Idempotent Keisler measures

Artem Chernikov (joint with Kyle Gannon)

UCLA

Online Logic Seminar (via Zoom) Oct 8, 2020

Spaces of types

- Let T be a complete first-order theory in a language L, M ⊨ T a monster model (i.e. κ-saturated and κ-homogeneous for a sufficiently large cardinal κ), M ≤ M a small elementary submodel.
- For A ⊆ M and x an arbitrary tuple of variables, S_x(A) denotes the set of complete types over A.
- Let L_x(A) denote the set of all formulas φ(x) with parameters in A, up to logical equivalence — which we identify with the Boolean algebra of A-definable subsets of M_x; L_x := L_x(Ø).
- Then the types in $S_x(A)$ are the ultrafilter on $\mathcal{L}_x(A)$.
- By Stone duality, S_x(A) is a totally disconnected compact Hausdorff topological space with a basis of clopen sets of the form

$$\langle \varphi \rangle := \{ p \in S_x(A) : \varphi(x) \in p \}$$

for $\varphi(x) \in \mathcal{L}_x(A)$.

• We refer to types in $S_{\times}(\mathbb{M})$ as global types.

Keisler measures

- A Keisler measure µ in variables x over A ⊆ M is a finitely-additive probability measure on the Boolean algebra L_x(A) of A-definable subsets of M_x.
- $\mathfrak{M}_{x}(A)$ denotes the set of all Keisler measures in x over A.
- ► Then 𝔐_x(A) is a compact Hausdorff space with the topology induced from [0, 1]^{L_x(A)} (equipped with the product topology).
- A basis is given by the open sets

$$\bigcap_{i < n} \{ \mu \in \mathfrak{M}_{\mathsf{x}}(\mathsf{A}) : r_i < \mu(\varphi_i(\mathsf{x})) < s_i \}$$

with $n \in \mathbb{N}$ and $\varphi_i \in \mathcal{L}_x(A), r_i, s_i \in [0, 1]$ for i < n.

- Identifying p with the Dirac measure δ_p, S_x(A) is a closed subset of M_x(A) (and the convex hull of S_x(A) is dense).
- Every μ ∈ M_x(A), viewed as a measure on the clopen subsets of S_x(A), extends uniquely to a regular (countably additive) probability measure on Borel subsets of S_x(A); and the topology above corresponds to the weak*-topology: μ_i → μ if ∫ fdμ_i → ∫ fdμ for every continuous f : S_x(A) → ℝ.

Some examples of Keisler measures

- 1. In arbitrary *T*, given $p_i \in S_x(A)$ and $r_i \in \mathbb{R}$ for $i \in \mathbb{N}$ with
 - $\sum_{i\in\mathbb{N}}r_i=1,\ \mu:=\sum_{i\in\mathbb{N}}r_i\delta_{p_i}\in\mathfrak{M}_x(A).$
- 2. Let $T = \mathsf{Th}(\mathbb{N}, =)$, |x| = 1. Then

 $S_x(\mathbb{M}) = \{ \operatorname{tp}(a/\mathbb{M}) : a \in \mathbb{M} \} \cup \{ p_\infty \},$

where p_{∞} is the unique non-realized type axiomatized by $\{x \neq a : a \in \mathbb{M}\}$. By QE, every formula is a Boolean combination of $\{x = a : a \in \mathbb{M}\}$, from which it follows that every $\mu \in \mathfrak{M}_{x}(\mathbb{M})$ is as in (1).

- 3. More generally, if T is ω -stable (e.g. strongly minimal, say ACF_p for p prime or 0) and x is finite, then every $\mu \in \mathfrak{M}_{x}(\mathbb{M})$ is a sum of types as in (1).
- Let T = Th(ℝ, <), λ be the Lebesgue measure on ℝ and |x| = 1. For φ(x) ∈ L_x(𝔅), define μ(φ) := λ (φ(𝔅) ∩ [0, 1]_ℝ) (this set is Borel by QE). Then μ(X) is a Keisler measure, but not a sum of types as in (1).

Brief history of the theory of Keisler measures

- Measures and forking [Keisler'87]
- Automorphism-invariant measures in ω-categorical structures [Albert'92, Ensley'96]
- Applications to neural networks [Karpinski, Macyntire'00]
- Pillay's conjecture and compact domination [Hrushovski, Peterzil, Pillay'08], [Hrushovski, Pillay'11], [Hrushovski, Pillay, Simon'13]
- Randomizations [Ben Yaacov, Keisler'09]
- Approximate Subgroups [Hrushovski'12]
- Definably amenable NIP groups [C., Simon'15]
- Tame (equivariant) regularity lemmas [C., Conant, Malliaris, Pillay, Shelah, Starchenko, Terry, Towsner, ... ('11-...)]
- Mostly inside the context of NIP theories (thanks to the VC-theory measures are strongly approximated by types), very few results outside of NIP.
- See my review "Model theory, Keisler measures and groups", The Bulletin of Symbolic Logic, 24(3), 336-339 (2018)

Independent product of definable types $\otimes,\,1$

- Given two global types p(x), q(y), there are usually many different global types r(x, y) satisfying r(x, y) ⊇ p(x) ∪ q(y) (as L_x(M) × L_y(M) ⊊ L_{xy}(M)).
- Under additional assumptions on p, there is often a canonical "generic" choice of r not introducing any dependencies between x and y (e.g. not containing x = y).
- Given A ⊆ B ⊆ M, a type p ∈ S_x(B) is definable over A if for every formula φ(x, y) ∈ L_{xy} there exists a formula d_pφ(y) ∈ L_y(A) such that

$$\forall b \in B^{y}, \varphi(x, b) \in p \iff \models d_{p}\varphi(b).$$

- A global type is *definable* if it is definable over some small model.
- A theory is stable if and only if all types are definable [Shelah].

Independent product of definable types \otimes , 2

Assume that $p \in S_{x}(\mathbb{M}), q \in S_{v}(\mathbb{M})$ and p is definable. Then $p \otimes q \in S_{xy}(\mathbb{M})$ is defined via $\varphi(x, y) \in p \otimes q \iff d_p \varphi(y) \in q$ for every $\varphi(x, y) \in \mathcal{L}_{xy}$. Equivalently, $p \otimes q = tp(a, b/\mathbb{M})$ for some/any $b \models q$ and $a \models p'|_{\mathbb{M}b}$ (in some $\mathbb{M}' \succ \mathbb{M}$; where $p' \in S_x(\mathbb{M}')$ is the extension of *p* given by the same definition schema). E.g. if p is the non-realized type in $Th(\mathbb{N}, =)$, then $p(x) \otimes p(y) = p(y) \otimes p(x)$ is axiomatized by $\{x \neq a, y \neq a : a \in \mathbb{M}\} \cup \{x \neq y\}.$ Assume $p(x) = \{x > a : a \in \mathbb{M}\}$ in $\mathsf{Th}(\mathbb{Q}, <)$. Then

 $p(x) \otimes q(y) = \{x > a, y > a : a \in \mathbb{M}\} \cup \{x > y\} \neq p(y) \otimes q(x).$

► Hence ⊗ is associative, but not commutative (unless T is stable).

Convolution product * of definable types

- ► Assume now that T expands a group, i.e. there exists a definable functions · such that for some/any M ⊨ T, (M_x, ·) is a group.
- ▶ In this case, given definable $p, q \in S_x(\mathbb{M})$, we have a definable type $p * q \in S_x(\mathbb{M})$ via

$$\varphi(x) \in p * q \iff \varphi(x \cdot y) \in p(x) \otimes q(y)$$

for every $\varphi(x) \in \mathcal{L}_x(\mathbb{M})$.

- ► Equivalently, p * q = tp(a · b/M) for some/any (a, b) ⊨ p ⊗ q in a larger monster model.
- Let S^{def}_x(M) be the set of all definable global types. Then (S^{def}_x(M), ∗) is a left-continuous semigroup.
- "Left continuous" means: the map * q : S^{def}_x(M) → S^{def}_x(M) is continuous for every fixed q ∈ S^{def}_x(M).

Idempotent types

- A type $p \in S_x^{def}(\mathbb{M})$ is *idempotent* if p * p = p.
- E.g. let *M* be (Z, +, P_{n,α}), with (P_{n,α} : α < 2^{ℵ₀}) naming all subsets of Zⁿ, for all n.

Then all types over \mathcal{M} are trivially definable, and idempotent types are precisely the idempotent ultrafilters in the sense of Galvin/Glazer's proof of Hindman's theorem (for every finite partition of \mathbb{Z} , some part contains all finite sums of elements of an infinite set), see e.g. [Andrews, Goldbring'18].

- In stable theories, idempotent types are known to arise from type-definable subgroups (group chunk theorem and its variants [Hrushovski, Newelski]).
- ► This is parallel to the following classical line of research:

Motivation: analogy with the classical (locally-)compact case

- ▶ Let *G* be a locally compact topological group.
- Then the space of regular Borel probability measures on G is equipped with the convolution product:

$$\mu * \nu(A) = \int_{y \in G} \int_{x \in G} \chi_A(x \cdot y) d\mu(x) d\nu(y)$$

for a Borel set $A \subseteq G$.

- If G is compact, then μ is idempotent if and only if the support of μ is a compact subgroup of G and μ restricted to it is the (bi-invariant) Haar measure [Wendel'54].
- Same characterization extends to locally compact abelian groups [Rudin'59, Cohen'60].
- Compact (semi-)topological semigroup the picture becomes more complicated [Glicksber'59, Pym'69, ...].

Independent product \otimes of definable Keisler measures

- We would like to find a parallel for Keisler measures, generalizing the situation for types. First, need to make sense of the convolution product.
- ▶ A Keisler measure $\mu \in \mathfrak{M}_{\mathsf{x}}(\mathbb{M})$ is *definable* (over $\mathcal{M} \preceq \mathbb{M}$) if:
 - for any φ(x, y) ∈ L_{xy} and b ∈ M_y, μ(φ(x, b)) depends only on tp(b/M) (in which case, given q ∈ S_y(M), we write μ(φ(x, q)) to denote μ(φ(x, b)) for some/any b ⊨ q);
 - 2. the map $q \in S_y(\mathcal{M}) \mapsto \mu(\varphi(x,q)) \in [0,1]$ is continuous.
- A type p ∈ S_x(M) is definable as a type iff it is definable as a measure.
- Given $\mu \in \mathfrak{M}_{x}(\mathbb{M}), \nu \in \mathfrak{M}_{y}(\mathbb{M})$ with $\mu \mathcal{M}$ -definable, we can define $\mu \otimes \nu \in \mathfrak{M}_{xy}(\mathbb{M})$ via

$$\mu\otimes
u(arphi(x,y)):=\int_{\mathcal{S}_{\mathcal{Y}}(\mathcal{M})}\mu(arphi(x,q))d
u|_{\mathcal{M}}(q).$$

► The integral makes sense by (2), viewing *v*|_M as a regular Borel measure on S_y(M).

Convolution product * of definable Keisler measures

- \blacktriangleright \otimes on definable measures extends \otimes on definable types defined earlier.
- ▶ If now T expands a group, given definable $\mu, \nu \in \mathfrak{M}_{x}(\mathbb{M})$, we get a definable $\mu * \nu \in \mathfrak{M}_{x}(\mathbb{M})$ via

$$\mu * \nu(\varphi(x)) := \mu_x \otimes \nu_y(\varphi(x \cdot y)).$$

- Again, restricting to definable types, we recover * defined earlier.
- The set of all definable Keisler measures with * is a semigroup. A measure μ is idempotent if μ * μ = μ.

Theorem (C., Gannon'20)

- If T is NIP, then * is again left-continuous.
 - ▶ In general *T* unclear.

Idempotent Keisler measures vs the classical locally compact case

 First of all, in general a definable group has no non-discrete topology.

• Given
$$\mu \in \mathfrak{M}_{\mathsf{x}}(\mathsf{A})$$
, its support is

$$\mathcal{S}(\mu) := \left\{ p \in \mathcal{S}_x(\mathcal{A}) : \varphi(x) \in p \implies \mu(\varphi(x)) > 0
ight\}.$$

It is a closed non-empty subset of $S_x(A)$.

As we mentioned, in a locally compact topological group, support of an idempotent measure is a closed subgroup — no longer true for idempotent Keisler measures (with respect to * on types), even if there is some nice topology present: Supports of idempotent Keisler measures: an example, 1

- Let *M* = (*S*¹, ·, *C*(*x*, *y*, *z*)) be the compact unit circle group (of rotations) over ℝ, with *C* the cyclic clockwise ordering.
- Let $\mu \in \mathfrak{M}_{x}(\mathbb{M})$ be given by $\mu(\varphi(x)) = h(\varphi(\mathcal{M}))$ for $\varphi(x) \in \mathcal{L}_{x}(\mathbb{M})$, where *h* is the Haar measure on S^{1} .
- Then µ is definable and right translation invariant (by elements of M), hence idempotent.
- Let st : S_x(M) → M be the standard part map. Assume that p ∈ S(µ) and st(p) = a. Then φ_ε(x) := C(a − ε, x, a + ε) ∉ p for every infinitesimal ε ∈ M (x ≠ a ∈ p as h(x = a) = 0, and if φ_ε(x) ∈ p, then µ(φ_ε(x) ∧ x ≠ a) > 0, but φ_ε(M) = {a} a contradiction).
- As the types in S_x(M) are determined by the cuts in the circular order, it follows that for every a ∈ M there are exactly two types a₊(x), a₋(x) ∈ S(µ) determined by whether C(a + ε, x, b) holds for every infinitesimal ε and b ∈ M, or C(b, x, a ε) holds for every infinitesimal ε and b ∈ M, respectively.

Supports of idempotent Keisler measures: an example, 2

It follows that (S(µ), *) ≅ S¹ × {+, −} with multiplication defined by:

$$\mathsf{a}_\delta * \mathsf{b}_\gamma = (\mathsf{a} \cdot \mathsf{b})_\delta$$

for all $a, b \in S^1$ and $\delta, \gamma \in \{+, -\}$.

- Hence $(S(\mu), *)$ is not a group (as it has two idempotents).
- This group is NIP (definable in an o-minimal theory), unstable.

Supports of idempotent Keisler measures: a theorem

Adapting Glicksberg, we show:

Theorem (C., Gannon'20)

- 1. (*T* arbitrary) Let $\mu \in \mathfrak{M}_{x}(\mathbb{M})$ be an idempotent definable and invariantly supported Keisler measure. Then $(S(\mu), *)$ is a compact, left continuous semigroup with no closed two-sided ideals.
- 2. (T NIP) The same conclusion holds just assuming that μ is definable.

Where:

I ⊆ S(µ) is a left (right) ideal if: q ∈ I ⇒ p * q ∈ I (resp., q * p ∈ I) for every p ∈ S(µ). Two-sided = both left and right.
 µ is invariantly supported if there exists a small model M ≤ M

s.t. every $p \in S(\mu)$ is Aut (\mathbb{M}/\mathcal{M}) -invariant.

Type-definable subgroups

- Instead of closed subgroups in the topological setting, we consider *type-definable* subgroups.
- Assume that M ⊨ T expands a group, and H is a type-definable subgroup of (M, ·) (i.e. the underlying set of H can be defined by a small partial type H(x) with parameters in M).
- Let H be type-definable and suppose that µ ∈ 𝔐_x(𝔅) is concentrated on H (i.e. p ∈ S(µ) ⇒ p(x) ⊢ H(x)) and is right H-invariant (i.e. for any φ(x) ∈ L_x(𝔅), a ∈ H, µ(φ(x)) = µ(φ(x ⋅ a))). Then µ is idempotent.
- By analogy with the classical case, we expect all idempotent Keisler measures in model-theoretically tame groups to be of this form.
- (Translation-invariant Keisler measures in NIP groups are classified: the ergodic ones are described as certain liftings of the Haar measure on the canonical compact quotient G/G⁰⁰ [C., Simon'18].)

Idempotent groups in stable theories

Can confirm at least for stable groups:

Theorem (C., Gannon'20)

Let T be stable theory expanding a group and $\mu \in \mathfrak{M}_{x}(\mathbb{M})$ a Keisler measure. TFAE:

- 1. μ is idempotent;
- 2. μ is the unique right/left-invariant measure on the type-definable subgroup $St(\mu) = \{g \in \mathbb{M} : g \cdot \mu = \mu\}$.
- The following groups are stable: abelian, free, algebraic over C (e.g. GL_n(C), SL_n(C), abelian varieties).
- Ingredients: structure of the supports of definable idempotent measures in NIP; definability of all measures in stable theories (and type-definability of their stabilizers); a variant of Hrushovski's group chunk theorem for partial types due to Newelski.