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History: arithmetic and geometric progressions

Given two sets A,B in a field K , we define
◮ their sumset A+ B = {a+ b : a ∈ A, b ∈ B},
◮ their productset A · B = {a · b : a ∈ A, b ∈ B}.

Example
Let An := {1, 2, . . . , n}.
◮ |An + An| = 2 |An|− 1 = O (|An|).
◮ Let π (n) be the number of primes in An. As the product of

any two primes is unique up to permutation, by the Prime
Number Theorem we have
|An · An| ≥ 1

2π (n)2 = Ω
!
|An|2−o(1)

"
.



History: sum-product phenomenon

◮ This generalizes to arbitrary arithmetic progressions: their
sumsets are as small as possible, and productsets are as large
as possible.

◮ For a geometric progression, the opposite holds: productset is
as small as possible, sumset is as large as possible.

◮ These are the two extreme cases of the following result.
◮ [Erdős, Szemerédi] There exists some c ∈ R>0 such that: for

every finite A ⊆ R,

max {|A+ A| , |A · A|} = Ω
!
|A|1+c

"
.

◮ They conjecture: holds with 1 + c = 2 − ε for any ε > 0.
◮ [Solymosi], [Konyagin, Shkredov] Holds with 1 + c = 4

3 + ε for
some sufficiently small ε > 0.



Elekes: generalization to polynomials

◮ Since polynomials combine addition and multiplication, a
“typical” polynomial f ∈ R [x , y ] should satisfy

|f (A× B)| = Ω
#
n1+c

$

for some c = c (f ) and all finite A,B ⊆ R with |A| = |B | = n.
◮ Doesn’t hold when only one of the operations occurs between

the two variables:
◮ f is additive, i.e. f (x , y) = g (h (x) + i (y)) for some

univariate polynomials g , h, i
(as then |f (A× B)| = O (n) for A,B such that h (A) , i (B)
are arithmetic progressions).

◮ f is multiplicative, i.e. f (x , y) = g (h (x) · i (y)) for some
univariate polynomials g , h, i
(as then |f (A× B)| = O (n) for A,B such that h (A) , i (B)
are geometric progressions).



Elekes-Rónyai

◮ But these are the only exceptions!
◮ [Elekes, Rónyai] Let f ∈ R [x , y ] be a polynomial of degree d

that is not additive or multiplicative. Then for all A,B ⊆ R
with |A| = |B | = n one has

|f (A× B)| = Ωd

!
n

4
3

"
.

◮ The improved bound and the independence of the exponent
from the degree of f is due to [Raz, Sharir, Solymosi].

◮ Analogous results hold with C instead of R (and slightly worse
bounds).

◮ The exceptional role played by the additive and multiplicative
forms suggests that (algebraic) groups play a special role in
this type of theorems — made precise by [Elekes, Szabó].



Definable hypergraphs

◮ We fix a structure M, definable sets X1, . . . ,Xs , and a
definable relation Q ⊆ X̄ = X1 × . . .× Xs .

◮ E.g. M = (C,+,×) and Q,Xi ⊆ Cdi are constructible sets; or
M = (R,+,×) and Q,Xi ⊆ Rdi are semi-algebraic sets.

◮ Write Ai ⊆n Xi if Ai ⊆ Xi with |Ai | ≤ n.
◮ By a grid on X̄ we mean a set Ā ⊆ X̄ with Ā = A1 × . . .× As

and Ai ⊆ Xi .
◮ By an n-grid on X̄ we mean a grid Ā = A1 × . . .× As with

Ai ⊆n Xi .



Fiber-algebraic relations
◮ A relation Q ⊆ X̄ is fiber-algebraic if there is some d ∈ N such

that for any 1 ≤ i ≤ s we have

M |= ∀x1 . . . xi−1xi+1 . . . xs∃≤dxi Q (x1, . . . , xs) .

◮ E.g. if Q ⊆ X1 × X2 × X3 is fiber-algebraic, then for any
Ai ⊆n Xi we have |Q ∩ A1 × A2 × A3| ≤ dn2.

◮ Conversely, let a fiber-algebraic Q ⊆ C3 be given by
x1 + x2 − x3 = 0, and let A1 = A2 = A3 = {0, . . . , n − 1}.
Then

|Q ∩ A1 × A2 × A3| =
n (n + 1)

2
= Ω

#
n2$ .

◮ This indicates that the upper and lower bounds match for the
graph of addition in an abelian group (up to a constant) —
and the Elekes-Szabó principle suggests that in many
situations this is the only possibility.



Grids in general position

◮ We assume M is equipped with an integer-valued dimension
dim on definable sets. E.g. Zariski dimension on algebraic
subsets of Cd , or topological dimension on semialgebraic
subsets of Rd .

◮ Let X be M-definable and F a (uniformly) M-definable
family of subset of X . For ℓ ∈ N, a set A ⊆ X is in
(F , ℓ)-general position if |A ∩ F | ≤ ℓ for every F ∈ F with
dim(F ) < dim(X ).

◮ Let Xi , i = 1, . . . , s, be M-definable sets and
F̄ = (F1, . . . ,Fs), where Fi is a definable family of subsets of
Xi . A grid Ā on X̄ is in (F̄ , ℓ)-general position if each Ai is in
(Fi , ℓ)-general position.



General position: an example

◮ E.g. if X is strongly minimal and F is any definable family of
subsets of X , then for any large enough ℓ = ℓ(F) ∈ N, every
A ⊆ X is in (F , ℓ)-general position.

◮ On the other hand, let X = C2 and let Fd be the family of all
algebraic curves of degree d . If ℓ < d , then any set A ⊆ X is
not in (Fd , ℓ)-general position.



Generic correspondence with group multiplication

◮ Let Q ⊆ X̄ be a definable relation and (G , ·) a type-definable
group in Meq which is connected (i.e. G = G 0).

◮ We say that Q is in a generic correspondence with
multiplication in G if there exist elements g1, . . . , gs ∈ G (M),
where M is a saturated elementary extension of M, such that:

1. g1 · . . . · gs = 1G ;
2. g1, . . . , gs−1 are independent generics in G over M, i.e. each

gi doesn’t belong to any definable set of dimension smaller
than G definable over M ∪ {g1, . . . , gi−1, gi+1, . . . , gs−1};

3. For each i = 1, . . . , s there is a generic element ai ∈ Xi

interalgebraic with gi over M, such that |= Q(a1, . . . , as).

◮ If Xi are irreducible (i.e. can’t be split into two definable sets
of the same dimension), then (3) holds for all g1, . . . , gs ∈ G
satisfying (1) and (2), providing a generic finite-to-finite
correspondence between Q and the graph of (s − 1)-fold
multiplication in G .



The Elekes-Szabó principle

Let X1, . . . ,Xs be irreducible definable sets in M with
dim(Xi ) = k . We say that X̄ satisfies the Elekes-Szabó principle if
for any irreducible fiber-algebraic definable relation Q ⊆ X̄ , one of
the following holds.

1. Q admits power saving: there exist some ε ∈ R>0 and some
definable families Fi on Xi such that: for any ℓ ∈ N and any
n-grid Ā ⊆ X̄ in (F̄ , ℓ)-general position, we have

|Q ∩ Ā| = Oℓ

!
n(s−1)−ε

"
.

2. Q is in a generic correspondence with multiplication in a
type-definable abelian group of dimension k .



Known cases of the Elekes-Szabó principle

1. [Elekes, Szabó’12] M |= ACF0, s = 3, k arbitrary;

2. [Raz, Sharir, de Zeeuw’18] M |= ACF0, s = 4, k = 1;

3. [Bays, Breuillard’18] M |= ACF0, s and k arbitrary,
recognized that the arising groups are abelian (they work with
a more relaxed notion of general position and arbitrary
codimension, however no bounds on ε);

4. [C., Starchenko’18] M is any strongly minimal structure
interpretable in a distal structure, s = 3, k = 1.

Related work: [Raz, Sharir, de Zeeuw’15], [Wang’15]; [Bukh,
Tsimmerman’ 12], [Tao’12]; [Hrushovski’13]; [Raz, Shem-Tov’18];
[Jing, Roy, Tran’19].



Main theorem

Theorem
The Elekes-Szabó principle holds in the following two cases:

1. M is a stable structure interpretable in a distal structure, with
respect to p-dimension.

2. M is an o-minimal structure, with respect to the usual
dimension (in this case, on a type-definable generic subset of
X̄ , we get a definable coordinate-wise bijection of Q with the
graph of multiplication of G ).

◮ Moreover, the bound on the power saving exponent ε is
explicit.



The o-minimal case, over the reals
◮ The main difference between stable and o-minimal cases is

that in the stable case “generically” means “almost
everywhere”, and in the o-minimal case it means “on some
open definable set” (that may be very small).

◮ Assume M = (R, <, . . .) is o-minimal, with R the field of real
numbers.

◮ Then, using the theory of o-minimal groups, in the group case
of the Main Theorem the conclusion can be made more
explicit as follows:

◮ there is an abelian Lie group G of dimension k , an open
neighborhood of identity U ⊆ G , for each i = 1, . . . , s open
definable Vi ⊆ Xi and definable homeomorphisms πi : Vi → U
such that for all xi ∈ Vi we have

Q(x1, . . . xs) ⇐⇒ π1(x1) · . . . · πs(xs) = e.

◮ In particular, this answers a question of Elekes-Szabó.



Main theorem: stable case
◮ We choose a saturated elementary extension M of a stable

structure M.
◮ By a p-pair we mean a pair (X , pX ), where X is an

M-definable set and pX ∈ S(M) is a complete stationary type
on X .

◮ Assume we are given p-pairs (Xi , pi ) for 1 ≤ i ≤ s. We say
that a definable Y ⊆ X1 × . . .× Xs is p-generic if
Y ∈ p1 ⊗ . . .⊗ ps |M.

◮ Finally, we define the p-dimension via dimp(Y ) ≥ k if for some
projection π of X̄ onto k components, π(Y ) is p-generic.

◮ p-dimension enjoys definability/additivity properties that may
fail for Morley rank in general ω-stable theories (e.g. DCF0).

◮ However, if X is a definable subset of finite Morley rank k and
degree one, taking pX to be the unique type on X of Morley
rank k , we have that k · dimp = MR, and the Main Theorem
implies that the Elekes-Szabó principle holds with respect to
Morley rank in this case.



Distality and abstract incidence bounds, 1

◮ Distality is used to obtain the following abstract
“Szemerédi-Trotter” theorem for relations definable in distal
structures, generalizing several results in the literature.

Theorem (C., Galvin, Starchenko’16)
If E ⊆ U × V is a binary relation definable in a distal structure M
and E is Kt,2-free for some t ∈ N, then there is some δ > 0 such
that: for all A ⊆n U,B ⊆n V we have |E ∩ A× B | = O(n

3
2−δ).

◮ The power saving ε in the main theorem can be estimated
explicitly in terms of this δ, and δ — in terms of the size of a
distal cell decomposition for E .

◮ Explicit bounds on δ and/or distal cell decompositions are
known in some special cases:



Distality and abstract incidence bounds, 2

◮ [Szemerédi-Trotter’83] O(n
4
3 ) for E the point-line incidence

relation in R2.
◮ Bounds for (semi-)algebraic R ⊆ Md1 ×Md2 with M = R

[Fox, Pach, Sheffer, Suk, Zahl’15], . . . .

◮ For E ⊆ M2 ×M2 for an o-minimal M, also O(n
4
3 ) ([C.,

Galvin, Starchenko’16] or [Basu, Raz’16]) — optimal; for
E ⊆ Md1 ×Md2 [Anderson’20+].

◮ For E ⊆ Md1 ×Md2 with M locally modular o-minimal,
Oγ(n

1+γ) for an arbitrary γ > 0 [Basit, C., Starchenko, Tao,
Tran’20].

◮ ACF0,DCF0,CCM — stable with distal expansions (but no
explicit bounds are known for the latter two).



Recovering groups from abelian s-gons

◮ Let M be stable (the o-minimal case is analogous, but easier).
◮ An s-gon over A is a tuple a1, . . . , as such that any s − 1 of its

elements are independent over A, and any element in it is in
the algebraic closure of the other ones and A.

◮ We say that an s-gon is abelian if, after any permutation of its
elements, we have a1a2 |⌣aclA(a1a2)∩aclA(a3...as)

a3 . . . as .

◮ If (G , ·) is a type-definable abelian group, g1, . . . , gs−1 are
independent generics in G and gs := g1 · . . . · gs−1, then
g1, . . . , gs is an abelian s-gon (associated to G ).

◮ Conversely,

Theorem
Let s ≥ 4 and a1, . . . , as be an abelian s-gon. Then there is a
type-definable (in Meq) connected abelian group (G , ·) and an
abelian s-gon g1, . . . , gs associated to G , such that after a base
change each gi is interalgebraic with ai .



Distinction of cases in the Main Theorem, 1

◮ Assume s ≥ 4 (the case s = 3 is reduced to s = 4 by a
separate argument).

◮ We may assume dim(Q) = s − 1, and let ā = (a1, . . . , as) in
M be a generic tuple in Q over M.

◮ As Q is fiber-algebraic, ā is an s-gon over M.

Theorem
One of the following is true:

1. For u = (a1, a2) and v = (a3, . . . , as) we have
u |⌣aclM(u)∩aclM(v)

v .

2. Q, as a relation on U × V , for U = X1 × X2 and
V = X3 × . . .× Xs , is a “pseudo-plane”.



Distinction of cases in the Main Theorem, 2

◮ In case (2) the incidence bound for distal relations can be
applied inductively to obtain power saving O(n(s−1)−ε) for Q.

◮ Thus we may assume that that for any permutation of
{1, . . . , s} we have

a1a2 |⌣aclM(a1a2)∩aclM(a3...as)
a3 . . . as ,

i.e. the s-gon ā is abelian.
◮ Hence the previous theorem can be applied to establish generic

correspondence with a type-definable abelian group.



Thank you!


