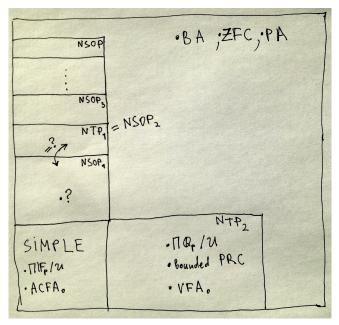
NTP_1

Artem Chernikov

(IMJ-PRG)

Paris, June 9, 2015 Joint work with Nicholas Ramsey (UC Berkeley).

Shelah's classification



Tree properties

Let T be a complete theory and $\varphi(x; y) \in L$ a formula in the language of T.

- φ(x; y) has the tree property (TP) if there is k < ω and a tree of tuples (a_η)_{η∈ω^{<ω}} in M such that:
 - ▶ for all $\eta \in \omega^{\omega}$, $\{\varphi(x; a_{\eta|\alpha}) : \alpha < \omega\}$ is consistent,
 - ▶ for all $\eta \in \omega^{<\omega}$, $\{\varphi(x; a_{\eta \frown \langle i \rangle}) : i < \omega\}$ is *k*-inconsistent.
- φ(x; y) has the tree property of the first kind (TP₁) if there is
 a tree of tuples (a_η)_{η∈ω^{<ω}} in M such that:
 - ▶ for all $\eta \in \omega^{\omega}$, $\{\varphi(x; a_{\eta|\alpha}) : \alpha < \omega\}$ is consistent,
 - ▶ for all $\eta \perp \nu$ in $\omega^{<\omega}$, $\{\varphi(x; a_{\eta}), \varphi(x; a_{\nu})\}$ is inconsistent.
- φ(x; y) has the tree property of the second kind (TP₂) if there is a k < ω and an array (a_{α,i})_{α<ω,i<ω} in M such that:
 - For all functions f : ω → ω, {φ(x; a_{α,f(α)}) : α < ω} is consistent,</p>
 - for all α , $\{\varphi(x; a_{\alpha,i}) : i < \omega\}$ is k-inconsistent.
- ► T has one of the above properties if some formula does modulo T.

Shelah's theorem, 1

So TP₁ and TP₂ are two extreme forms in which TP can occur. In TP₁, everything that is not forced to be consistent by the definition of TP, is inconsistent. In TP₂, everything that is not forced to be inconsistent by the definition of TP, is consistent.

Fact

[Shelah] If T has TP, then it either has TP_1 or TP_2 .

- ► To each theory *T*, one associates cardinal invariants κ_{cdt}, κ_{sct}, κ_{inp} measuring how much of TP, TP₁ and TP₂ (respectively) it contains. Namely, we allow different formulas at each level in the definition above, and take the first cardinal such that there is no tree with that many levels.
- E.g. $\kappa_{cdt} = \infty$ iff T has TP, and T is supersimple iff $\kappa_{cdt} = \aleph_0$. Similarly, $\kappa_{inp} = \infty$ iff T has TP₂, and T is strong iff $\kappa_{inp} = \aleph_0$.
- Shelah asked for a quantitative refinement of the above theorem: does κ_{cdt} = κ_{sct} + κ_{inp} hold?

Shelah's theorem, 2

Theorem

If T is countable, then $\kappa_{cdt} = \kappa_{sct} + \kappa_{inp}$.

In fact if T is countable, then κ_{cdt}, κ_{sct}, κ_{inp} ∈ {ℵ₀, ℵ₁, ∞}. We treat each of ℵ₀ and ℵ₁ separately, the ∞ case follows from Shelah's theorem.

Theorem

[Ramsey] There are theories (in an uncountable language) with $\kappa_{cdt} > \kappa_{inp} + \kappa_{sct}$.

Constructs a theory reducing the question to a deep result of Shelah and Juhász on the non-existence of homogeneous partitions for certain colorings of families of finite subsets of certain cardinals (one can take κ = (2^λ)⁺⁺ + ω₄ for some infinite cardinal λ, then there is T with |T| = κ and such that κ_{cdt} = κ⁺ but κ_{sct} ≤ κ and κ_{inp} ≤ κ).

So what is known about NTP_1 ?

- ▶ [Kim, Kim] In the definition of TP₁, one can replace 2-inconsistency by k-inconsistency, for any k ≥ 2. Also, there is a characterization of NTP₁ via counting certain families of partial types.
- ► [Malliaris, Shelah] If T has TP₁, then it is maximal in the Keisler order (via equivalence to SOP₂, see later).
- Not much more. For example, any kind of a basic theory of forking is missing.
- Another question from Shelah's book, in the special case: is TP₁ always witnessed by a formula in a single variable?
- As usual for this kind of questions, to simplify combinatorics we would like to work with "indiscernible" witnesses of our properties.

Indiscernible trees, 1

- Fix a theory T in a language L and $\mathbb{M} \models T$ a monster model.
- Consider the language L₀ = {⊲, ∧, <_{lex}}. We view the tree κ^{<λ} as an L₀-structure in a natural way, interpreting ⊲ as the tree partial order, ∧ as the binary meet function and <_{lex} as the lexicographic order.
- Suppose that (a_η)_{η∈κ<λ} is collection of tuples and C a set of parameters in some model.
- We say that $(a_\eta)_{\eta \in \kappa^{<\lambda}}$ is a strongly indiscernible tree over C if

$$qftp_{L_0}(\eta_0,\ldots,\eta_{n-1}) = qftp_{L_0}(\nu_0,\ldots,\nu_{n-1})$$

implies $\operatorname{tp}_L(a_{\eta_0}, \ldots, a_{\eta_{n-1}}/C) = \operatorname{tp}_L(a_{\nu_0}, \ldots, a_{\nu_{n-1}}/C)$, for all $n \in \omega$.

Indiscernible trees, 2

Using some results from structural Ramsey theory of trees, one can show that indiscernible trees "exist". More precisely, let l_0 be the L_0 -structure ($\omega^{<\omega}, \trianglelefteq, <_{lex}, \land$) with all symbols given their intended interpretations.

Fact

[Takeuchi, Tsuboi], [Kim, Kim, Scow] Given any tree $(a_i : i \in I_0)$ of tuples from \mathbb{M} , there is a strongly indiscernible tree $(b_i : i \in I_0)$ in \mathbb{M} locally based on the (a_i) : given any finite set of formulas Δ from L and a finite tuple (t_0, \ldots, t_{n-1}) from I_0 , there is a tuple (s_0, \ldots, s_{n-1}) from I_0 such that

$$\mathsf{qftp}_{L_0}(t_0,\ldots,t_{n-1}) = \mathsf{qftp}_{L_0}(s_0,\ldots,s_{n-1})$$

and

$$tp_{\Delta}(b_{t_0},\ldots,b_{t_{n-1}})=tp_{\Delta}(a_{s_0},\ldots,a_{s_{n-1}}).$$

Path collapse lemma, 1

- In particular, if \(\phi(x; y)\) has TP₁, then there is a strongly indiscernible tree witnessing this.
- (Path Collapse lemma) Suppose κ is an infinite cardinal, (a_η)_{η∈2^{<κ}} is a tree strongly indiscernible over a set of parameters C and, moreover, (a₀^α : 0 < α < κ) is an indiscernible sequence over cC. Let

$$p(y;\overline{z}) = \operatorname{tp}(c; (a_{0 \frown 0^{\gamma}} : \gamma < \kappa)/C).$$

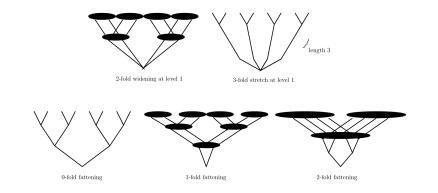
Then if

$$p(y;(a_{0\frown 0^{\gamma}})_{\gamma<\kappa})\cup p(y;(a_{1\frown 0^{\gamma}})_{\gamma<\kappa})$$

is not consistent, then T has TP₁, witnessed by a formula with free variables y.

Path collapse lemma, 2

The proof requires in particular a (rather tedious) demonstration that various operations on strongly indiscernible trees preserve strong indiscernibility, e.g.



Application 1: TP_1 is witnessed by a formula in a single variable

Theorem

Suppose T witnesses TP_1 via $\varphi(x, y; z)$. Then there is a formula $\varphi_0(x; v)$ with free variables x and parameter variables v, or a formula $\varphi_1(y; w)$ with free variables y and parameter variables w so that one of φ_0 and φ_1 witness TP_1 .

Proof idea. Start with a strongly indiscernible tree witnessing that φ has TP₁. Assume that no formula in the free variable y has TP₁, and let bc₀ realize a branch of the tree. Then iteratively applying the path collapse lemma to the type of c₀ over that branch in increasing fattenings of the tree we can conclude by compactness that there is some c such that φ(x; c, z) has TP₁, which is enough.

Application 2: Weak $k - TP_1$ is equivalent to TP_1

Say that a subset {η_i : i < k} ⊆ ω^{<ω} is a collection of *distant* siblings if given i ≠ i', j ≠ j', all of which are < k, η_i ∧ η_{i'} = η_j ∧ η_{j'}.

Definition

[Kim, Kim] $\varphi(x; y)$ has weak $k - \mathsf{TP}_1$ if there is a collection of tuples $(a_\eta)_{\eta \in \omega^{<\omega}}$ such that:

- ▶ for all $\eta \in \omega^{\omega}$, $\{\varphi(x; a_{\eta|\alpha}) : \alpha < \omega\}$ is consistent.
- if {η_i : i < k} ⊆ ω^{<ω} is a collection of distinct distant siblings, then {φ(x; a_{ηi}) : i < k} is inconsistent.
- $\blacktriangleright \mathsf{TP}_1 \iff \mathsf{weak} \ 2\text{-}\mathsf{TP}_1 \implies \mathsf{weak} \ 3\text{-}\mathsf{TP}_1 \implies \dots$
- [Kim, Kim] Do the converse implications hold?

Theorem

T has weak k-TP₁ iff it has TP₁, for all $k \ge 2$.

SOP_n hierarchy, 1

Definition

[Shelah], [Dzamonja, Shelah]

- Fix $n \ge 3$. We say that a formula $\phi(x; y)$ has SOP_n if:
 - there are pairwise different (a_i)_{i∈ω} such that ⊨ φ(a_i, a_j) for all i < j < ω,
 ⊨ ¬∃x₀ x₁ 1 Λ i i < φ(x_i x_i)

$$\models \neg \exists x_0 \dots x_{n-1} \bigwedge_{j=i+1 \pmod{n}} \phi(x_i, x_j).$$

- φ(x; y) has SOP₂ if there is a collection of tuples (a_η)_{η∈2^{<ω}}
 such that:
 - ▶ for all $\eta \in 2^{\omega}$, $\{\varphi(x; a_{\eta|\alpha}) : \alpha < \omega\}$ is consistent,
 - If $\eta, \nu \in 2^{<\omega}$ and $\eta \perp \nu$, then $\{\varphi(x; a_{\eta}), \varphi(x; a_{\nu})\}$ is inconsistent.
- $\varphi(x; y)$ has SOP₁ if there are $(a_{\eta})_{\eta \in 2^{<\omega}}$ such that:
 - ▶ for all $\eta \in 2^{\omega}$, $\{\varphi(x; a_{\eta|n}) : n < \omega\}$ is consistent,
 - ▶ if $\eta \frown 0 \leq \nu \in 2^{<\omega}$, then $\{\varphi(x; a_{\eta \frown 1}), \varphi(x; a_{\nu})\}$ is inconsistent.
- Motivated by the Keisler order and related questions.

SOP_n hierarchy, 2

What is known:

- $\blacktriangleright \mathsf{NTP} \subseteq \mathsf{NSOP}_1 \subseteq \mathsf{NSOP}_2 = \mathsf{NTP}_1 \subseteq \mathsf{NSOP}_3 \subseteq \ldots \subseteq \mathsf{NSOP}.$
- ▶ NSOP_{*n*+1} \ NSOP_{*n*} $\neq \emptyset$ for all *n* ≥ 3, and NSOP \ (\bigcup_n NSOP_{*n*}) $\neq \emptyset$.
- $NSOP_2 \cap NTP_2 = NTP$ (Shelah's theorem).
- ► [Shelah, Usvyatsov] give an example showing that NTP ⊊ NSOP₁, however their proof appears to be wrong. Yet their example is correct, as follows from our theorem.
- Open problems:
 - ▶ $NSOP_2 \subsetneq NSOP_3$? $NSOP_1 \subsetneq NSOP_2$?
 - ▶ Does $NSOP_n \cap NTP_2$ collapse for $n \ge 3$? At least, $NTP \subsetneq NSOP \cap NTP_2$?

Independent amalgamation of types

Suppose ⊥ is an Aut(M)-invariant ternary relation on small subsets of M.

Definition

- ⊥ satisfies weak independent amalgamation over models if, given M ⊨ T, b₀c₀ ≡_M b₁c₁ satisfying b_i ⊥_M c_i for i = 0, 1 and c₀ ⊥_M c₁, there is b satisfying bc₀ ≡_M bc₁ ≡_M b₀c₀.
 ⊥ satisfies independent amalgamation over models if, given M ⊨ T, b₀ ≡_M b₁ satisfying b_i ⊥_M c_i for i = 0, 1 and c₀ ⊥_M c₁, there is b satisfying bc₀ ≡_M b₀c₀ and bc₁ ≡_M b₁c₁.
 ⊥ satisfies stationarity over models if, given M ⊨ T, if b₀ ≡_M b₁ and b₀ ⊥_M c, b₁ ⊥_M c then b₀ ≡_{Mc} b₁.
- Stationarity ⇒ independent amalgamation ⇒ weak independent amalgamation.
- ► E.g. ⊥^f satisfies stationarity over models in stable theories and independent amalgamation in simple theories.

Weak independent amalgamation and NSOP1

Suppose A, B, C are small subsets of the monster \mathbb{M} .

- ► $A extstyle _{C}^{i} B$ if and only if tp(A/BC) can be extended to a global type invariant over C. We denote its dual by $extstyle _{C}^{ci}$ i.e. $A extstyle _{C}^{i} B$ holds if and only if $B extstyle _{C}^{ci} A$.
- ► $A extstyle _{C}^{u} B$ if and only if tp(A/BC) is finitely satisfiable in C. We denote its dual by $extstyle _{D}^{h}$ i.e. $A extstyle _{C}^{h} B$ if and only if $B extstyle _{C}^{u} A$.

Theorem

The following are equivalent.

- 1. T is NSOP₁.
- 2. ↓ ^{ci} satisfies weak independent amalgamation: given any M ⊨ T, b₀c₀ ≡_M b₁c₁ so that c₁ ↓ ⁱ_M c₀ and c_j ↓ ⁱ_M b_j for j = 0, 1, there is b so that bc₀ ≡_M bc₁ ≡_M b₀c₀.

 3. ↓ ^h satisfies weak independent amalgamation: given any M ⊨ T, b₀c₀ ≡_M b₁c₁ so that c₁ ↓ ^u_M c₀ and c_j ↓ ^u_M b_j for j = 0, 1, there is b so that bc₀ ≡_M bc₁ ≡_M b₀c₀.

A sufficient criterion for NSOP₁

Corollary

Assume there is an Aut(\mathbb{M})-invariant independence relation \bigcup on small subsets of the monster $\mathbb{M} \models T$ such that it satisfies the following properties, for an arbitrary $M \models T$.

- 1. Strong finite character: if a $\not \perp_M b$, then there is a formula $\varphi(x, b, m) \in tp(a/bM)$ such that for any $a' \models \varphi(x, b, m)$, $a' \not \perp_M b$.
- 2. Existence over models: $M \models T$ implies a $\bigcup_M M$ for any a.
- 3. Monotonicity: $aa' \perp_M bb' \implies a \perp_M b$.
- 4. Symmetry: $a
 ightharpoonup _M b \iff b
 ightharpoonup _M a$.
- 5. Independent amalgamation:

 $\begin{array}{l} c_0 \bigcup_M c_1, b_0 \bigcup_M c_0, b_1 \bigcup_M c_1, b_0 \equiv_M b_1 \text{ implies there exists} \\ b \text{ with } b \equiv_{c_0 M} b_0, b \equiv_{c_1 M} b_1. \end{array}$

Then T is $NSOP_1$.

We do not require local character, and strong finite character cannot be relaxed to finite character. Examples of NSOP_1 theories: vector spaces with a generic bilinear form, 1

- Let L denote the language with two sorts V and K containing the language of abelian groups for variables from V, the language of rings for variables from K, a function ∴ K × V → V, and a function []: V × V → K.
- ► T_∞ is the model companion of the *L*-theory asserting that *K* is a field, *V* is a *K*-vector space of infinite dimension with the action of *K* given by ·, and [] is a non-degenerate bilinear form on *V*.
- If $(K, V) \models T_{\infty}$ then K is an algebraically closed field.

The theory T_{∞} was introduced by Nicolas Granger, who observed that its completions are not simple, but nonetheless have a notion of independence called Γ -non-forking satisfying essentially all properties of forking in stable theories, except local character.

Examples of NSOP₁ theories: vector spaces with a generic bilinear form, 2

Let $M = (V, \tilde{K})$ be a sufficiently saturated model of T_{∞} . Let $A \subseteq B \subset M$ and $c \in M$ with c a singleton. Let $c \coprod_{A}^{\Gamma} B$ be the assertion that $K_{Ac} \bigcup_{K}^{ACF} K_B$ in the sense of non-forking independence for algebraically closed fields and one of the following holds: $c \in \tilde{K}$; $c \in \langle A \rangle$; $c \notin \langle B \rangle$ and [c, B] is Φ -independent over A, where "[c, B] is Φ -independent over A" means that whenever $\{b_0, \ldots, b_{n-1}\}$ is a linearly independent set in $B_V \cap (V \setminus \langle A \rangle)$ then the set $\{[c, b_0], \dots, [c, b_{n-1}]\}$ is algebraically independent over the field $K_B(K_{Ac})$. By induction, for $c = (c_0, \ldots, c_m)$ define $c \perp_{A}^{\Gamma} B$ by

$$c igstyle ^{\mathsf{\Gamma}}_{A} B \iff (c_0, \ldots, c_{m-1}) igstyle ^{\mathsf{\Gamma}}_{A} B ext{ and } c_m igstyle ^{\mathsf{\Gamma}}_{Ac_0 \ldots c_{m-1}} Bc_0 \ldots c_{m-1}.$$

Examples of NSOP $_1$ theories: vector spaces with a generic bilinear form, 3

- ► [Granger] Let M = (V, K) ⊨ T_∞. Then the relation on subsets of M given by Γ-non-forking is automorphism invariant, symmetric, and transitive. Moreover, it satisfies extension, finite character, and stationarity over a model.
- Moreover, it is not hard to check that Γ-non-forking satisfies strong finite character.
- Applying the criterion, we conclude that T_{∞} is NSOP₁.

Examples of NSOP₁ theories: ω -free PAC fields of char 0

- A field F is pseudo-algebraically closed (or PAC) if every absolutely irreducible variety defined over F has an F-rational point. A field F is called ω-free if it has a countable elementary substructure F₀ with G(F₀) ≅ 𝔅_ω, the free profinite group on countably many generators.
- [Chatzidakis] A PAC field has a simple theory if and only if it has finitely many degree n extensions for all n, so an ω-free PAC field is not simple.
- [Chatzidakis] Suppose F is a sufficiently saturated ω-free PAC field of characteristic 0. Given A = acl(A), B = acl(B), C = acl(C) with C ⊆ A, B ⊆ F, write A ⊥^I_C B to indicate that A ⊥^{ACF}_C B and A^{alg}B^{alg} ∩ acl(AB) = AB. Extend this to non-algebraically closed sets by stipulating a ⊥^I_D b holds if and only if acl(aD) ⊥^I_{acl(D)} acl(bD). Then ⊥^I satisfies existence over models, monotonicity, symmetry, and independent amalgamation over models. Strong finite character holds as well. It follows that F is NSOP₁.

References

- S. Shelah. "Classification theory and the number of nonisomorphic models", volume 92 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, second edition, 1990.
- Saharon Shelah, Alex Usvyatsov. "More on SOP1 and SOP2". Annals of Pure and Applied Logic, 155:16–31, 2008.
- Byunghan Kim, Hyeung-Joon Kim. "Notions around tree property 1". Ann. Pure Appl. Logic, 162(9):698–709, 2011.
- Kota Takeuchi, Akito Tsuboi. "On the existence of indiscernible trees". Ann. Pure Appl. Logic, 163(12):1891–1902, 2012.
- Artem Chernikov, Nicholas Ramsey, "On model-theoretic tree properties", arXiv:1505.00454.
- Nicholas Ramsey, "A counterexample to κ_{cdt} = κ_{sct} + κ_{inp}", preprint.