# Recognizing groups in model theory and Erdős geometry

#### Artem Chernikov (joint with Y.Peterzil and S. Starchenko)

UCLA

MSRI Model Theory Seminar "Berkeley", Oct 19, 2020 History: arithmetic and geometric progressions

Given two sets A, B in a field K, we define

- their sumset  $A + B = \{a + b : a \in A, b \in B\}$ ,
- their productset  $A \cdot B = \{a \cdot b : a \in A, b \in B\}$ .

#### Example

- Let  $A_n := \{1, 2, ..., n\}.$ 
  - $|A_n + A_n| = 2 |A_n| 1 = O(|A_n|).$
  - Let π (n) be the number of primes in A<sub>n</sub>. As the product of any two primes is unique up to permutation, by the Prime Number Theorem we have
    |A<sub>n</sub> · A<sub>n</sub>| ≥ ½π (n)<sup>2</sup> = Ω (|A<sub>n</sub>|<sup>2-o(1)</sup>).

#### History: sum-product phenomenon

- This generalizes to arbitrary arithmetic progressions: their sumsets are as small as possible, and productsets are as large as possible.
- For a geometric progression, the opposite holds: productset is as small as possible, sumset is as large as possible.
- ▶ These are the two extreme cases of the following result.
- [Erdős, Szemerédi] There exists some c ∈ R<sub>>0</sub> such that: for every finite A ⊆ R,

$$\max\left\{\left|A+A\right|,\left|A\cdot A\right|\right\}=\Omega\left(\left|A\right|^{1+c}\right).$$

- They conjecture: holds with  $1 + c = 2 \varepsilon$  for any  $\varepsilon > 0$ .
- [Solymosi], [Konyagin, Shkredov] Holds with 1 + c = <sup>4</sup>/<sub>3</sub> + ε for some sufficiently small ε > 0.

#### Elekes: generalization to polynomials

Since polynomials combine addition and multiplication, a "typical" polynomial  $f \in \mathbb{R}[x, y]$  should satisfy

$$|f(A \times B)| = \Omega(n^{1+c})$$

for some c = c(f) and all finite  $A, B \subseteq \mathbb{R}$  with |A| = |B| = n.



- F is additive, i.e. f (x, y) = g (h(x) + i (y)) for some univariate polynomials g, h, i
   (as then |f (A × B)| = O (n) for A, B such that h(A), i (B) are arithmetic progressions).
- *f* is *multiplicative*, i.e. *f* (*x*, *y*) = *g* (*h*(*x*) · *i*(*y*)) for some univariate polynomials *g*, *h*, *i* (as then |*f* (*A* × *B*)| = *O* (*n*) for *A*, *B* such that *h*(*A*), *i*(*B*) are geometric progressions).

## Elekes-Rónyai

- But these are the only exceptions!
- [Elekes, Rónyai] Let f ∈ ℝ [x, y] be a polynomial of degree d that is not additive or multiplicative. Then for all A, B ⊆ ℝ with |A| = |B| = n one has

$$|f(A\times B)|=\Omega_d\left(n^{\frac{4}{3}}\right).$$

- The improved bound and the independence of the exponent from the degree of f is due to [Raz, Sharir, Solymosi].
- ► Analogous results hold with C instead of R (and slightly worse bounds).
- The exceptional role played by the additive and multiplicative forms suggests that (algebraic) groups play a special role in this type of theorems — made precise by [Elekes, Szabó].

## Definable hypergraphs

- We fix a structure *M*, definable sets X<sub>1</sub>,..., X<sub>s</sub>, and a definable relation Q ⊆ X̄ = X<sub>1</sub> × ... × X<sub>s</sub>.
- ▶ E.g.  $\mathcal{M} = (\mathbb{C}, +, \times)$  and  $Q, X_i \subseteq \mathbb{C}^{d_i}$  are constructible sets; or  $\mathcal{M} = (\mathbb{R}, +, \times)$  and  $Q, X_i \subseteq \mathbb{R}^{d_i}$  are semi-algebraic sets.

• Write 
$$A_i \subseteq_n X_i$$
 if  $A_i \subseteq X_i$  with  $|A_i| \leq n$ .

- ▶ By a grid on  $\bar{X}$  we mean a set  $\bar{A} \subseteq \bar{X}$  with  $\bar{A} = A_1 \times \ldots \times A_s$ and  $A_i \subseteq X_i$ .
- ▶ By an *n*-grid on  $\overline{X}$  we mean a grid  $\overline{A} = A_1 \times \ldots \times A_s$  with  $A_i \subseteq_n X_i$ .

#### Fiber-algebraic relations

A relation Q ⊆ X̄ is *fiber-algebraic* if there is some d ∈ N such that for any 1 ≤ i ≤ s we have

$$\mathcal{M} \models \forall x_1 \dots x_{i-1} x_{i+1} \dots x_s \exists^{\leq d} x_i \ Q(x_1, \dots, x_s).$$

- ▶ E.g. if  $Q \subseteq X_1 \times X_2 \times X_3$  is fiber-algebraic, then for any  $A_i \subseteq_n X_i$  we have  $|Q \cap A_1 \times A_2 \times A_3| \le dn^2$ .
- ▶ Conversely, let a fiber-algebraic  $Q \subseteq \mathbb{C}^3$  be given by  $x_1 + x_2 x_3 = 0$ , and let  $A_1 = A_2 = A_3 = \{0, \dots, n-1\}$ . Then

$$|Q \cap A_1 \times A_2 \times A_3| = \frac{n(n+1)}{2} = \Omega(n^2).$$

This indicates that the upper and lower bounds match for the graph of addition in an abelian group (up to a constant) — and the Elekes-Szabó principle suggests that in many situations this is the only possibility.

#### Grids in general position

- We assume *M* is equipped with an integer-valued dimension dim on definable sets. E.g. Zariski dimension on algebraic subsets of C<sup>d</sup>, or topological dimension on semialgebraic subsets of ℝ<sup>d</sup>.
- Let X be M-definable and F a (uniformly) M-definable family of subset of X. For l ∈ N, a set A ⊆ X is in (F, l)-general position if |A ∩ F| ≤ l for every F ∈ F with dim(F) < dim(X).</p>
- Let X<sub>i</sub>, i = 1,..., s, be *M*-definable sets and *F* = (*F*<sub>1</sub>,...,*F*<sub>s</sub>), where *F<sub>i</sub>* is a definable family of subsets of X<sub>i</sub>. A grid *Ā* on *X̄* is in (*F̄*, ℓ)-general position if each A<sub>i</sub> is in (*F<sub>i</sub>*, ℓ)-general position.

### General position: an example

- E.g. if X is strongly minimal and F is any definable family of subsets of X, then for any large enough ℓ = ℓ(F) ∈ N, every A ⊆ X is in (F, ℓ)-general position.
- On the other hand, let X = C<sup>2</sup> and let F<sub>d</sub> be the family of all algebraic curves of degree d. If ℓ < d, then any set A ⊆ X is not in (F<sub>d</sub>, ℓ)-general position.

### Generic correspondence with group multiplication

- ▶ Let  $Q \subseteq \overline{X}$  be a definable relation and  $(G, \cdot)$  a type-definable group in  $\mathbb{M}^{eq}$  which is connected (i.e.  $G = G^0$ ).
- We say that Q is in a generic correspondence with multiplication in G if there exist elements g<sub>1</sub>,..., g<sub>s</sub> ∈ G(M), where M is a saturated elementary extension of M, such that:
  - 1.  $g_1 \cdot \ldots \cdot g_s = 1_G;$
  - g<sub>1</sub>,..., g<sub>s-1</sub> are independent generics in G over M, i.e. each g<sub>i</sub> doesn't belong to any definable set of dimension smaller than G definable over M ∪ {g<sub>1</sub>,..., g<sub>i-1</sub>, g<sub>i+1</sub>,..., g<sub>s-1</sub>};
  - 3. For each i = 1, ..., s there is a generic element  $a_i \in X_i$  interalgebraic with  $g_i$  over  $\mathcal{M}$ , such that  $\models Q(a_1, ..., a_s)$ .
- If X<sub>i</sub> are irreducible (i.e. can't be split into two definable sets of the same dimension), then (3) holds for all g<sub>1</sub>,..., g<sub>s</sub> ∈ G satisfying (1) and (2), providing a generic finite-to-finite correspondence between Q and the graph of (s − 1)-fold multiplication in G.

#### The Elekes-Szabó principle

Let  $X_1, \ldots, X_s$  be irreducible definable sets in  $\mathcal{M}$  with  $\dim(X_i) = k$ . We say that  $\overline{X}$  satisfies the *Elekes-Szabó principle* if for any irreducible fiber-algebraic definable relation  $Q \subseteq \overline{X}$ , one of the following holds.

1. *Q* admits power saving: there exist some  $\varepsilon \in \mathbb{R}_{>0}$  and some definable families  $\mathcal{F}_i$  on  $X_i$  such that: for any  $\ell \in \mathbb{N}$  and any *n*-grid  $\overline{A} \subseteq \overline{X}$  in  $(\overline{\mathcal{F}}, \ell)$ -general position, we have

$$|Q \cap \bar{A}| = O_\ell\left(n^{(s-1)-arepsilon}
ight)$$

2. *Q* is in a generic correspondence with multiplication in a type-definable *abelian* group of dimension *k*.

Known cases of the Elekes-Szabó principle

- 1. [Elekes, Szabó'12]  $\mathcal{M} \models ACF_0$ , s = 3, k arbitrary;
- 2. [Raz, Sharir, de Zeeuw'18]  $\mathcal{M} \models ACF_0$ , s = 4, k = 1;
- [Bays, Breuillard'18] *M* |= ACF<sub>0</sub>, s and k arbitrary, recognized that the arising groups are abelian (they work with a more relaxed notion of general position and arbitrary codimension, however no bounds on ε);
- 4. [C., Starchenko'18]  $\mathcal{M}$  is any strongly minimal structure interpretable in a *distal* structure, s = 3, k = 1.

Related work: [Raz, Sharir, de Zeeuw'15], [Wang'15]; [Bukh, Tsimmerman' 12], [Tao'12]; [Hrushovski'13]; [Raz, Shem-Tov'18]; [Jing, Roy, Tran'19].

## Main theorem

#### Theorem

The Elekes-Szabó principle holds in the following two cases:

- 1.  $\mathcal{M}$  is a stable structure interpretable in a distal structure, with respect to  $\mathfrak{p}$ -dimension.
- M is an o-minimal structure, with respect to the usual dimension (in this case, on a type-definable generic subset of X
  , we get a definable coordinate-wise bijection of Q with the graph of multiplication of G).
- Moreover, the bound on the power saving exponent ε is explicit.

#### The o-minimal case, over the reals

- The main difference between stable and o-minimal cases is that in the stable case "generically" means "almost everywhere", and in the o-minimal case it means "on some open definable set" (that may be very small).
- ► Assume *M* = (*R*, <, ...) is *o*-minimal, with *R* the field of real numbers.
- Then, using the theory of o-minimal groups, in the group case of the Main Theorem the conclusion can be made more explicit as follows:
- there is an abelian Lie group G of dimension k, an open neighborhood of identity U ⊆ G, for each i = 1,..., s open definable V<sub>i</sub> ⊆ X<sub>i</sub> and definable homeomorphisms π<sub>i</sub>: V<sub>i</sub> → U such that for all x<sub>i</sub> ∈ V<sub>i</sub> we have

$$Q(x_1,\ldots x_s) \Longleftrightarrow \pi_1(x_1) \cdot \ldots \cdot \pi_s(x_s) = e.$$

▶ In particular, this answers a question of Elekes-Szabó.

#### Main theorem: stable case

- ► We choose a saturated elementary extension M of a stable structure M.
- By a p-pair we mean a pair (X, p<sub>X</sub>), where X is an M-definable set and p<sub>X</sub> ∈ S(M) is a complete stationary type on X.
- Assume we are given p-pairs (X<sub>i</sub>, p<sub>i</sub>) for 1 ≤ i ≤ s. We say that a definable Y ⊆ X<sub>1</sub> × ... × X<sub>s</sub> is p-generic if Y ∈ p<sub>1</sub> ⊗ ... ⊗ p<sub>s</sub>|<sub>M</sub>.
- Finally, we define the  $\mathfrak{p}$ -dimension via  $\dim_{\mathfrak{p}}(Y) \ge k$  if for some projection  $\pi$  of  $\overline{X}$  onto k components,  $\pi(Y)$  is  $\mathfrak{p}$ -generic.
- p-dimension enjoys definability/additivity properties that may fail for Morley rank in general ω-stable theories (e.g. DCF<sub>0</sub>).
- However, if X is a definable subset of finite Morley rank k and degree one, taking p<sub>X</sub> to be the unique type on X of Morley rank k, we have that k · dim<sub>p</sub> = MR, and the Main Theorem implies that the Elekes-Szabó principle holds with respect to Morley rank in this case.

Distality and abstract incidence bounds, 1

Distality is used to obtain the following abstract "Szemerédi-Trotter" theorem for relations definable in distal structures, generalizing several results in the literature.

#### Theorem (C., Galvin, Starchenko'16)

If  $E \subseteq U \times V$  is a binary relation definable in a distal structure  $\mathcal{M}$ and E is  $K_{t,2}$ -free for some  $t \in \mathbb{N}$ , then there is some  $\delta > 0$  such that: for all  $A \subseteq_n U, B \subseteq_n V$  we have  $|E \cap A \times B| = O(n^{\frac{3}{2}-\delta})$ .

- The power saving ε in the main theorem can be estimated explicitly in terms of this δ, and δ — in terms of the size of a distal cell decomposition for E.
- Explicit bounds on δ and/or distal cell decompositions are known in some special cases:

Distality and abstract incidence bounds, 2

- [Szemerédi-Trotter'83]  $O(n^{\frac{4}{3}})$  for *E* the point-line incidence relation in  $\mathbb{R}^2$ .
- ▶ Bounds for (semi-)algebraic  $R \subseteq M^{d_1} \times M^{d_2}$  with  $\mathcal{M} = \mathbb{R}$ [Fox, Pach, Sheffer, Suk, Zahl'15], ....
- ▶ For  $E \subseteq M^2 \times M^2$  for an *o*-minimal  $\mathcal{M}$ , also  $O(n^{\frac{4}{3}})$  ([C., Galvin, Starchenko'16] or [Basu, Raz'16]) optimal; for  $E \subseteq M^{d_1} \times M^{d_2}$  [Anderson'20+].
- For E ⊆ M<sup>d<sub>1</sub></sup> × M<sup>d<sub>2</sub></sup> with M locally modular o-minimal, O<sub>γ</sub>(n<sup>1+γ</sup>) for an arbitrary γ > 0 [Basit, C., Starchenko, Tao, Tran'20].
- ACF<sub>0</sub>, DCF<sub>0</sub>, CCM stable with distal expansions (but no explicit bounds are known for the latter two).

## Recovering groups from abelian s-gons

- ▶ Let *M* be stable (the *o*-minimal case is analogous, but easier).
- ► An s-gon over A is a tuple a<sub>1</sub>,..., a<sub>s</sub> such that any s 1 of its elements are independent over A, and any element in it is in the algebraic closure of the other ones and A.
- ► We say that an s-gon is abelian if, after any permutation of its elements, we have a<sub>1</sub>a<sub>2</sub> ↓<sub>acl<sub>A</sub>(a<sub>1</sub>a<sub>2</sub>)∩acl<sub>A</sub>(a<sub>3</sub>...a<sub>s</sub>)</sub> a<sub>3</sub> ... a<sub>s</sub>.
- If (G, ·) is a type-definable abelian group, g<sub>1</sub>,..., g<sub>s-1</sub> are independent generics in G and g<sub>s</sub> := g<sub>1</sub> · ... · g<sub>s-1</sub>, then g<sub>1</sub>,..., g<sub>s</sub> is an abelian s-gon (associated to G).

Conversely,

#### Theorem

Let  $s \ge 4$  and  $a_1, \ldots, a_s$  be an abelian s-gon. Then there is a type-definable (in  $\mathcal{M}^{eq}$ ) connected abelian group ( $G, \cdot$ ) and an abelian s-gon  $g_1, \ldots, g_s$  associated to G, such that after a base change each  $g_i$  is interalgebraic with  $a_i$ .

### Distinction of cases in the Main Theorem, 1

- Assume s ≥ 4 (the case s = 3 is reduced to s = 4 by a separate argument).
- We may assume dim(Q) = s − 1, and let ā = (a<sub>1</sub>,..., a<sub>s</sub>) in M be a generic tuple in Q over M.
- As Q is fiber-algebraic,  $\bar{a}$  is an *s*-gon over  $\mathcal{M}$ .

#### Theorem

One of the following is true:

- 1. For  $u = (a_1, a_2)$  and  $v = (a_3, \dots, a_s)$  we have  $u \downarrow_{\operatorname{acl}_M(u) \cap \operatorname{acl}_M(v)} v$ .
- 2. Q, as a relation on  $U \times V$ , for  $U = X_1 \times X_2$  and  $V = X_3 \times \ldots \times X_s$ , is a "pseudo-plane".

## Distinction of cases in the Main Theorem, 2

- In case (2) the incidence bound for distal relations can be applied inductively to obtain power saving O(n<sup>(s−1)-ε</sup>) for Q.
- Thus we may assume that that for any permutation of {1,...,s} we have

i.e. the s-gon  $\bar{a}$  is abelian.

Hence the previous theorem can be applied to establish generic correspondence with a type-definable abelian group.

## Thank you!

