Combinatorial properties of non-archimedean convex sets

Artem Chernikov
(joint with Alex Mennen)

UCLA

Special session "Model Theory and its Applications",
AMS Spring Central Sectional Meeting 2022 (Purdue University)
March 26, 2022

Convexity in valued fields

- Introduced by Monna in 1940's, extensively studied in non-archimedean functional analysis.
- Notation. K a valued field (e.g. \mathbb{Q}_{p}), with value group $\Gamma=\Gamma_{K}$, valuation $\nu=\nu_{K}: K \rightarrow \Gamma_{\infty}:=\Gamma \sqcup\{\infty\}$, valuation ring $\mathcal{O}=\mathcal{O}_{K}=\nu^{-1}([0, \infty])$, maximal ideal $\mathfrak{m}=\mathfrak{m}_{K}=\nu^{-1}((0, \infty])$, and residue field $k=\mathcal{O} / \mathfrak{m}$. The residue $\operatorname{map} \mathcal{O} \rightarrow k$ will be denoted $\alpha \mapsto \bar{\alpha}$.
- For $d \in \mathbb{N}_{\geq 1}$, a set $X \subseteq K^{d}$ is convex if, for any $n \in \mathbb{N}_{\geq 1}$, $x_{1}, \ldots, x_{n} \in X$, and $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{O}$ such that $\alpha_{1}+\ldots+\alpha_{n}=1$ we have $\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n} \in X$ (in the vector space K^{d}).
- The family of convex subsets of K^{d} will be denoted Conv K^{d}.

Convex combinations

- Given an arbitrary set $X \subseteq K^{d}$, its convex hull $\operatorname{conv}(X)$ is the convex set given by the intersection of all convex sets containing X, equivalently the set of all convex combinations from X :

$$
\operatorname{conv}(X)=\left\{\sum_{i=1}^{n} \alpha_{i} x_{i}: n \in \mathbb{N}, \alpha_{i} \in \mathcal{O}, x_{i} \in X, \sum_{i=1}^{n} \alpha_{i}=1\right\}
$$

- Prop. Let K be a valued field and $X \subseteq K^{d}$. If X is closed under 3-element convex combinations (in the sense that if $x, y, z \in X$ and $\alpha, \beta, \gamma \in \mathcal{O}$ such that $\alpha+\beta+\gamma=1$, then $\alpha x+\beta y+\gamma z \in X$), then X is convex.
- Prop. 2-element convex combinations suffice iff $k \not \not ⿻ \mathbb{F}_{2}$.

Convex subsets of \mathbb{R}^{n} vs convex subsets of K^{n}

- Parallel: combinatorics of convex subsets of \mathbb{R}^{n} vs definable subsets of \mathbb{R}^{n} vs. definable subsets of \mathbb{Q}_{p}.
- Example (Marker). Naming a single (bounded) convex subset of \mathbb{R}^{2} in the field of reals allows to define the set of integers. Indeed, we can define a continuous and piecewise linear function $f:[0,1] \rightarrow[0,1]$ such that

$$
C:=\{(x, y): x \in[0,1], 0 \leq y \leq f(x)\}
$$

is convex but the set of points where f is not differentiable is exactly $\left\{\frac{1}{n}: n \in \mathbb{N} \geq 2\right\}$. Now in the field of reals with a predicate for C we can define f and the set of points where it is not differentiable, hence \mathbb{N} is also definable.

- In contrast, turns out that convex sets in K^{n} are tame both model theoretically and combinatorially, so we get the best of both worlds.

Convex subsets and \mathcal{O}-submodules of K^{d}

- Prop. Nonempty convex subsets of K^{d} are precisely the translates of \mathcal{O}-submodules of K^{d}.
- Proof. First, \mathcal{O}-submodules of K^{d} are clearly convex and contain 0 . Conversely, suppose $C \subseteq K^{d}$ is convex and $0 \in C$. Then for any $\alpha \in \mathcal{O}$ and $x \in C, \alpha x=\alpha x+(1-\alpha) 0 \in C$. And for any $x, y \in C, x+y=1 \cdot x+1 \cdot y-1 \cdot 0 \in C$. Therefore C is an \mathcal{O}-submodule. And set can be translated to contain 0 (affine maps preserve convexity).
- From this, easy to see that the convex subsets of $K=K^{1}$ are exactly \emptyset and the quasi-balls (i.e. sets $B=\left\{x \in K^{d}: \nu(x-c) \in \Delta\right\}$ for some $c \in K$ and an upwards closed subset Δ of $\left.\Gamma_{\infty}\right)$.

Algebraic description of convex sets

- Def. A valued field K is spherically complete if every nested family of (closed or open) valuational balls has non-empty intersection.
- Thm. Suppose K is a spherically complete valued field, $d \in \mathbb{N}_{\geq 1}$, and let $C \subseteq K^{d}$ be an \mathcal{O}-submodule. Then there exists a complete flag of vector subspaces $\{0\} \subsetneq F_{1} \subsetneq \ldots \subsetneq F_{d}=K^{d}$ and a decreasing sequence of nonempty, upwards-closed subsets $\Delta_{1} \supseteq \Delta_{2} \supseteq \ldots \supseteq \Delta_{d}$ of Γ_{∞} such that $C=\left\{v_{1}+\ldots+v_{d} \mid v_{i} \in F_{i}, \nu\left(v_{i}\right) \in \Delta_{i}\right\}$.

Further properties of this presentation

- $\Delta_{d}=\left\{\gamma \in \Gamma_{\infty} \mid \forall v \in K^{d}, \nu(v)=\gamma \Longrightarrow v \in C\right\}$. That is, Δ_{d} is the quasi-radius of the largest quasi-ball around 0 contained in C.
- F_{d-1} can be chosen to be any linear hyperplane H in K^{d} such that every element of C differs from an element of H by a vector in K^{d} with valuation in Δ_{d}.
- Cor. If K is a spherically complete valued field and $d \in \mathbb{N}_{\geq 1}$, then the non-empty convex subsets of K^{d} are precisely the affine images of $\nu^{-1}\left(\Delta_{1}\right) \times \ldots \times \nu^{-1}\left(\Delta_{d}\right)$ for some upwards closed $\Delta_{1}, \ldots, \Delta_{d} \subseteq \Gamma_{\infty}$.
- By contrast to Marker's example: if K is a spherically complete, then every convex subset of K^{d} is definable in the expansion of the field K by a predicate for each Dedekind cut of the value group (definable in Shelah expansion of K by externally definable sets, so e.g. NIP if K was). In particular, if K has value group \mathbb{Z}, then all convex subsets of K^{d} form a definable family.

Combinatorial consequences

- Using this (combinatorial properties below pass to spherical completions), we can get:
- Thm. Let K be a valued field and $d \geq 1$. Then the family Conv ${ }_{K^{d}}$ has breadth d. That is, any nonempty intersection of finitely many convex subsets of K^{d} is the intersection of at most d of them. (Not true for convex subsets of \mathbb{R}^{2} !)
- Cor. The Helly number of $\operatorname{Conv}_{K^{d}}$ is $d+1$. I.e., given any $n \in \mathbb{N}$ and any sets $S_{1}, \ldots, S_{n} \in \mathcal{F}$, if every $(d+1)$-subset of $\left\{S_{1}, \ldots, S_{n}\right\}$ has nonempty intersection, then $\bigcap_{i \in[n]} S_{i} \neq \emptyset$.)
- Cor. Conv ${ }_{K^{d}}$ has VC-dimension $d+1$ and dual VC-dimension d.

Fractional Helly Property

- Combining this with Matoušek's theorem, we obtain:
- Cor. The fractional Helly number of the family Conv ${ }_{K^{d}}$ is at most $d+1$ (exactly $d+1$ if K is infinite). I.e. for every $\alpha \in \mathbb{R}_{>0}$ there exists $\beta \in \mathbb{R}_{>0}$ so that: for any $n \in \mathbb{N}$ and any sets $S_{1}, \ldots, S_{n} \in \operatorname{Conv}_{K^{d}}$ (possibly with repetitions), if there are $\geq \alpha\binom{n}{d+1}(d+1)$-element subsets of the multiset $\left\{S_{1}, \ldots, S_{n}\right\}$ with a non-empty intersection, then there are $\geq \beta n$ sets from $\left\{S_{1}, \ldots, S_{n}\right\}$ with a non-empty intersection.
- Moreover, β can be chosen depending only on d and α (and not on the field K).
- Finally, combining these, we obtain an analog of the Boros-Füredi/Bárány selection lemma over valued fields (answering a question of Peterzil and Kaplan):
- Thm. For each $d \geq 1$ there is a constant $c=c(d)>0$ such that: for any valued field K and any finite $X \subseteq K^{d}$ (say $n:=|X|)$, there is some $a \in X$ contained in the convex hulls of at least $c\binom{n}{d+1}$ of the $\binom{n}{d+1}$ subsets of X of size $d+1$.

