NTP_2

Artem Chernikov

University Lyon 1, France

15th Latin American Symposium on Mathematical Logic Bogota, June 8 2012

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Generalizations of stability

		PA, ZFC
Simple theories Random graph Pseudofinite fields ACFA	NTP ₂	
Stable theories ACF Free groups Planar graphs	NIP theories linear orders trees ordered abelian groups o-minimal theories ACVF Q _p	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

NTP₂: Definition

Definition

(Shelah) A formula $\phi(x, y)$ has TP₂ if there are $(a_{i,j})_{i,j\in\omega}$ and $k\in\omega$ such that:

- ▶ $\{\phi(x, a_{i,j})\}_{i \in \omega}$ is k-inconsistent for every $i \in \omega$,
- $\{\phi(x, a_{i,f(i)})\}_{i \in \omega}$ is consistent for every $f : \omega \to \omega$. *T* is called NTP₂ if no formula has TP₂.

NTP₂: Examples

- Every simple or NIP theory is NTP₂.
- Let T be a model complete geometric theory in the language L (i.e. it eliminates ∃[∞] and the model theoretic algebraic closure satisfies exchange). Let L' be an expansion of L by a new unary predicate P(x). Then T has a model companion T' in L' and this model companion is NTP₂ (generalizing Chatzidakis-Pillay).
- E.g. fusing a dense linear order with a random graph gives an NTP₂ theory.

The following is quite useful for checking that a particular structure is NTP_2 .

Theorem

(Ch.) T is NTP₂ if and only if every formula $\varphi(x, y)$ with x singleton is NTP₂.

(In fact, this follows from a more general result on sub-multiplicativity of burden in arbitrary theories and answers a question of Shelah).

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

NTP₂: Valued fields

- ► Consider the valued field K = ∏_p prime Q_p/𝔅, where 𝔅 is a non-principal ultrafilter.
- The theory of K is not simple: because the value group is linearly ordered.
- ► The theory of K is not NIP: the residue field is pseudo-finite, thus has the independence property by a result of Duret.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Even in the pure field language, as the valuation ring is definable uniformly in p (Ax). However, ${\sf K}$ is ${\sf NTP}_2$ (and even strong, of finite burden) by the following:

Theorem

(Ch.) Let $\mathbf{K} = (K, k, \Gamma)$ be a henselian valued field of equicharacteristic 0, in the Denef-Pas language. Assume that k is NTP₂. Then \mathbf{K} is NTP₂.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Analogous to the theorem of Delon for NIP.

NTP₂: Valued difference fields

 We consider valued difference fields K = (K, k, Γ, σ) of equicharacteristic 0 (i.e. σ is an automorphism of K preserving the valuation ring).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

NTP₂: Valued difference fields

- We consider valued difference fields K = (K, k, Γ, σ) of equicharacteristic 0 (i.e. σ is an automorphism of K preserving the valuation ring).
- Kikyo-Shelah: It T has the Strict Order Property (which is the case with valued fields), then the model companion of T ∪ {σ is an automorphism} does not exist.
- Hrushovski/Azgin:
 - However, if we impose in addition that σ is contractive (i.e. $v(\sigma(x)) > n \cdot v(x)$ for all $n \in \omega$), then the model companion VFA₀ exists. It is axiomatized by saying that (k, σ) is a model of ACFA₀, (Γ, σ) is a divisible ordered $\mathbb{Z}[\sigma]$ module and **K** is σ -henselian.
 - A natural model of VFA₀: a non-standard Frobenius acting on an algebraically closed valued field of char 0.
- Again neither simple nor NIP.

NTP₂: Valued difference fields

Theorem

(Ch., Hils) Let $\mathbf{K} = (K, k, \Gamma, \sigma)$ be a σ -henselian contractive valued difference field of equicharacteristic 0. Assume that both (k, σ) and (Γ, σ) are NTP₂. Then \mathbf{K} is NTP₂.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A non-example

Let T be the theory of a triangle-free random graph. Let $\varphi(x, y_1y_2) = xRy_1 \wedge xRy_2$. Then it has TP₂:

. . .

Forking

Let $\phi(x, y)$ be a formula and A a set.

- We say that φ(x, a) divides over A if there is k ∈ ω and (a_i)_{i∈ω} such that tp (a_i/A) = tp (a/A) and {φ(x, a_i)}_{i∈ω} is k-inconsistent.
- ▶ We say that $\phi(x, a)$ forks over A if there are $\phi_0(x, a_0), \ldots, \phi_n(x, a_n)$ such that $\phi(x, a) \vdash \bigvee_{i \leq n} \phi_i(x, a_i)$ and $\phi_i(x, a_i)$ divides over A for each $i \leq n$.
- We say that a (partial) type p(x) does not divide (fork) over A if it does not imply any formula which divides (forks) over A.

Note that formulas forking over A form an ideal in $Def(\mathbb{M})$ generated by the formulas dividing over A.

Example

If μ is an *A*-invariant finitely additive probability measure on Def (\mathbb{M}) and $\mu(\phi(x, a)) > 0$ then $\phi(x, a)$ does not fork over *A*.

Forking in NTP₂ theories

Recall the picture for simple theories:

- 1. Nice combinatorial structure of the forking ideal: forking equals dividing, every Morley sequence witnesses dividing, chain condition, ...
- Let a ⊥_c b denote that tp (a/bc) does not fork over c. Then ⊥ is a nice independence relation: invariant under automorphisms of M, symmetric, transitive, finite character, ...
- 3. Amalgamation of types (the "Independence theorem" of Kim and Pillay, over models): Assume that $a_1 bodysymbol{igstar}_M b_1$, $a_2 bodysymbol{igstar}_M b_2$ and tp $(a_1/M) =$ tp (a_2/M) . Then there is $a bodysymbol{igstar}_M b_1 b_2$ and s.t. tp $(ab_i/M) =$ tp $(a_i b_i/M)$ for i = 1, 2.

The rest of the talk in one sentence: 1 (completely) and 3 (essentially) survive in NTP_2 , as long as one is working over an *extension base*.

Extension bases

- A set A is called an extension base if every type in p(x) ∈ S(A) has a global non-forking extension.
- Examples of extension bases:
 - any model in any theory,
 - every set in an o-minimal, c-minimal or ordered dp-minimal theory.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

► A non-example: Ø in the theory of dense circular order.

Question (Pillay). Is forking = dividing over models in NIP theories?

Theorem

(Ch., Kaplan) Let A be an extension base in an NTP₂ theory T. Then $\phi(x, a)$ divides over A if and only if it forks over A.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Forking = dividing: why?

- The reason: existence of strictly invariant types.
- A type p(x) ∈ S(M) is called strictly invariant over A if it is invariant (i.e. φ(x, a) ∈ p and tp(a/A) = tp(b/A) implies φ(x, b) ∈ p) and for every small A ⊆ B ⊆ M, if c ⊨ p|_B then tp(B/cA) does not fork over A.
- E.g. every generically stable type or every invariant type in a simple theory are strictly invariant.
- ► The crucial step of the proof is to show that in NTP₂ theories every type p(x) over a model M has a global strictly invariant extension q(x) (using the so called Broom lemma).
- Then one can show that TFAE:
 - $\varphi(x, a)$ divides over M
 - ▶ For any $q(x) \in S(\mathbb{M})$, a strictly invariant extension of tp (a/M), and $(a_i)_{i \in \omega}$ a Morley sequence in q (i.e. $a_i \models q|_{a_{< i}M}$) we have that $\{\varphi(x, a_i)\}_{i \in \omega}$ is inconsistent.

Dividing = array-dividing

- We say that (a_{ij})_{i,j∈ω} is a (2-dimensional) indiscernible array over A if both the sequence of rows and the sequence of columns are indiscernible over A.
- φ(x, a) array-divides over A if there is an indiscernible array over A such that a = a₀₀ and {φ(x, a_{ij})}_{i,i∈ω} is inconsistent.
- Theorem (Ben Yaacov, Ch.) Let T be NTP₂. Then φ(x, a) array-divides over A if and only if it divides over A.

(日) (伊) (日) (日) (日) (0) (0)

• Generalizes to κ -dimensional arrays for any ordinal κ .

Chain condition

- We say that forking satisfies the *chain condition* over A if whenever (a_i)_{i∈ω} is an indiscernible sequence and φ(x, a₀) does not fork over A then φ(x, a₀) ∧ φ(x, a₁) does not fork over A.
- Problem (Adler/Hrushovski) What is the relationship between NTP₂ and the chain condition of non-forking?

Theorem

(Ben Yaacov, Ch.) Let T be NTP_2 and A an extension base. Then forking satisfies the chain condition over A.

Example

(Ch., Kaplan, Shelah) There is a theory with TP_2 in which forking satisfies the chain condition over arbitrary sets.

Weak independence theorem

- Recall the amalgamation of types in simple theories.
- Of course, fails in the presence of a linear order.
- However, we prove a weak independence theorem over an extension base:

Theorem

(Ben Yaacov, Ch.) Let T be NTP₂ and A an extension base. Assume that $c \, \bigcup_A ab$, $a \, \bigcup_A bb'$ and $b \equiv_A^{Lstp} b'$. Then there is c' such that $c' \, \bigcup_A ab'$, $c'a \equiv_A ca$, $c'b' \equiv_A cb$.

Weak independence theorem

Theorem

(Ben Yaacov, Ch.) Let T be NTP₂ and A an extension base. Assume that $c \, \bigcup_A ab$, $a \, \bigcup_A bb'$ and $b \equiv_A^{Lstp} b'$. Then there is c' such that $c' \, \bigcup_A ab'$, $c'a \equiv_A ca$, $c'b' \equiv_A cb$.

Applications of the WIT

- ▶ Let T be NTP₂ and A an extension base. Then Lascar strong type over A equals Kim-Pillay strong type over A (we show that $a \equiv_A^{\text{Lstp}} b$ implies $d_A(a, b) \leq 3$).
- The sufficient conditions of the stabilizer theorem of Hrushovski are satisfied in NTP₂ theories as the chain condition of non-forking means precisely that the forking ideal is S1.

NIP types in NTP₂ theories

- ▶ A (partial) type p(x) is NIP if there are no $(a_i)_{i \in \omega}$ with $a_i \models p(x), (b_s)_{s \subseteq \omega}$ and $\varphi(x, y)$ such that $\varphi(a_i, b_s) \Leftrightarrow i \in s$.
- Whole NIP theory can be done locally with respect to an NIP type (e.g. dp-rank of an NIP type in an arbitrary theory is always witness by mutually indiscernible sequences of its realizations, Kaplan-Simon, Ch.).

Theorem

(Ch., Kaplan) Let T be NTP₂. Then p(x) is NIP if and only if every $q(x) \supseteq p(x)$ has only boundedly many global non-forking extensions (compare to stable types).

It is not true without the NTP_2 assumption, by the same example from [Ch., Kaplan and Shelah].

Simple types in NTP₂ theories

A (partial) type p(x) is simple if there are no (a_η)_{η∈ω^{<ω}}, φ(x, y) and k ∈ ω such that:

- ► $p(x) \cup \{\varphi(x, a_{\eta|i})\}_{i \in \omega}$ is consistent for every $\eta \in \omega^{\omega}$,
- $\{\varphi(\mathbf{x}, \mathbf{a}_{\eta i})\}_{i \in \omega}$ is k-inconsistent for every $\eta \in \omega^{<\omega}$.

Theorem (Ch.) Let T be NTP₂. TFAE:

- 1. p(x) is simple
- Every q (x) ⊇ p (x), satisfies the independence theorem over models.
- 3. For every $A \supseteq dom(p)$, $a \models p$ and b: $a \bigcup_A b$ iff $b \bigcup_A a$.

Dependent dividing

Definition

We will say that T has dependent dividing if whenever $p(x) \in S(N)$ divides over $M \leq N$, there is some $\varphi(x, a) \in p$ dividing over M and such that $\varphi(x, y)$ is NIP.

- Of course, every NIP theory has dependent dividing.
- ► If T is a simple theory, then it has dependent dividing if and only if it has stable forking. I.e., all known simple theories have dependent dividing.

Theorem

(Ch.) Assume that T has dependent dividing. Then it is NTP_2 .

The dependent dividing conjecture: Every NTP₂ theory has dependent dividing.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

References

- Forking and dividing in NTP₂ theories Artem Chernikov and Itay Kaplan, J. Symbolic Logic, 77(1):1-20, 2012
- 2. Theories without the tree property of the second kind Artem Chernikov, preprint (arXiv:1204.0832)
- 3. On non-forking spectra Artem Chernikov, Itay Kaplan and Saharon Shelah, submitted (arXiv:1205.3101)

- 4. A weak independence theorem for NTP₂ theories Itaï Ben Yaacov and Artem Chernikov, in preparation
- 5. Valued difference fields and NTP₂ Artem Chernikov and Martin Hils, in preparation