Measures in model theory

Artem Chernikov

UCLA

Logic Colloquium 2021, Poznań (via Zoom) Jul 24, 2021

Spaces of types

- Let T be a complete first-order theory in a language L, M ⊨ T a monster model (i.e. κ-saturated and κ-homogeneous for a sufficiently large cardinal κ), M ≤ M a small elementary submodel.
- For A ⊆ M and x an arbitrary tuple of variables, S_x(A) denotes the set of complete types over A.
- Let L_x(A) denote the set of all formulas φ(x) with parameters in A, up to logical equivalence — which we identify with the Boolean algebra of A-definable subsets of M_x; L_x := L_x(Ø).
- Then the types in $S_x(A)$ are the ultrafilter on $\mathcal{L}_x(A)$.
- By Stone duality, S_x(A) is a totally disconnected compact Hausdorff topological space with a basis of clopen sets of the form

$$\langle \varphi \rangle := \{ p \in S_x(A) : \varphi(x) \in p \}$$

for $\varphi(x) \in \mathcal{L}_x(A)$.

• We refer to types in $S_{\times}(\mathbb{M})$ as global types.

Keisler measures

- A Keisler measure µ in variables x over A ⊆ M is a finitely-additive probability measure on the Boolean algebra L_x(A) of A-definable subsets of M_x.
- $\mathfrak{M}_{x}(A)$ denotes the set of all Keisler measures in x over A.
- ► Then 𝔐_x(A) is a compact Hausdorff space with the topology induced from [0, 1]^{L_x(A)} (equipped with the product topology).
- A basis is given by the open sets

$$\bigcap_{i < n} \{ \mu \in \mathfrak{M}_{\mathsf{x}}(\mathsf{A}) : r_i < \mu(\varphi_i(\mathsf{x})) < s_i \}$$

with $n \in \mathbb{N}$ and $\varphi_i \in \mathcal{L}_x(A), r_i, s_i \in [0, 1]$ for i < n.

- Identifying p with the Dirac measure δ_p, S_x(A) is a closed subset of M_x(A) (and the convex hull of S_x(A) is dense).
- Every μ ∈ M_x(A), viewed as a measure on the clopen subsets of S_x(A), extends uniquely to a regular (countably additive) probability measure on Borel subsets of S_x(A); and the topology above corresponds to the weak*-topology: μ_i → μ if ∫ fdμ_i → ∫ fdμ for every continuous f : S_x(A) → ℝ.

Some examples of Keisler measures, 1

In arbitrary *T*, given p_i ∈ S_x(A) and r_i ∈ ℝ for i ∈ ℕ with ∑_{i∈ℕ} r_i = 1, μ := ∑_{i∈ℕ} r_iδ_{p_i} ∈ M_x(A).
Let *T* = Th(ℕ, =), |x| = 1. Then

 $S_x(\mathbb{M}) = \{ \operatorname{tp}(a/\mathbb{M}) : a \in \mathbb{M} \} \cup \{ p_\infty \},$

where p_{∞} is the unique non-realized type axiomatized by $\{x \neq a : a \in \mathbb{M}\}$. By QE, every formula is a Boolean combination of $\{x = a : a \in \mathbb{M}\}$, from which it follows that every $\mu \in \mathfrak{M}_{x}(\mathbb{M})$ is as in (1).

More generally, if T is ω-stable (e.g. strongly minimal, say ACF_p for p prime or 0) and x is finite, then every µ ∈ 𝔐_x(𝔄) is a sum of types as in (1).

Let T = Th(ℝ, <), λ be the Lebesgue measure on ℝ and |x| = 1. For φ(x) ∈ L_x(𝔅), define μ(φ) := λ (φ(𝔅) ∩ [0, 1]_ℝ) (this set is Borel by QE). Then μ(X) is a Keisler measure, but not a sum of types as in (1). Some examples of Keisler measures, 2

Let *M* = ∏_{i∈ω} *M_i*/*U* for some finite *M_i* and *U* a non-principal ultrafilter on ω. For φ(x, a) ∈ L_x(*M*) with a = (a_i : i ∈ ω)/*U*, a_i ∈ M_i, define

$$\mu(\varphi(x, a)) := \lim_{\mathcal{U}} \frac{|\varphi(M_i, a_i)|}{|M_i|}$$

Then μ is a Keisler measure over \mathcal{M} .

Brief history of the theory of Keisler measures

- Measures and forking in stable/NIP theories [Keisler'87]
- Automorphism-invariant measures in ω-categorical structures [Albert'92, Ensley'96]
- Applications to neural networks [Karpinski, Macyntire'00]
- Pillay's conjecture and compact domination [Hrushovski, Peterzil, Pillay'08], [Hrushovski, Pillay'11], [Hrushovski, Pillay, Simon'13]
- Randomizations [Ben Yaacov, Keisler'09] (NIP and stability are preserved)
- Approximate Subgroups [Hrushovski'12]
- Definably amenable NIP groups [C., Simon'15] (in particular translation-invariant measures are classified)
- Tame (equivariant) regularity lemmas: subsets of [C., Conant, Malliaris, Pillay, Shelah, Starchenko, Terry, Tao, Towsner, ...'11-...]
- See my review "Model theory, Keisler measures and groups", The Bulletin of Symbolic Logic, 24(3), 336-339 (2018)

Model theoretic tameness and (hyper-)graph regularity

- Classification theory: Shelah's dividing lines express limitations on definable binary relations, by forbidding certain finitary combinatorial configurations (stability, NIP, simplicity, ...).
- Often on the tame case, obtain consequences of the form: types (over infinite sets) in more than one variable are controlled by unary types, up to a "small error" (e.g. stationarity of non-forking in stable theories, up to algebraic closure).
- Generalizations of these results to Keisler measures provide variants of the celebrated Szemerédi's regularity lemma in combinatorics (about the "generic", or typical, behavior of large *finite* graphs).
- More precisely, the "analytic" presentation of the regularity lemma ([Elek-Szegedy], [Tao], [Towsner], ...):

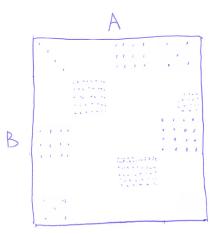
Szemerédi's regularity lemma

Theorem

For every $\varepsilon \in \mathbb{R}_{>0}$ there exists $K = K(\varepsilon) \in \mathbb{N}$ s.t.: for any structure \mathcal{M} , definable relation $E(x_1, x_2)$ and Keisler measures μ_i on M_{x_i} (satisfying a Fubini assumption that always holds for ultraproducts of finite measures), there are definable partitions $M_{x_i} = \bigsqcup_{i < K} A_{i,j}$ and $\Sigma \subseteq \{1, \ldots, K\}^2$ such that: 1. $\mu\left(\bigcup_{(i_1,i_2)\in\Sigma} A_{1,i_1} \times A_{2,i_2}\right) \leq \varepsilon$, where $\mu = \mu_1 \otimes \mu_2$, 2. for all $\vec{i} = (i_1, i_2) \notin \Sigma$ and definable $A'_i \subseteq A_i$ we have $|\mu\left(E\cap\left(A_{1,i_{1}}^{\prime}\times A_{2,i_{2}}^{\prime}
ight)
ight)-\delta_{\vec{i}}\mu\left(A_{1,i_{1}}^{\prime}\times A_{2,i_{2}}^{\prime}
ight)|<\varepsilon\mu\left(A_{1,i_{1}}^{\prime}\times A_{2,i_{2}}
ight)|$ for $\delta_{\vec{i}} = \frac{\mu(E \cap A_{1,i_1} \times A_{2,i_2})}{\mu(A_{1,i_1} \times A_{2,i_2})}$.

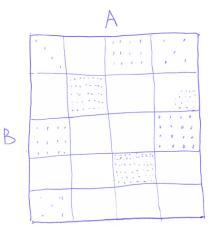
Szemeredi's regularity, 1

• Consider the incidence matrix of a bipartite graph $E \subseteq A \times B$:



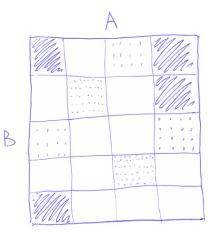
Szemeredi's regularity, 2

• Consider the incidence matrix of a bipartite graph $E \subseteq A \times B$:



Szemeredi's regularity, 3

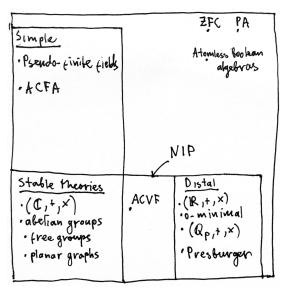
• Consider the incidence matrix of a bipartite graph $E \subseteq A \times B$:



Variants and limitations

- Generalization to hypergraphs [Nagle, Rödl, Schacht], [Rödl, Skokan], [Gowers].
- Some features for general graphs:
 - [Gowers] K(ε) grows as an exponential tower of 2's of height polynomial in ¹/_ε;
 - Bad pairs are unavoidable in general (half-graphs);
 - Quasi-randomness (intermediate densities) is unavoidable in general.
- Turns out some of the dividing lines in Shelah's classification provide an explanation for these phenomena.

Model theoretic classification



See ForkingAndDividing.com for an interactive version.

Regularity lemma for NIP relations

Theorem (C., Starchenko)

Let \mathcal{M} be an NIP structure and k > 2. For every definable relation $E(x_1,\ldots,x_k)$ there is some c = c(E) such that for any $\varepsilon > 0$ and Keisler measures μ_i on M_{x_i} satisfying Fubini there are partitions $M_{x_i} = \bigcup_{i < K} A_{i,j}$ and a set $\Sigma \subseteq \{1, \ldots, K\}^k$ such that: 1. $K \leq \left(\frac{1}{c}\right)^c$. 2. $\mu\left(\bigcup_{(i_1,\ldots,i_k)\in\Sigma}A_{1,i_1}\times\ldots\times A_{k,i_k}\right)\leq\varepsilon$, where $\mu = \mu_1 \otimes \ldots \otimes \mu_k$. 3. for all $\vec{i} = (i_1, \ldots, i_k) \notin \Sigma$ we have $|\mu (E \cap (A_{1,i_1} \times \ldots \times A_{k,i_k})) - \delta_{\vec{i}} \mu (A_{1,i_1} \times \ldots \times A_{k,i_k})| < \delta_{\vec{i}} \mu (A_{1,i_1} \times \ldots \times A_{k,i_k})|$ $\varepsilon \mu (A_{1 i_1} \times \ldots \times A_{k i_k})$

for some $\delta_{\vec{i}} \in \{0, 1\}$.

4. each $A_{i,j}$ is defined by an instance of an E-formula depending only on E and ε .

Regularity lemma for NIP relations, continued

- Relies on the close connection of NIP and the Vapnik-Chervonenkis, or VC, theory (e.g. existence of ε-nets).
- Generalizes the earlier work in the binary case (i.e. k = 2) by [Alon, Fischer, Newman], [Lovász, Szegedy].
- If *M* is stable, then in addition (generalizing [Malliaris, Shelah] in the binary case):
 - 1. we can take the μ_i 's to be arbitrary Keisler measures (the Fubini condition is automatically satisfied),
 - 2. we may assume that $\Sigma=\emptyset,$ i.e. all tuples in the partition are $\varepsilon\text{-regular.}$
- If *M* is distal, then in addition (generalizing [Fox, Pach, Suk] in the semialgebraic case):
 - 1. for all $(i_1, \ldots, i_k) \notin \Sigma$, either $(A_{1,i_1} \times \ldots \times A_{k,i_k}) \cap E = \emptyset$ or $A_{1,i_1} \times \ldots \times A_{k,i_k} \subseteq E$,
 - 2. if the relation *E* is defined by an instance of a formula θ , then we can take each $A_{i,j}$ to be defined by an instance of a formula $\psi_i(x_i, z_i)$ which only depends on θ (and not on ε).

Definably amenable groups

Definition

Let G be a definable group in some structure (i.e. the set of its elements and the group operation are definable).

- A measure µ on the definable subsets of G is (left) G-invariant if µ(X) = µ(g ⋅ X) for all definable X ⊆ G and g ∈ G.
- ► *G* is *definably amenable* if there exists a *G*-invariant Keisler measure on definable subsets of *G*.
- Note: there exists a left-invariant measure iff exists a right invariant measure; definable amenability is preserved under elementary equivalence.

Examples of definably amenable groups

- Solvable groups, or more generally any group G such that G(M) is amenable as a discrete group.
- ▶ Definable compact groups in o-minimal theories or in p-adics (compact Lie groups, e.g. SO(3, ℝ), seen as definable groups in ℝ).
- Stable groups (in particular the free group F₂, viewed as a structure in a pure group language, is definably amenable).
- Ultraproducts of finite groups.
- ▶ But: $SL(n, \mathbb{R})$ is not definably amenable for n > 1.

Definable amenability in NIP groups, 1

- The theory of definably amenable NIP groups was developed in the last decade, and played an important role in the proof of Pillay's conjecture for groups in *o*-minimal theories [Hrushovski, Peterzil, Pillay].
- ▶ [Shelah] If G is NIP, then there exists the smallest type-definable subgroup G⁰⁰ of G of bounded index.
- The quotient G/G⁰⁰ is equipped with the logical topology: a set is closed if its preimage in G is type-definable.
- With this topology G/G^{00} is a compact topological group, hence carries the Haar measure *h*.
- Example: if G = SO (2, R) is the circle group defined in a (saturated) real closed field R, then G⁰⁰ is the set of infinitesimal elements of G and G/G⁰⁰ is isomorphic to the standard circle group SO (2, ℝ).

Definable amenability in NIP groups, 2

The assumption of definable amenability in NIP allows to recover some ideas of stable group theory, including a theory of generic sets (with connections to topological dynamics following [Newelski]), which leads to a proof of the Ellis group conjecture [C., Simon].

Theorem (C., Simon)

Ergodic measures on G are precisely the ''liftings'' of the Haar measure on G/G^{00}

$$\mu_{p}\left(\varphi(x)\right) := h\left(\left\{\bar{g} \in G/G^{00} : \varphi(x) \in g \cdot p\right\}\right)$$

for some f-generic type $p \in S_G(\mathbb{M})$.

(Partial) development of this theory "locally" leads to further applications combining the two lines: regularity lemmas *in* groups, approximating sets by cosets instead of arbitrary sets up to an error of small measure [Terry, Wolf], [Conant, Pillay, Terry].

Keisler measures outside of NIP

- All of the above inside the context of NIP theories (thanks to the (equivariant) VC-theory, measures are strongly approximated by types). What happens in simple theories?
- Ultraproducts of finite counting measures in pseudofinite fields are very well-behaved, e.g. manifested in a strong regularity lemma for definable graphs [Tao].
- But very few general results outside of NIP so far. Some counterexamples:
 - ► Independent product ⊗ of Borel-definable measures is not associative in general [Conant, Gannon, Hanson'21];
- And some positive results:
 - A generalization of ε-nets for n-dependent theories, and the corresponding regularity lemma approximating relations of any arity by relations of arity n [C.,Towsner] (the case n = 1 corresponds to the NIP case discussed above).
 - NSOP₁ is preserved under Keisler randomizations [Ben Yaacov, C., Ramsey, 21+]

Definable amenability for groups in simple theories

- Pillay: are there groups definable in simple theories that are not definably amenable?
- (Earlier, Harrington asked a variant of this question with respect to the automorphism group invariance/forking.)
- Note: in the main examples of simple theories, e.g. pseudo-finite fields or ACFA, all groups are definably amenable (typically either pseudo-finite or solvable).

Tarski's characterization of amenability

- A paradoxical decomposition for a discrete group G consists of pairwise disjoint subsets X₁,..., X_m, Y₁,..., Y_n of G for some m, n ∈ N≥1 and g₁,..., g_m, h₁,..., h_n ∈ G such that G is the union of the g_iX_i and is also the union of the h_iY_i.
- [Tarski] G is amenable if and only if G has no paradoxical decomposition.

An analog for definable amenability, 1

- We fix a definable group G in a structure M.
- By an (m-)cycle (for m ≥ 0) we mean a formal sum ∑_{i=1,...,m} X_i of definable subsets X_i of G. If all the X_i are the same we could write this formal sum as mX_i. We can add such cycles in the obvious way to get the "free abelian monoid" generated by the definable subsets of G. And any definable subset X of G (including G itself) is a (1-)cycle.
- ▶ If $X = \sum_{i=1,...,m} X_i$ and $Y = \sum_{j=1,...,n} Y_j$ are two cycles, then by a *definable piecewise* translation *f* from *X* to *Y* we mean a map *f* from the formal disjoint union $X_1 \sqcup ... \sqcup X_m$ to the formal disjoint union $Y_1 \sqcup ... \sqcup Y_n$ for which there is a partition of each X_i into definable subsets $X_{i1}, ..., X_{in_i}$, and for each *i* and $t \leq n_i$, an element g_{it} of *G* such that the restriction $f | X_{it}$ of *f* to X_{it} is just left translation by g_{it} , and $g_{it}X_{it}$ is a subset of one of the Y_j 's.
- A definable piecewise translation f is said to be *injective* if it is injective as a map between formal disjoint unions.

An analog for definable amenability, 2

We write X ≤ Y if there is an injective piecewise definable translation f from X to Y. Note that ≤ is reflexive and transitive. Also X ≤ W and Y ≤ Z implies X + Y ≤ W + Z.

Definition

By a *definable paradoxical decomposition* of the definable group G we mean an injective definable piecewise translation from G + Y to Y for some cycle Y.

Theorem (Hrushovski, Pillay)

G is definably amenable if and only if *G* does not have a definable paradoxical decomposition.

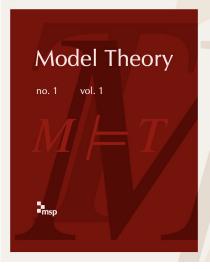
- ► [Corollary] G is not definably amenable iff (n + 1)G ≤ nG for some n ≥ 1.
- ► Tarski's condition corresponds to: 2G ≤ G. It is open if we can always take n = 2 in the definable case.

Theorem (C., Hrushovski, Kruckman, Krupinski, Moconja, Pillay and Ramsey'21)

Let T be a model complete theory eliminating \exists^{∞} and G a definable group in T. Assume that (in some model) G contains a (not necessarily definable) free group on ≥ 2 generators. Then there exists a model complete expansion T^* of T so that G is not definably amenable in T^* , and so that if T is simple, then T^* is also simple.

- Example: start with G := SL₂(C) definable in the stable theory ACF₀, obtain a simple (SU-rank 1) theory with a non-definably amenable group.
- The expansion is obtained by adding a "generic" paradoxical decomposition to G. Some interesting tree combinatorics is required to demonstrate that it is axiomatizable, and an explicit description of forking in T* is obtained in terms of T.

A new journal:



from MSP, a new journal in pure and applied model theory and related areas

Mar<mark>tin Hils</mark> Rahim Moosa

Sylvy Anscombe Alessandro Berarducci Emmanuel Breuillard Artem Chernikov Charlotte Hardouin François Loeser Dugald Macpherson Alf Onshuus Chloé Perin

> msp.org/mt now welcoming submissions

References

- Artem Chernikov and Pierre Simon. "Definably amenable NIP groups." Journal of the American Mathematical Society 31.3 (2018): 609-641.
- Artem Chernikov and Sergei Starchenko. "Regularity lemma for distal structures." Journal of the European Mathematical Society 20.10 (2018): 2437-2466.
- Artem Chernikov, Kyle Gannon "Definable convolution and idempotent Keisler measures", Preprint (arXiv:2004.10378)
- Artem Chernikov and Henry Towsner "Hypergraph regularity and higher arity VC-dimension", Preprint (arXiv:2010.00726)
- Artem Chernikov, Ehud Hrushovski, Alex Kruckman, Krzysztof Krupinski, Slavko Moconja, Anand Pillay, Nicholas Ramsey "Invariant measures in simple and in small theories", Preprint (arXiv:2105.07281)
- Artem Chernikov "Model theory, Keisler measures and groups", The Bulletin of Symbolic Logic, 24(3), 336-339 (2018)