every theory T in a finite relational language,
there is a theory T’ of pure groups (nilpotent, class 2) which
interprets T and is in the same tameness classas T, e.g. T’ is
stable/simple/NIP/NTP3, assuming T was (T’ is not
interpretable in T in general).

» Remarkably, for fields, model-theoretic dividing lines tend to
coincide with natural algebraic properties.



Types

> Let T be fixed, MET.
> A partial type m(x) over a set of parameters AC M is a

collection of formulas over A such that for any finite mg C ,
there is some a € MX! such that a |= 7 (x).

M is k-saturated if every n-type over every A C M, |A| < k is
realized in M.

(Compactness theorem) Every M admits a k-saturated
elementary extension N/ = M, for any k.

Let M = (R, +, x,<,0,1), and consider

T(x)={0<x< 1. neN}. Not realized in R (thus R is
not Ng-saturated). Passing to some Wg-saturated R* >~ R, the
set of solutions of 7 (x) in R* is the set of “infinitesimal’
elements, and one can do non-standard analysis working in R*.
A complete type p(x) over A is a maximal (under inclusion)
partial type over A (equivalently, an ultrafilter in the Boolean
algebra of A-definable subsets of MIXI). Let S, (A) denotes the
space of all complete types over A (Stone dual).



Stability

» Given a theory T in a language £, a (partitioned) formula
¢ (x,y) € L (x,y are tuples of variables), a model M = T
and b e MV, let (M, b) ={ae MX: M ¢(a,b)}.

> Let Fpm = {gb(l\/l, b): b€ MM} be the family of ¢-definable
subsets of M. Dividing lines can be typically expressed as
certain conditions on the combinatorial complexity of the
families F4 1 (independent of the choice of M).

Definition

1. A (partitioned) formula ¢ (x, y) is stable if there are no
M= T and (a;, bj - i < w) with a; € MX!, b; € MIYI such
that

M ):gb(a,',bj) — i <.

2. A theory T is stable if it implies that all formulas are stable.

» E.g. (Q, <) is not stable.



Stability is equivalent to few types

Definition
T is k-stable if sup {|S1 (M)| : M | T,|M| =k} <k (i.e. the
space of types is as small as possible).

Fact
Let T be a complete theory. TFAE:

1. T is stable.
2. T is k-stable for some k.

3. T is k-stable for every k with k = s!T!,

> |t is easy to see that if T is x-stable, then the same bound
holds for S, (M) for any n € w. Hence it is enough to check
that all formulas ¢ (x, y) with |x| = 1 are stable.



Examples of stable fields: algebraically closed fields

v

We consider Th(C, +, x,0,1).

Recall: a field K is algebraically closed if it contains a root for
every non-constant polynomial in K [x] (equivalently, no
proper algebraic extensions).

By the fundamental theorem of algebra, C is algebraically
closed (and this condition is expressible as an infinite collection
of first-order sentences).

For p = 0 or prime, let ACF, be the theory of algebraically
closed fields of characteristic p.

[Tarski] ACF, is a complete theory eliminating quantifiers.



Examples of stable fields: algebraically closed fields

> In particular, if M [= ACF, then every subset of M is either
finite or cofinite. Theories with this property are called
strongly minimal.

» If T is strongly minimal, then it is w-stable.
The complete 1-types over M = T are of the form x = a for
some a € M, plus one non-algebraic type (axiomatized by
{x # a:ae M}), hence |51 (M)| < |M|.



Examples of stable fields: separably closed fields

» For a field K, we let K2'& denote its algebraic closure (i.e. an
algebraic extension of K which is algebraically closed, unique
up to an isomorphism fixing K pointwise).

Definition

A field K is separably closed if every polynomial P(X) € K[X]
whose roots in K2/& are distinct, has at least one root in K.
(Equivalently, every irreducible polynomial over K is of the form
XP" — a, where p is the characteristic)

» Any separably closed field of char 0 is algebraically closed.

» If char (K) = p, then KP is a subfield. If the degree of
[K : KP] is finite, it is of the form p¢, and e is called the
degree of imperfection of K. For any e € N, let SCF,, . be the
theory of separably closed fields of char p with the degree of
imperfection e, and let SCF, o, be the theory of separably
closed fields of char p with infinite degree of imperfection.



Examples of stable fields: separably closed fields

» These are all complete theories of separably closed fields, and
they eliminate quantifiers after naming a basis and adding
some function symbols to the language.

» [Wood, 79] All these theories are stable (and in the
non-algebraically closed case, strictly stable, i.e. not
superstable).

» Separably closed fields played a key role in Hrushovski's proof
of the Geometric Mordell Lang conjecture in positive
characteristic.



Other stable fields?

v

[Macintyre, 71] All infinite w-stable fields are algebraically
closed.

[Cherlin, Shelah, 80] All infinite superstable fields are
algebraically closed.

Open problem: are all infinite stable fields separably closed?

Little progress has been made so far. A noteworthy result (will
be discussed later):
[Scanlon, 91] If K is an infinite stable field of characteristic p,
then K has no finite Galois extensions of degree divisible by p.
We sketch a proof of Macintyre's theorem, key ingredients:

» chain condition for definable groups,

» theory of group generics,
» some Galois theory.



Morley rank in w-stable theories

» If T is w-stable, then (working in a saturated model M) to
every definable set we can inductively assign an ordinal-valued
rank, Morley rank, by:

» RM(X) = 0 iff X is finite and RM (X) > a + 1 if and only if
there are pairwise disjoint definable subsets {Y; : i € w} of X
with RM (Y;) > a for all i € w.

(otherwise can build a tree of dividing formulas which would
produce too many types).

» Given a type p € 5« (A),

RM (p) = inf {RM (6 (x)) : & (x) € p}.

» Has many “dimension-like” properties, in particular is preserved
by definable bijections.

» Now if H < G are definable in an w-stable theory and [G : H]
is infinite, then RM (H) < RM (G) (we can take Y; above to
be the infinitely many cosets of H in G).

» As there are no infinite decreasing chains of ordinals and G has
a Morley rank, one obtains:



Chain conditions and connected components in w-stable
groups

Fact (Descending Chain Condition, DCC). If G is a group definable
in an w-stable theory, then there is no infinite descending chain of
definable subgroups G > G; > G, > .. ..

Corollary. If G is an w-stable group and {H; : i € I} is a collection
of definable subgroups, then there is some finite Iy C | such that

(Hi=()H:

icl i€ly

Corollary. If G is an w-stable group, then it has a connected
component G® < G — the smallest definable finite index subgroup
of G. Moreover:
» GO is a normal subgroup of G and is definable over 0.
» If 0 : G — G is a definable group automorphism, then o fixed
GO setwise.



Generics in w-stable groups

» Let G be a definable group (in a saturated structure M).

» A definable set X C G is called (left-)generic if G can be
covered by finitely many translates of X.

» A type p € Sg (M) over a small model M is generic if it only
contains generic formulas.

» < RM(p) =RM(G) «= Stab(p) = GJ,.

» We say that a € M is generic over K if
RM (tp (a/M)) = RM (G).

» Fact. G has a unique generic type if and only if G is
connected, i.e. G = GY.

» This generalizes the notion of a “generic point” of an algebraic
group.



w-stable fields are algebraically closed, 1

1.

Let (K,+,,...) be an infinite w-stable field, w.l.o.g. K is
saturated.

The additive group (K, +,...) is connected, i.e. KO = K.

For a € K\ {0}, x — ax is a definable group automorphism
— must fix KO — hence aK® = K?, so K9 is an ideal of K.
Because K is a field, there are no proper ideals.

As K is connected as an additive group, there is a unique type
of max Morley rank, thus the mult. group (K*,-,...) is also
connected.

. For each n € w, the map x — x" is a mult. homomorphism. If

a is generic, then a" is also generic (interalgebraic with a).
Thus K™ contains the generic, and as the mult. group is
connected, K" = K and every element has an nth root.

In particular, if char (K) = p > 0, then every element has pth
root, thus K is perfect.

. Suppose char (K) = p > 0. The map x — xP 4+ x is an

additive homomorphism. If a is generic, then aP + a is also
generic, and as above the map is surjective.



w-stable fields are algebraically closed, 2
Claim 1. Suppose K is an infinite w-stable field containing all mth
roots of unity for m < n. Then K has no proper Galois extensions
of degree n.

>

Let L/K be a counterexample with the least possible n, let g
be a prime dividing n.

By Galois theory, there is K C F C L such that L/F is Galois
of degree g.

The field F is a finite algebraic extension of K, hence
interpretable in K, hence F is w-stable.

By minimality of n, F = K and n = g.

If char (K) = 0, by Galois theory the minimal polynomial of
L/K is X9 — a for some a € K. But every element of K has a
gth root, thus X9 — a is reducible, a contradiction.

If char (K) = p = q, by Galois theory the minimal polynomial
of L/K is XP 4+ X — a for some a € K. But the map

x — xP 4+ x — a is surjective, thus XP + X — a is reducible, a
contradiction.



w-stable fields are algebraically closed, 3

Claim 2. If K is an infinite w-stable field, then K contains all roots
of unity.

Let n be the least such that K doesn't contain all nth roots of
unity. Let & be a primitive nth root of unity. Then K (§) is a Galois
extension of K of degree at most n — 1. This contradicts the
previous claim.

» Because K contains all roots of unity, the first claim implies
that K has no proper Galois extensions. Because K is perfect,
K is algebraically closed.
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