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Some practical and structural work in Oaxaca.



◮ The trichotomy principle in model theory: in a sufficiently
tame context (certain strongly minimal, o-minimal), every
structure is either “trivial”, or essentially a vector space
(“modular”), or interprets a field.

◮ Asymptotic sizes of the intersections of definable sets with
finite grids in certain model-theoretically tame contexts reflect
this trichotomy principle, and detect presence of algebraic
structures (groups, fields).

◮ Instances of this principle are well-known in combinatorics —
extremal configuration for various counting problems tend to
come from algebraic structures. Here we discuss “inverse”
theorems which show this is the only way.



Sum-product and expander polynomials

◮ [Erdős, Szemerédi’83] There exists some c ∈ R>0 such that:
for every finite A ⊆ R,

max {|A+ A| , |A · A|} = Ω
!
|A|1+c

"
.

◮ [Solymosi], [Konyagin, Shkredov] Holds with 4
3 + ε for some

sufficiently small ε > 0. (Conjecturally: with 2 − ε for any ε).
◮ [Elekes, Rónyai’00] Let f ∈ R [x , y ] be a polynomial of degree

d , then for all A,B ⊆n R,

|f (A× B)| = Ωd

!
n

4
3

"
,

unless f is either of the form g(h(x) + i(y)) or g(h(x) · i(y))
for some univariate polynomials g , h, i .



Elekes-Szabó theorem

◮ [Elekes-Szabó’12] provide a conceptual generalization: for any
algebraic surface R(x1, x2, x3) ⊆ R3 so that the projection
onto any two coordinates is finite-to-one, exactly one of the
following holds:

1. there exists γ > 0 s.t. for any finite Ai ⊆n R we have

|R ∩ (A1 × A2 × A3)| = O(n2−γ).

2. There exist open sets Ui ⊆ R and V ⊆ R containing 0, and
analytic bijections with analytic inverses πi : Ui → V such that

π1(x1) + π2(x2) + π3(x3) = 0 ⇔ R(x1, x2, x3)

for all xi ∈ Ui .



Generalizations of the Elekes-Szabó theorem
Let R ⊆ X1 × . . .× Xr be an algebraic surface (or just a definable
set) with finite-to-one projection onto any r − 1 coordinates and
dim(Xi ) = m.

1. [Elekes, Szabó’12] r = 3, m arbitrary over C (only count on
grids in general position, correspondence with a complex
algebraic group of dimension m);

2. [Raz, Sharir, de Zeeuw’18] r = 4, m = 1 over C;
3. [Raz, Shem-Tov’18] m = 1, R of the form f (x1, ..., xr−1) = xr

for any r over C.
4. [Hrushovski’13] Pseudofinite dimension, modularity
5. [Bays, Breuillard’18] r and m arbitrary over C, recognized that

the arising groups are abelian (no bounds on γ);
6. Further work: [Wang’15]; [Bukh, Tsimmerman’ 12], [Tao’12];

[Jing, Roy, Tran’19], [Bays, Dobrowolski, Zou].
7. [C., Peterzil, Starchenko] Any r and m, any o-minimal

structure or stable with a distal expansion and explicit bounds
on γ. A special case:



One-dimensional o-minimal case

Theorem (C., Peterzil, Starchenko)
Assume r ≥ 3, M is an o-minimal expansion of R and R ⊆ Rr is
definable, such that the projection of R to any r − 1 coordinates is
finite-to-one. Then exactly one of the following holds.

1. For any finite Ai ⊆n R, i ∈ [r ], we have

|R ∩ (A1 × . . .× Ar )| = OR

#
nr−1−γ

$
,

where γ = 1
3 if r ≥ 4, and γ = 1

6 if r = 3.
2. There exist open sets Ui ⊆ R, i ∈ [r ], an open set V ⊆ R

containing 0, and homeomorphisms πi : Ui → V such that

π1(x1) + · · ·+ πr (xr ) = 0 ⇔ R(x1, . . . , xr )

for all xi ∈ Ui , i ∈ [r ].



General o-minimal case

Theorem (C., Peterzil, Starchenko)
Let M be an o-minimal expansion of R. Assume r ≥ 3,
R ⊆ X1 × · · ·× Xr are definable with dim (Xi ) = m, and the
projection of R to any r − 1 coordinates is finite-to-one. Then
exactly one of the following holds.

1. For any finite Ai ⊆n Xi in general position, i ∈ [r ], we have

|R ∩ (A1 × . . .× Ar )| = OR

#
nr−1−γ

$
,

for γ = 1
8m−5 if r ≥ 4, and γ = 1

16m−10 if r = 3.
2. There exist definable relatively open sets Ui ⊆ Xi , i ∈ [r ], an

abelian Lie group (G ,+) of dimension m and an open
neighborhood V ⊆ G of 0, and definable homeomorphisms
πi : Ui → V , i ∈ [r ], such that for all xi ∈ Ui , i ∈ [r ]

π1(x1) + · · ·+ πr (xr ) = 0 ⇔ R(x1, . . . , xr ).



Remarks

1. If M is o-minimal but is not elementarily equivalent to an
expansion of R — only get correspondence with a
type-definable group.

2. One ingredient — “Szémeredi-Trotter”-style bounds in
o-minimal, and more generally distal structures.

3. Another – a higher arity generalization of the Abelian Group
Configuration theorem of Zilber and Hrushovski on recognizing
groups from a “generic chunk”, along with a purely
combinatorial version (providing a “coordinatization” result for
the associated locally modular pregeometry).



First ingredient: Recognizing groups, 1

1. Assume that (G ,+, 0) is an abelian group, and consider the
r -ary relation R ⊆

%
i∈[r ] G given by x1 + . . .+ xr = 0.

2. Then R is easily seen to satisfy the following two properties,
for any permutation of the variables of R :

∀x1, . . . , ∀xr−1∃!xrR(x1, . . . , xr ), (P1)

∀x1, x2∀y3, . . . yr∀y ′3, . . . , y ′r
!
R(x̄ , ȳ) ∧ R(x̄ , ȳ ′) → (P2)

#
∀x ′1, x ′2R(x̄ ′, ȳ) ↔ R(x̄ ′, ȳ ′)

$"
.

We show a converse, assuming r ≥ 4:



Recognizing groups, 2

Theorem (C., Peterzil, Starchenko)
Assume r ∈ N≥4, X1, . . . ,Xr and R ⊆

%
i∈[r ] Xi are sets, so that R

satisfies (P1) and (P2) for any permutation of the variables. Then
there exists an abelian group (G ,+, 0G ) and bijections πi : Xi → G
such that for every (a1, . . . , ar ) ∈

%
i∈[r ] Xi we have

R(a1, . . . , ar ) ⇐⇒ π1(a1) + . . .+ πr (ar ) = 0G .

◮ If X1 = . . . = Xr , property (P1) is equivalent to saying that
the relation R is an (r − 1)-dimensional permutation on the
set X1, or a Latin (r − 1)-hypercube, as studied by Linial and
Luria. Thus the condition (P2) characterizes, for r ≥ 3, those
Latin r -hypercubes that are given by the relation
“x1 + . . .+ xr−1 = xr ” in an abelian group.

◮ If R is definable and Xi are type-definable in a (saturated) M,
then G is type-definable and πi are relatively definable in M.



Recognizing groups in the stable case
◮ In the stable version of our theorem, we only get “generic

correspondence” with a type-definable group.
◮ An r -gon is a tuple a1, . . . , ar such that any r − 1 of its

elements are (forking-)independent, and any element in it is in
the algebraic closure of the other ones.

◮ An r -gon is abelian if, after any permutation of its elements,
we have a1a2 |⌣acl(a1a2)∩acl(a3...ar )

a3 . . . ar .
◮ If (G , ·) is a type-definable abelian group, g1, . . . , gr−1 are

independent generics in G and gr := g1 · . . . · gr−1, then
g1, . . . , gr is an abelian r -gon (associated to G ).

◮ Conversely,

Theorem (C., Peterzil, Starchenko; independently Hrushovski)
Let r ≥ 4 and a1, . . . , ar be an abelian r -gon. Then there is a
type-definable (in Meq) connected abelian group (G , ·) and an
abelian r -gon g1, . . . , gs associated to G , such that after a base
change each gi is interalgebraic with ai .



Second ingredient: distality

Definition
A structure M is distal if and only if for every definable family
{ϕ (x , b) : b ∈ My} of subsets of Mx there is a definable family&
θ (x , c) : c ∈ Mk

y

'
such that for every a ∈ Mx and every finite set

B ⊂ My there is some c ∈ Bk such that:
◮ a |= θ (x , c);
◮ θ(x , c) ⊢ tpϕ(a/B), that is for every a′ |= θ (x , c) and b ∈ B

we have a′ |= φ (x , b) ⇔ a |= φ (x , b).



Examples of distal structures

◮ M distal =⇒ M is NIP, unstable.
◮ Examples of distal structures: (weakly) o-minimal structures,

various valued fields of char 0 (e.g. Qp, RCVF, the valued
differential field of transseries).

◮ Stable structures with distal expansions: ACF0, DCF0,m, CCM,
abelian groups, Hrushovski constructions*.

◮ Stable structures without distal expansions: ACFp [C.,
Starchenko’15], a disjoint union of finite expander graphs
(e.g. Ramanujan graphs) of growing degree and expansion
[Jiang, Nesetril, Ossona de Mendez, Siebertz’20], any Banach
space [Hanson] (distality in continuous logic is developed by
[Anderson]).

◮ Problem. Do non-abelian free groups have distal expansions?



Number of edges in a Kk ,...,k-free hypergraph

◮ The following fact is due to [Kővári, Sós, Turán’54] for r = 2
and [Erdős’64] for general r .

Fact (The Basic Bound)
If H is a Kk,...,k -free r -hypergraph then |E | = Or ,k

!
nr−

1
kr−1

"
.

◮ So the exponent is slightly better than the maximal possible r
(we have nr edges in Kn,...,n). A probabilistic construction in
[Erdős’64] shows that it cannot be substantially improved.



Bounds for graphs definable in distal structures

◮ Generalizing [Fox, Pach, Sheffer, Suk, Zahl’15] in the
semialgebraic case, we have:

Fact (C., Galvin, Starchenko’16)
Let M be a distal structure and R ⊆ Mx1 ×Mx2 a definable
relation. Then there exists some ε = ε(R , k) > 0 such that for any
A1 ⊆n Mx1 ,A2 ⊆n Mx2 , if E := R ∩ (A1 × A2) is Kk,k -free then
|E | = OR,k(n

t−ε), where t is the exponent given by the Basic
Bound for arbitrary graphs.

◮ In fact, ε is given in terms of k and the size of the smallest
distal cell decomposition for R .

◮ E.g. if R ⊆ M2 ×M2 for an o-minimal M, then t − ε = 4
3

([C., Galvin, Starchenko’16]; independently, [Basu, Raz’16]).



Recognizing fields

◮ For the semialgebraic K2,2-free point-line incidence relation
R = {(x1, x2; y1, y2) ∈ R4 : x2 = y1x1 + y2} ⊆ R2 × R2 we
have the (optimal) lower bound |R ∩ (V1 × V2)| = Ω(n

4
3 ).

◮ To define it we use both addition and multiplication, i.e. the
field structure.

◮ This is not a coincidence — any non-trivial lower bound on the
Zarankiewicz exponent of R allows to recover a field from it:

Theorem (Basit, C., Starchenko, Tao, Tran)
Assume that M = (M, <, . . .) is o-minimal and
R ⊆ Mx1 × . . .×Mxr is a definable relation which is Kk,...,k -free,
but |R ∩

%
i∈[r ] Vi | ∕= O(nr−1) for Vi ⊆n Mxi . Then a real closed

field is definable in the first-order structure (M, <,R).



Ingredients

◮ An (almost) optimal bound on the number of edges in
Kk,...,k -free hypergraphs definable in locally modular o-minimal
expansions of groups, so e.g. for semilinear (= definable in
(R, <,+)) hypergraphs.

◮ The trichotomy theorem for o-minimal structures [Peterzil,
Starchenko’98].



Local modularity

◮ We write a |⌣C
B to denote that dim (a/BC ) = dim (a/C ) in

the matroid associated to the algebraic closure in an
o-minimal structure.

◮ An o-minimal structure is (weakly) locally modular if for any
small subsets A,B ⊆ M |= T there exists some small set
C |⌣∅ AB such that A |⌣acl(AC)∩acl(BC)

B .

◮ Intuition: the algebraic closure operator behaves like the linear
span in a vector space, as opposed to the algebraic closure in
an algebraically closed field.

◮ In particular, an o-minimal structure is locally modular if and
only if any normal interpretable family of plane curves in T has
dimension ≤ 1.



Bound for semilinear relations

Theorem (Basit, C., Starchenko, Tao, Tran)
Let M be an o-minimal locally modular expansion of a group and
Q a definable relation of arity r ≥ 2. Then for any ε > 0 and any
Vi with |Vi | = n such that E := Q ∩ V1 × . . .× Vr is Kk,...,k -free,
we have

|E | = OQ,k,ε

#
nr−1+ε

$
.

Moreover, if Q itself is Kk,...,k -free, then for any Vi with |Vi | = n
we have

|E | = OQ(n
r−1).



Recovering a field in the o-minimal case

Fact (Peterzil, Starchenko’98)
Let M be an o-minimal (saturated) structure. TFAE:
◮ M is not locally modular;
◮ there exists a real closed field definable in M.

◮ [Marker, Peterzil, Pillay’92] Let X ⊆ Rn be a semialgebraic
but not semilinear set. Then · ↾[0,1]2 is definable in
(R, <,+,X ). In particular, it is not locally modular.

◮ Combining this with the “optimal” bound in the locally
modular case, we get the result.

◮ Problem: is it possible to establish a more direct
correspondence between the relation with many edges and the
point-line incidence relation in a field?



An application to incidences with polytopes
◮ Applying with r = 2 we get the following:

Corollary
For every s, k ∈ N there exists some α = α(s, k) ∈ R satisfying the
following.
Let d ∈ N and H1, . . . ,Hs ⊆ Rd be finitely many (closed or open)
half-spaces in Rd . Let F be the (infinite) family of all polytopes in
Rd cut out by arbitrary translates of H1, . . . ,Hs .
For any set V1 of n1 points in Rd and any set V2 of n2 polytopes in
F , if the incidence graph on V1 × V2 is Kk,k -free, then it contains
at most αn (log n)s incidences.

◮ In particular (this corollary was obtained independently by
[Tomon, Zakharov]):

Corollary
For any set V1 of n1 points and any set V2 of n2 (solid) boxes with
axis parallel sides in Rd , if the incidence graph on V1 × V2 is
Kk,k -free, then it contains at most Od ,k

#
n(log n)2d

$
incidences.



Dyadic rectangles and a lower bound

◮ Is the logarithmic factor necessary?
◮ Using a different argument, restricting to dyadic boxes on the

plane (d = 2), we gave a stronger upper bound O
!
n log n
log log n

"
,

and give a construction showing a matching lower bound (up
to a constant).

◮ [Tomon, Zakharov] use our construction to disprove a
conjecture of Alon, Basavaraju, Chandran, Mathew, and
Rajendraprasad regarding the maximal possible number of
edges in a graph of bounded separation dimension.

◮ We asked what happens for higher d?
◮ Very recently, [Har-Peled, Chan] improve our upper bound to

O

(
n
!

log n
log log n

"d−1
)

, and point out that a result of

[Chazelle’90] on “data structures” shows its optimality for all d !



Congrats Kobi and Sergei!


