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Definable sets
I LetM = (M,Ri , fi , ci ) denote a first-order structure with

some distinguished relations Ri ⊆ Mki , functions fi : Mki → M
and constants ci ∈ M. Here L = (Ri , fi , ci ) is the language of
M.

I For example, a group is naturally viewed as a structure(
G , ·,−1 , 1

)
, as well as any ring (R,+, ·, 0, 1), ordered set

(X , <), graph (X ,E ), etc.
I A (partitioned) first-order formula φ (x , y) is an expression of

the form ∀z1∃z2 . . . ∀z2n−1∃z2nψ (x , y , z̄), where ψ is a
Boolean combination of the (superpositions of) basic relations
and functions, and x , y are tuples of variables.

I Given some parameters b ∈ M |y |, φ (x , b) is an instance of φ
and defines a set φ (M, b) =

{
a ∈ M |x | :M |= φ (a, b)

}
.

I Subsets of Mn of this form are called definable and form a
Boolean algebra.

I E.g. in a group G , the set of solutions of a formula
φ (x) = ∀y (x · y = y · x) is the center of G .



Complete theories

I If formula with no free variables is called a sentence, and it is
either true or false inM.

I The theory ofM, or Th (M), is the collection of all sentences
that are true inM.

I Two L-structuresM,N are elementarily equivalent if
Th (M) = Th (N ).

I IfM⊆ N and for every formula φ (x) ∈ L and a ∈ M |x |,
M |= φ (a) ⇐⇒ N |= φ (a), thenM is an elementary
substructure of N , denotedM� N .

I In first approximation, model theory studies complete theories
T (equivalently, structures up to elementary equivalence) and
their corresponding categories of definable sets.

I In second approximation, up to bi-interpretability.



Gödelian phenomena
I Consider (N,+,×, 0, 1). The more quantifiers we allow, the

more complicated sets we can define (e.g. non-computable
sets, and in fact a large part of mathematics can be encoded
— “Gödelian phenomena”).

I Similarly, by a result of Julia Robinson, the field (Q,+,×, 0, 1)
interprets (N,+,×, 0, 1), so it is as complicated.

I In particular, no hope of describing the structure of definable
sets in any kind of “geometric” manner.

I On the other hand, definable sets in (C,+,×, 0, 1) are within
the scope of algebraic geometry, and admit a beautiful and
elaborate theory (see later).

I Hence, the Boolean algebra of definable sets is “wild” in the
first case, and “tame” in the second.

I How to make this distinction between wild and tame structures
precise and independent of the specific language in which
these structures are considered?



Model theoretic classification
I [Morley, 1965] Let T be a countable first-order theory. Assume

T has a unique model (up to isomorphism) of size κ for some
uncountable cardinal κ. Then for any uncountable cardinal λ
it has a unique model of size λ.

I Morley’s conjecture: for any T , the function

fT : κ 7→ |{M : M |= T , |M| = κ}|

is non-decreasing on uncountable cardinals.
I Shelah’s “dividing lines” solution: describe all possible

functions, distinguished by T being able to encode certain
explicit combinatorial configurations in a definable manner. If
it does, demonstrate that there are as many models as
possible, if it doesn’t, develop some dimension theory to
describe its models.

I Later, Zilber, Hrushovski and others — geometric stability
theory. In order to understand arbitrary theories, it is essential
to understand groups and fields definable in them.



(Partial) Classification picture
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Model theoretic classification of groups and fields

I Hence, understanding tame groups and fields not only provides
important examples, but is also essential for the general theory.

I Classifying groups is as complicated as classifying arbitrary
theories:

I [Mekler, 81] For every theory T in a finite relational language,
there is a theory T ′ of pure groups (nilpotent, class 2) which
interprets T and is in the same tameness class as T , e.g. T ′ is
stable/simple/NIP/NTP2, assuming T was (T ′ is not
interpretable in T in general).

I Remarkably, for fields, model-theoretic dividing lines tend to
coincide with natural algebraic properties.



Types
I Let T be fixed,M |= T .
I A partial type π (x) over a set of parameters A ⊆ M is a

collection of formulas over A such that for any finite π0 ⊆ π,
there is some a ∈ M |x | such that a |= π0 (x).

I M is κ-saturated if every n-type over every A ⊆ M, |A| < κ is
realized in M.

I (Compactness theorem) EveryM admits a κ-saturated
elementary extension N �M, for any κ.

I LetM = (R,+,×, <, 0, 1), and consider
π (x) =

{
0 < x < 1

n : n ∈ N
}
. Not realized in R (thus R is

not ℵ0-saturated). Passing to some ℵ0-saturated R∗ � R, the
set of solutions of π (x) in R∗ is the set of “infinitesimal”
elements, and one can do non-standard analysis working in R∗.

I A complete type p (x) over A is a maximal (under inclusion)
partial type over A (equivalently, an ultrafilter in the Boolean
algebra of A-definable subsets of M |x |). Let Sx (A) denotes the
space of all complete types over A (Stone dual).



Stability
I Given a theory T in a language L, a (partitioned) formula
φ (x , y) ∈ L (x , y are tuples of variables), a modelM |= T
and b ∈ M |y |, let φ (M, b) =

{
a ∈ M |x | : M |= φ (a, b)

}
.

I Let Fφ,M =
{
φ (M, b) : b ∈ M |y |

}
be the family of φ-definable

subsets of M. Dividing lines can be typically expressed as
certain conditions on the combinatorial complexity of the
families Fφ,M (independent of the choice ofM).

Definition

1. A (partitioned) formula φ (x , y) is stable if there are no
M |= T and (ai , bi : i < ω) with ai ∈ M |x |, bi ∈ M |y | such
that

M |= φ (ai , bj) ⇐⇒ i ≤ j .

2. A theory T is stable if it implies that all formulas are stable.

I E.g. (Q, <) is not stable.



Stability is equivalent to few types

Definition
T is κ-stable if sup {|S1 (M)| :M |= T , |M| = κ} ≤ κ (i.e. the
space of types is as small as possible).

Fact
Let T be a complete theory. TFAE:
1. T is stable.
2. T is κ-stable for some κ.
3. T is κ-stable for every κ with κ = κ|T |.

I It is easy to see that if T is κ-stable, then the same bound
holds for Sn (M) for any n ∈ ω. Hence it is enough to check
that all formulas φ (x , y) with |x | = 1 are stable.



Examples of stable fields: algebraically closed fields

I We consider Th (C,+,×, 0, 1).
I Recall: a field K is algebraically closed if it contains a root for

every non-constant polynomial in K [x ] (equivalently, no
proper algebraic extensions).

I By the fundamental theorem of algebra, C is algebraically
closed (and this condition is expressible as an infinite collection
of first-order sentences).

I For p = 0 or prime, let ACFp be the theory of algebraically
closed fields of characteristic p.

I [Tarski] ACFp is a complete theory eliminating quantifiers.



Examples of stable fields: algebraically closed fields

I In particular, ifM |= ACFp, then every subset of M is either
finite or cofinite. Theories with this property are called
strongly minimal.

I If T is strongly minimal, then it is ω-stable.
The complete 1-types overM |= T are of the form x = a for
some a ∈ M, plus one non-algebraic type (axiomatized by
{x 6= a : a ∈ M}), hence |S1 (M)| ≤ |M|.



Examples of stable fields: separably closed fields
I For a field K , we let K alg denote its algebraic closure (i.e. an

algebraic extension of K which is algebraically closed, unique
up to an isomorphism fixing K pointwise).

Definition
A field K is separably closed if every polynomial P(X ) ∈ K [X ]
whose roots in K alg are distinct, has at least one root in K .
(Equivalently, every irreducible polynomial over K is of the form
X pk − a, where p is the characteristic)

I Any separably closed field of char 0 is algebraically closed.
I If char (K ) = p, then Kp is a subfield. If the degree of

[K : Kp] is finite, it is of the form pe , and e is called the
degree of imperfection of K . For any e ∈ N, let SCFp,e be the
theory of separably closed fields of char p with the degree of
imperfection e, and let SCFp,∞ be the theory of separably
closed fields of char p with infinite degree of imperfection.



Examples of stable fields: separably closed fields

I These are all complete theories of separably closed fields, and
they eliminate quantifiers after naming a basis and adding
some function symbols to the language.

I [Wood, 79] All these theories are stable (and in the
non-algebraically closed case, strictly stable, i.e. not
superstable).

I Separably closed fields played a key role in Hrushovski’s proof
of the Geometric Mordell Lang conjecture in positive
characteristic.



Other stable fields?

I [Macintyre, 71] All infinite ω-stable fields are algebraically
closed.

I [Cherlin, Shelah, 80] All infinite superstable fields are
algebraically closed.

I Open problem: are all infinite stable fields separably closed?
I Little progress has been made so far. A noteworthy result (will

be discussed later):
I [Scanlon, 91] If K is an infinite stable field of characteristic p,

then K has no finite Galois extensions of degree divisible by p.
I We sketch a proof of Macintyre’s theorem, key ingredients:

I chain condition for definable groups,
I theory of group generics,
I some Galois theory.



Morley rank in ω-stable theories
I If T is ω-stable, then (working in a saturated model M) to

every definable set we can inductively assign an ordinal-valued
rank, Morley rank, by:

I RM (X ) = 0 iff X is finite and RM (X ) ≥ α + 1 if and only if
there are pairwise disjoint definable subsets {Yi : i ∈ ω} of X
with RM (Yi ) ≥ α for all i ∈ ω.
(otherwise can build a tree of dividing formulas which would
produce too many types).

I Given a type p ∈ Sx (A),
RM (p) = inf {RM (φ (x)) : φ (x) ∈ p}.

I Has many “dimension-like” properties, in particular is preserved
by definable bijections.

I Now if H ≤ G are definable in an ω-stable theory and [G : H]
is infinite, then RM (H) < RM (G ) (we can take Yi above to
be the infinitely many cosets of H in G).

I As there are no infinite decreasing chains of ordinals and G has
a Morley rank, one obtains:



Chain conditions and connected components in ω-stable
groups

Fact (Descending Chain Condition, DCC). If G is a group definable
in an ω-stable theory, then there is no infinite descending chain of
definable subgroups G > G1 > G2 > . . ..
Corollary. If G is an ω-stable group and {Hi : i ∈ I} is a collection
of definable subgroups, then there is some finite I0 ⊆ I such that⋂

i∈I
Hi =

⋂
i∈I0

Hi .

Corollary. If G is an ω-stable group, then it has a connected
component G 0 ≤ G — the smallest definable finite index subgroup
of G . Moreover:

I G 0 is a normal subgroup of G and is definable over ∅.
I If σ : G → G is a definable group automorphism, then σ fixed

G 0 setwise.



Generics in ω-stable groups

I Let G be a definable group (in a saturated structure M).
I A definable set X ⊆ G is called (left-)generic if G can be

covered by finitely many translates of X .
I A type p ∈ SG (M) over a small model M is generic if it only

contains generic formulas.
I ⇐⇒ RM (p) = RM (G ) ⇐⇒ Stab (p) = G 0

M .
I We say that a ∈M is generic over K if

RM (tp (a/M)) = RM (G ).
I Fact. G has a unique generic type if and only if G is

connected, i.e. G = G 0.
I This generalizes the notion of a “generic point” of an algebraic

group.



ω-stable fields are algebraically closed, 1
1. Let (K ,+, ·, . . .) be an infinite ω-stable field, w.l.o.g. K is

saturated.
2. The additive group (K ,+, . . .) is connected, i.e. K 0 = K .

For a ∈ K \ {0}, x 7→ ax is a definable group automorphism
— must fix K 0 — hence aK 0 = K 0, so K 0 is an ideal of K .
Because K is a field, there are no proper ideals.

3. As K is connected as an additive group, there is a unique type
of max Morley rank, thus the mult. group (K×, ·, . . .) is also
connected.

4. For each n ∈ ω, the map x 7→ xn is a mult. homomorphism. If
a is generic, then an is also generic (interalgebraic with a).

5. Thus Kn contains the generic, and as the mult. group is
connected, Kn = K and every element has an nth root.

6. In particular, if char (K ) = p > 0, then every element has pth
root, thus K is perfect.

7. Suppose char (K ) = p > 0. The map x 7→ xp + x is an
additive homomorphism. If a is generic, then ap + a is also
generic, and as above the map is surjective.



ω-stable fields are algebraically closed, 2
Claim 1. Suppose K is an infinite ω-stable field containing all mth
roots of unity for m ≤ n. Then K has no proper Galois extensions
of degree n.

I Let L/K be a counterexample with the least possible n, let q
be a prime dividing n.

I By Galois theory, there is K ⊆ F ⊂ L such that L/F is Galois
of degree q.

I The field F is a finite algebraic extension of K , hence
interpretable in K , hence F is ω-stable.

I By minimality of n, F = K and n = q.
I If char (K ) = 0, by Galois theory the minimal polynomial of

L/K is X q − a for some a ∈ K . But every element of K has a
qth root, thus X q − a is reducible, a contradiction.

I If char (K ) = p = q, by Galois theory the minimal polynomial
of L/K is X p + X − a for some a ∈ K . But the map
x 7→ xp + x − a is surjective, thus X p + X − a is reducible, a
contradiction.



ω-stable fields are algebraically closed, 3

Claim 2. If K is an infinite ω-stable field, then K contains all roots
of unity.
Let n be the least such that K doesn’t contain all nth roots of
unity. Let ξ be a primitive nth root of unity. Then K (ξ) is a Galois
extension of K of degree at most n − 1. This contradicts the
previous claim.

I Because K contains all roots of unity, the first claim implies
that K has no proper Galois extensions. Because K is perfect,
K is algebraically closed.
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