Regularity for slice-wise stable hypergraphs

Artem Chernikov

UCLA

Model Theory Conference on the occasion of Byunghan Kim's 60th birthday Seoul, South Korea, Aug 28, 2023

Context: ultraproducts of finite graphs with Loeb measure

- For each i ∈ N, let G_i = (V_i, E_i) be a graph with |V_i| finite and lim_{i→∞} |V_i| = ∞.
- Given a non-principal ultrafilter \mathcal{U} on \mathbb{N} , the ultraproduct

$$(V, E) = \prod_{i \in \mathbb{N}} (V_i, E_i)$$

is a graph on the set V of size continuum.

- Given $k \in \mathbb{N}$ and an *internal* set $X \subseteq V^k$ (i.e. $X = \prod_{\mathcal{U}} X_i$ for some $X_i \subseteq V_i^k$), we define $\mu^k(X) := \lim_{\mathcal{U}} \frac{|X_i|}{|V_i|^k}$. Then:
 - µ^k is a finitely additive probability measure on the Boolean
 algebra of internal subsets of V^k,
 - extends uniquely to a countably additive measure on the σ-algebra B_k generated by the internal subsets of V^k.

Approximation by rectangles

• Let $\mathcal{B}_1 \times \mathcal{B}_1$ be the *product* σ -algebra, i.e. for every $E \in \mathcal{B}_1 \times \mathcal{B}_1$ and $\varepsilon > 0$ there exist $A_i, B_i \in \mathcal{B}_1, i < k$, so that

$$\mu^2\left(E\Delta\left(\bigcup_{i< k}A_i\times B_i\right)\right)<\varepsilon$$

▶ Note: $\mathcal{B}_1 \times \mathcal{B}_1 \subsetneq \mathcal{B}_2$ (e.g. for $E = \prod_{\mathcal{U}} E_i$ with E_i a uniformly random graph on V_i we have $E \in \mathcal{B}_2 \setminus (\mathcal{B}_1 \times \mathcal{B}_1)$).

Szemerédi's regularity lemma as a measure-theoretic statement: Elek-Szegedy, Tao, Towsner, ...

► [Szemerédi's regularity lemma] Given E ∈ B₂ and ε > 0, there is a decomposition of the form

$$1_E = f_{\rm str} + f_{\rm qr} + f_{\rm err},$$

where:

Under what conditions on E can the quasi-random part be omitted?

VC-dimension

- Given $E \subseteq V^2$ and $x \in V$, let $E_x = \{y \in V : (x, y) \in E\}$ be the x-fiber of E.
- ▶ A graph $E \subseteq V^2$ has *VC-dimension* $\geq d$ if there are some $y_1, \ldots, y_d \in V$ such that, for every $S \subseteq \{y_1, \ldots, y_d\}$ there is $x \in V$ so that $E_x \cap \{y_1, \ldots, y_d\} = S$.
- **Example.** If E_i is a random graph on V_i and $(V, E) = \prod_{\mathcal{U}} (V_i, E_i)$, then VC $(E) = \infty$.
- ► Example. If E is definable in an NIP theory (e.g. E is semialgebraic), then VC (E) < ∞.</p>

Regularity lemma for graphs of finite VC-dimension

▶ [Alon, Fischer, Newman] [Lovasz, Szegedy] [Hrushovski, Pillay, Simon], [C., Starchenko] If $E \in B_2$ and VC (E) < ∞, then:

•
$$E \in \mathcal{B}_1 imes \mathcal{B}_1$$
,

the number of rectangles needed to approximate E within ε is bounded by a polynomial in ¹/_ε.

Hypergraph regularity

- We discuss 3-hypergraphs for simplicity.
- We have $\mathcal{B}_3 \supseteq \mathcal{B}_1 \times \mathcal{B}_1 \times \mathcal{B}_1, \mathcal{B}_2 \times \mathcal{B}_1$, etc.
- Moreover, let B_{3,2} ⊆ B₃ be the σ-algebra generated by intersections of "cylindrical" sets of the form

$$\left\{(x,y,z)\in V^3:(x,y)\in A\wedge(x,z)\in B\wedge(y,z)\in C
ight\}$$

for some $A, B, C \in \mathcal{B}_2$. Again, $\mathcal{B}_{3,2} \subsetneq \mathcal{B}_3$.

► [Hypergraph regularity lemma] Any E ∈ B₃ can be decomposed as

$$\begin{split} \mathbf{1}_{E} &\approx f\left(x,y,z\right) + \sum_{i \leq m} \alpha_{i} \mathbf{1}_{A_{i}}\left(x,y\right) \mathbf{1}_{B_{i}}\left(x,z\right) \mathbf{1}_{C_{i}}\left(y,z\right) + \\ \sum_{j \leq n} \beta_{i} \mathbf{1}_{D_{i}}\left(x\right) \mathbf{1}_{F_{i}}\left(y\right) \mathbf{1}_{G_{i}}\left(z\right), \\ \text{where } f \text{ quasi-random w.r.t. } \mathcal{B}_{3,2}, \text{ and } A_{i}, B_{i}, C_{i} \in \mathcal{B}_{2} \text{ are} \end{split}$$

quasi-random w.r.t. $\mathcal{B}_{3,2}$, and $A_i, B_i, C_i \in \mathcal{B}_2$ are quasi-random w.r.t $\mathcal{B}_1 \times \mathcal{B}_1$, and $D_i, F_i, G_i \in \mathcal{B}_1$.

- Apart from f, the rest is B_{3,2}-measurable. Under what conditions E is "binary", i.e. the ternary quasi-random f can be omitted?
- ► [C., Townser] Iff VC₂-dimension is finite.

Hypergraph regularity for hypergraphs of slice-wise finite VC-dimension

- Today we discuss the most restrictive case of measurability for hypergraphs with respect to unary sets:
- Let B_{3,1} ⊆ B₃ be the σ-algebra generated by intersections of "cylindrical" sets of the form

$$\left\{(x, y, z) \in V^3 : x \in A \land y \in B \land z \in C\right\}$$

for some $A, B, C \in \mathcal{B}_1$. Note: $\mathcal{B}_{3,1} \subsetneq \mathcal{B}_{3,2}$.

- E ∈ B₃ has *slice-wise* finite VC-dimension if for (almost) every b ∈ V, the (binary) fiber
 E_b = {(x, y) ∈ V² : (x, y, b) ∈ E} ∈ B₂ has finite
 VC-dimension (and the same for any permutation of the variables).
- ► [C., Starchenko] + [C., Townser] E ∈ B₃ is slice-wise finite VC-dimension iff E ∈ B_{3,1}.

Stability and μ -stability

- Fix $E \in \mathcal{B}_2$.
- ▶ A ladder for E of height d is a tuple $\bar{a}^{\frown}\bar{b} = (a_i : i \in d)^{\frown}(b_i : i \in d)$ with $a_i \in V, b_i \in V$ such that for every $i, j \in d$ we have $(a_i, b_j) \in E \iff i \leq j$.
- ► *E* is *d*-stable if there are no ladders of height *d* for *E*, and stable if it is ladder *d*-stable for some $d \in \omega$.
- For regularity lemmas, we can ignore measure 0 ladders, so it is natural to relax the definition as follows:
- ▶ A μ -ladder for E of height d is a tuple $\overline{b} = (b_j : j \in d)$ so that for every $i \in d$ we have $\mu\left(\bigcap_{i \leq j} E_{b_j} \setminus \left(\bigcup_{j > i} E_{b_j}\right)\right) > 0$.
- For $E \in \mathcal{B}_2$, let $Lad^{\mu,E,d} \in \mathcal{B}_d$ be the set of all $\overline{b} = (b_i : i \in d)$ so that \overline{b} is a μ -ladder for E of height d.
- E ∈ B₂ is *d*-μ-stable if μ (Lad^{μ,E,d}) = 0. And E is μ-stable if it is ladder *d*-μ-stable for some *d* ∈ ω.

Regularity for μ -stable graphs and hypergraphs

- A set $A \in \mathcal{B}_1$ is perfect for $E \in \mathcal{B}_2$ if $\mu(\{b \in V : \mu(E_b \cap A) > 0 \land \mu(A \setminus E_b) > 0\}) = 0.$
- ▶ Note: if $A, B \in \mathcal{B}_1$ are perfect for E, then $\frac{\mu(E \cap (A \times B))}{\mu(A \times B)} \in \{0, 1\}.$
- ▶ A simplified version of [Malliaris-Shelah]: Assume that $E \in \mathcal{B}_2$ is μ -stable. Then there exist countable partitions $V = \bigsqcup_{i \in \omega} A_i$ and $V = \bigsqcup_{j \in \omega} B_j$ into perfect sets. In particular, for each $i, j \in \omega, \frac{\mu(E \cap (A_i \times B_j))}{\mu(A_i \times B_j)} \in \{0, 1\}.$
- What about hypergraphs?
- We say that E ∈ B₃ is (partition-wise) µ-stable if the binary relation E(x; yz) is µ-stable, and the same for any other partition of the variables.
- [C.,Starchenko], [Ackerman, Freer, Patel] If E ∈ B₃ is μ-stable, then there exist countable partitions A_i, B_j, C_k of V into perfect sets (for E viewed as a binary relation). In particular, for each i, j, k ∈ ω, μ(E∩(A_i×B_j×C_k))/μ(A_i×B_j×C_k) ∈ {0, 1}.

Stable regularity for families of finite graphs

Let \mathcal{H} be a family of finite *k*-partite *k*-hypergraphs of the form $H = (E; X_1, \ldots, X_k)$ with $E \subseteq \prod_{i=1}^k X_i$ and X_i finite. We say that \mathcal{H} satisfies *stable regularity* if for every $\varepsilon \in \mathbb{R}_{>0}$ there exists some $N = N(\varepsilon)$ such that: for any $H = (E; X_1, \ldots, X_k) \in \mathcal{H}$ and any probability measures μ_i on X_i there exists $N' \leq N$ and partitions $X_i = \bigsqcup_{0 \leq t < N'} A_{i,t}$ so that for any $0 \leq t_1, \ldots, t_k \leq N'$ we have

$$\frac{\mu\left(E\cap\left(A_{1,t_{1}}\times\ldots\times A_{k,t_{k}}\right)\right)}{\mu\left(A_{1,t_{1}}\times\ldots\times A_{k,t_{k}}\right)}\in\left[0,\varepsilon\right)\cup\left(1-\varepsilon,1\right],$$

where μ is the product measure of μ_1, \ldots, μ_k .

Strong ("meta-stable") stable regularity for families of finite graphs

Let \mathcal{H} be a family of finite *k*-partite *k*-hypergraphs. We say that \mathcal{H} satisfies *strong stable regularity* if for every $\varepsilon \in \mathbb{R}_{>0}$ and every function $f : \mathbb{N} \to (0, 1)$ there exists some $N = N(f, \varepsilon)$ such that: for any $H = (E; X_1, \ldots, X_k) \in \mathcal{H}$ and any probability measures μ_t on X_t there exists $N' \leq N$ and partitions $X_i = \bigsqcup_{0 \leq t < N'} A_{i,t}$ so that:

1.
$$\mu_i(A_{i,0}) \leq \varepsilon$$
 for all $1 \leq i \leq k$;
2. for any $1 \leq t_1, \ldots, t_k < N'$ we have

$$\frac{\mu(E \cap (A_{1,t_1} \times \ldots \times A_{k,t_k}))}{\mu(A_{1,t_1} \times \ldots \times A_{k,t_k})} \in [0, f(N')) \cup (1 - f(N'), 1];$$

3. for each $1 \le t_1 \le N'$ we have: for all (x_2, \ldots, x_k) in

 $A_{2,0} \times X_3 \times \ldots \times X_k$ outside of a subset of measure $\leq f(N')$,

$$\frac{\mu(E_{(x_2,...,x_k)} \cap A_{1,t_1})}{\mu(A_{1,t_1})} \in [0, f(N')) \cup (1 - f(N'), 1],$$

and the same for every permutation of the coordinates.

Stable regularity vs strong stable regularity

- 1. Conditions (1),(2) were considered [Terry, Wolf], [Chavarria, Conant, Pillay].
- 2. For any arity *k* hypergraphs, strong stable regularity implies stable regularity.
- 3. For any k and \mathcal{H} a family of k-ary hypergraphs, TFAE:
 - \mathcal{H} satisfies strong stable regularity;
 - ▶ in every ultraproduct H = (E; X₁,...,X_k) of H, there exist countable partitions of each X_i into perfect sets from B₁.
 - there is $d \in \mathbb{N}$ so that every $H \in \mathcal{H}$ is partition-wise *d*-stable.
- 4. For k = 2 and \mathcal{H} a family of graphs, everything is equivalent:
 - *H* satisfies stable regularity;
 - *H* satisfies strong stable regularity;
 - there exist countable perfect partitions in the ultraproduct;
 - there is $d \in \mathbb{N}$ so that every $H \in \mathcal{H}$ is *d*-stable.
- 5. But not for $k \ge 3$! The relation E(x, y, z) given by x = y < z satisfies stable regularity, but not strong stable regularity (so E is not partition-wise stable).
- 6. We view the strong version of regularity as the correct and more robust higher arity notion.

Regularity for slice-wise μ -stable hypergraphs

- ► [Terry-Wolf] Do slice-wise stable E ∈ B₃ also satisfy stable regularity?
- (This seems to be the last remaining question about measurability with respect to unary sets.)
- We say that E ∈ B₃ is *slicewise* µ-stable if the binary fiber E_b ∈ B₂ is µ-stable for almost all b ∈ V, and the same for every permutation of the coordinates.

Theorem (C., Towsner)

No! But we have the next best thing: Suppose that $E \in \mathcal{B}_3$ is slice-wise μ -stable. Then there exist countable partitions A_i, B_j, C_k of $V \times V$ so that: each A_i is perfect for the relation E(xy; z), and $A^i = A^{i,X} \times A^{i,Y}$ is a rectangle with $A^{i,X}, A^{i,Y} \in \mathcal{B}_1$, and same for B_j, C_k with respect to the other partitions of the variables. In particular, for every i, j, $\frac{\mu(E(x,y,z) \wedge A_i(x,y) \wedge B_j(x,z))}{\mu(A_i(x,y) \wedge B_j(x,z))} \in \{0,1\}$. (And same for any two out of $\{A, B, C\}$ instead of A, B.)

Idea of the proof

- So let $E \in X \times Y \times Z$ be slice-wise μ -stable.
- Then for (almost) every x ∈ X, E_x ⊆ Y × Z is µ-stable, so by the stable graph regularity can decompose Y, Z into perfect sets with respect to E_x. But a priori there is no relation between such decompositions of Y, Z for different x!
- To achieve uniformity, we are going to do a number of repartitions in a "definable" way.
- First, a general "symmetrization" result for binary relations:

Symmetrizing partitions for binary relations

Lemma

Assume $A \subseteq X \times Y$ with $A \in \mathcal{B}_{X \times Y}$. Then there exist countable partitions $X = \bigsqcup_{i \in \omega} U_i$ with $U_i \in \mathcal{B}_X$ and $Y = \bigsqcup_{i \in \omega} V_i$ with $V_i \in \mathcal{B}_Y$ such that for each $i \in \omega$ we have:

- 1. $\mu((A \cap (U_i \times Y)) \bigtriangleup (A \cap (X \times V_i))) = 0$,
- 2. for any $U' \subseteq U_i, U' \in \mathcal{B}_X$ such that both $\mu(A \cap (U' \times Y)) > 0$ and $\mu(A \cap ((U_i \setminus U') \times Y)) > 0$, for any $V' \subseteq V_i, V' \in \mathcal{B}_Y$ we have $\mu((A \cap (U' \times Y)) \triangle (A \cap (U_i \times V'))) > 0.$

In particular, A is almost contained in the rectangles on the diagonal, that is $\mu (A \setminus \bigcup_{i \in \omega} (U_i \times V_i)) = 0.$

Getting μ -stable graph regularity uniformly in fibers

As mentioned earlier, we have regularity for hypergraphs of slice-wise finite VC-dimension uniformly over fibers:

Lemma

Assume $E \in \mathcal{B}_{X \times Y \times Z}$ is such that for almost all $z \in Z$, the binary relation $E_z \in \mathcal{B}_{X \times Y}$ is μ -NIP. Then there exist $P^i \in \mathcal{B}_{X \times Z}^E$, $Q^i \in \mathcal{B}_{Y \times Z}^E$ for $i \in \omega$ such that for almost every $z \in Z$ we have $\chi_{E_z}(x, y) = \sum_{i \in \omega} \chi_{P_z^i}(x) \cdot \chi_{Q_z^i}(y)$.

After some "definable" refining repartitions using this uniformity and symmetrizations, we obtain uniformity for stable partitions:

Lemma

Suppose that $E \in \mathcal{B}_{X \times Y \times Z}$, $E_x \in \mathcal{B}_{Y \times Z}$ is μ -stable for almost all $x \in X$. Then there is a partition of $X \times Y$ into countably many sets $A^i \in \mathcal{B}_{X \times Y}$, $i \in \omega$, so that for almost every $x \in X$, $(A^i_x : i \in \omega)$ is a partition of Y into countably many sets perfect for E_x (viewed as a binary relation on $(X \times Y) \times Z$).

Partitioning $X \times Y$ into perfect sets

- Using this and some more work we obtain a partition of X × Y into perfect sets:
- Proposition. Suppose that E ∈ B_{X×Y×Z}, E_x ∈ B_{Y×Z} is µ-stable for almost all x ∈ X, and E_y ∈ B_{X×Z} is µ-stable for almost all y ∈ Y. Then there is a partition of X × Y into B^E_{X×Y}-measurable sets perfect for E, viewed as a binary relation on (X × Y) × Z.
- ▶ However, we cannot hope to also partition Z into perfect sets for $E \subseteq (X \times Y) \times Z$, as we did with ordinary stability:
- Take X = Y = Z = [0,1] and let E := {(x, y, z) : x = y < z}, then E is slicewise stable. Place the Lebesgue measure on Z, and place discrete measures on X and Y which place a positive measure on each rational number in [0,1]. Now if A ⊆ Z has positive Lebesgue measure, we can always choose q ∈ Q ∩ [0,1] so that both A ∩ [0, q) and A ∩ (q, 1] have positive measure, that is 0 < µ (E_(q,q) ∩ A) < µ (A). But µ ({(q,q)}) > 0, so the set A is not perfect.

In this special case the results we have suffice to give a positive answer to the question of Terry and Wolf.

Theorem

Assume that $E \in \mathcal{B}_{X \times Y \times Z}$ is μ -stable viewed as a binary relation between $X \times Y$ and Z, and the slices $E_z \in \mathcal{B}_{X \times Y}$ are μ -stable for almost all $z \in Z$. Then for every $\varepsilon > 0$ there exist finite partitions $X = \bigsqcup_{i \in I} X_i, Y = \bigsqcup_{j \in J} Y_j, Z = \bigsqcup_{k \in K} Z_k$ with $X_i \in \mathcal{B}_X, Y_j \in \mathcal{B}_Y, Z_k \in \mathcal{B}_Z$ so that for every $(i, j, k) \in I \times J \times K$ we have $\frac{\mu(E \cap (X_i \times Y_j \times Z_k))}{\mu(X_i \times Y_j \times Z_k)} \in [0, \varepsilon) \cup (1 - \varepsilon, 1]$.

Partition into a combination of perfect sets and rectangles

But we only have slice-wise stability in all three directions! Some analysis of infinite (infinitely branching) trees of partitions, with infinite branches tackled by μ -stability on various repartitions of coordinates and slices, allows us to get:

Proposition. Suppose that $E \in \mathcal{B}_{X \times Y \times Z}$, the slices $E_x \in \mathcal{B}_{Y \times Z}$ are μ -stable for almost all $x \in X$, and the slices $E_y \in \mathcal{B}_{X \times Z}$ are μ -stable for almost all $y \in Y$. Then there exist a countable partition $X \times Y = \bigsqcup_{i \in \omega} A^i$ with each $A^i \in \mathcal{B}_{X \times Y}$ perfect for the relation $E \subseteq (X \times Y) \times Z$, and a countable partition $Y \times Z = \bigsqcup_{j \in \omega} B^j$ into rectangles $B^j = B^{j,Y} \times B^{j,Z}$ for some $B^{j,Y} \in \mathcal{B}_Y, B^{j,Z} \in \mathcal{B}_Z$, so that for each $i, j \in \omega$, either $A^i \wedge B^j \subseteq^0 E$ or $(A^j \wedge B^j) \cap E =^0 \emptyset$.

Finally...

- Finally, combining all of the above and some more repartitions, we obtain:
- ▶ **Proposition.** Suppose that $E \in \mathcal{B}_{X \times Y \times Z}$ is slicewise μ -stable. Then there exist a countable partition $X \times Y = \bigsqcup_{i \in \omega} A^i$ so that each A^i is perfect for the relation $E \subseteq (X \times Y) \times Z$, and $A^i = A^{i,X} \times A^{i,Y}$ is a rectangle with $A^{i,X} \in \mathcal{B}_X, A^{i,Y} \in \mathcal{B}_Y$.
- From which the main theorem quickly follows!
- A slicewise stable counterexample to stable hypergraph regularity: Let X := {0,1,2}^ω, and (x, y, z) ∈ E holds if, for the first n such that |x(n), y(n), z(n)| > 1, |x(m), y(n), z(n)| = 3. (At the first coordinate where they are not all the same, they are all different.)

Thank you!

- "Definable regularity lemmas for NIP hypergraphs" with Sergei Starchenko The Quarterly Journal of Mathematics, 72(4), 2021, 1401–1433
- "Hypergraph regularity and higher arity VC-dimension" with Henry Towsner, arXiv:2010.00726
- "A regularity lemma for slice-wise stable hypergraphs", with Henry Towsner, in preparation