Rom Every
$$\mu \in M_X(A)$$
 can be viewed as a measure on the
Upper subjects of $S(A)$, then extends uniquely to a regular
(countably additive) probability massure on Bore & subjects $g = S(A)$.
Then the topology above or receptoreds to the weak * - topology.
Then the topology above or receptoreds to the weak * - topology.
Coundution products
Given $p \in S_X(M)$, $q \in S_g(M)$, $f \in S^{inv}(M, A)$
the set of all global A inv.
Coundution products
Given $p \in S_X(M)$, $q \in S_g(M)$, $f \in S^{inv}(M, A)$
the set of all global A inv.
 $M_{en} = p \otimes q \in S_{XY}(M)$; for any small $M \leq N \leq 1M$,
we let $p \circ q \mid_N = tp(a, B/N)$ for some/any $B \models q \mid_N$, $a \models p \mid_N g$.
Assume that T expands a group, then given $P, q \in S_X(M, A)$,
we have an invariant type $p \neq q \in S_X(M, A)$, v in
 $\psi(x) \in p \neq q \leq -2$ $\psi(x, y) \in P_X \otimes q \neq -2$ for every $\psi(x) \in h_{e}(M)$
Equivalently, $p \neq q = tp(a, b/M)$, for some farm $(a, B) \neq P \otimes q$.
(in some larger model),

Given
$$A \in M$$
, $S_{x}^{inv}(M, A)$ - the (dosed) set of global d-inv. Grag
 $S_{x}^{fs}(M, A)$ - (doed) cet of global types
finitely satisfiable in A
 $S_{x}^{t}(M, A)$ for $t \in \{inv, ts\}$.
 $\left(S_{x}^{t}(M, M), *\right)$ - compart left-continuous semigroup -
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $\rightarrow *q: S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $a \in S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$, $a \in S_{x}^{t}(M, M)$
 $i.e.$ for any $q \in S_{x}^{t}(M, M)$ for M for

equipped with the convolution product

$$A \neq V(A) = \int_{S} S \neq_A(x, y) d\mu(x) dv(y)$$
 for $A \leq G$
 $B = \int_{S \in G} S \neq_A(x, y) d\mu(x) dv(y)$ for $A \leq G$
 $B = \int_{S \in G} S \neq_B(x, y) d\mu(x) dv(y)$ for $A \leq G$
 $B = \int_{S \in G} S \neq_B = \int_{S \in G} S \neq_B = \int_{S \in G} S = \int_{S \in G} S$

 \cap

Given
$$M \in (M_{x}(M))$$
, $v \in (M_{y}(M))$ with M Borel def. (M_{y})
 $M \otimes v \in (M_{xy}(M))$ via
 $M \otimes v (u(x,y)) := \int \mu(u(x,q)) dv | (q) | M_{y}(q)$
 $Sy(M)$

Restrict to NIP groups , let is an expansion of a group
and NIP.
If M, J are invariant, M*D (Q(x)):= Mx Dy (Q(x,y)).
Let
$$M_{x}^{inv}(M,M) - treat of global M-inv. measures$$

 $M_{x}^{fs}(M,M) - treat of global M-inv. measures$
 $M_{x}^{fs}(M,M) - treat of global M-inv. measures$
 $M_{x}^{fs}(M,M) = treat of global M-inv. measures$
 $M_{x}^{fs}(M,$

Given
$$\mu \in M_{\infty}(A)$$
, $S(\mu) := \{p \in S_{\infty}(A): \Psi(\mu) \in P => \mu(\Psi(\mu))^{\gamma}o\}$
the import of μ .
Not necessarily a group for an idempotent μ
(e.g. $M = (S', \cdot, C(x,y,z)) - the circle group of volation
(e.g. $M = (S', \cdot, C(x,y,z)) - the circle group of volation
 $M - the vestriction of the Haar measure to definate
 $S(\mu)$ is not a group $(S(\mu), \pi) \cong S' \times \{1, -\}$
that $[C \cdot, Cannon]$ Adapting blick sperg, $[L - \mu \in M_{\infty}(M)]$
is befinable, then $(S(\mu), \pi)$ is a compart, $1 - t$ and semigroup
with no closed two-sided ideals.
Fact $[C \cdot, Cannon]$ If T is stable, μ is any measure
that $[C \cdot, Gamman]$ If T is stable, μ is any measure
that $[C \cdot, Gamman]$ If T is stable on the type-dy.
 μ is the unique left-invariand measure on the type-dy.
 μ is the unique left-invariand measure on the type-dy.$$$

Thu [C., bannon] Assume (G is NIP, let I be a minimal left i deal of M^t(M,M), Then: 1) I is a closed convex subset of M^t(M,M). 2) For any $\mu \in I$, $\pi_*(\mu) = h$, where h is the normalized Haar measure on $G/G^{\circ\circ}$ and $\pi: G \Rightarrow G/G^{\circ\circ}$ is the quotient map. 3) For any idempotent $u \in I$, u * I is trivial _____ (In contract to the case of types, where by the Ellis group conjecture of Newelski (Pillay 1 if G is def. amenable, then u*F = G/G° - so often tron-trivial) 4) Assume G is definably amenable. In M* ((M, M), minimal left ideale, we go the form I= 323, where DE Mts (M, M) is a G(M)-lept-invariant.