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History: arithmetic and geometric progressions

Given two sets A, B in a field K, we define
» their sumset A+ B={a+b:ac A bec B},
» their productset A-B={a-b:ac A bc B}.

Example
Let A, :={1,2,...,n}.
> A+ Al =2|An — 1= 0(|An).
» Let 7 (n) be the number of primes in A,. As the product of
any two primes is unique up to permutation, by the Prime

Number Theorem we have
An- Al > 3 (n)? =Q (]A,,\z_"(l)).



History: sum-product phenomenon

» This generalizes to arbitrary arithmetic progressions: their
sumsets are as small as possible, and productsets are as large
as possible.

» For a geometric progression, the opposite holds: productset is
as small as possible, sumset is as large as possible.

» These are the two extreme cases of the following result.

» [Erd6s, Szemerédi] There exists some ¢ € R~ such that: for
every finite A C R,

max {|A+ A|,|A-Al} = Q (\A\HC) .

» They conjecture: holds with 1 + ¢ =2 — ¢ for any ¢ > 0.

> [Solymosi], [Konyagin, Shkredov] Holds with 14 ¢ = § + ¢ for
some sufficiently small ¢ > 0.



Elekes: generalization to polynomials

» Since polynomials combine addition and multiplication, a
“typical” polynomial f € R [x, y] should satisfy

|f (Ax B)| = Q(n'")

for some ¢ = ¢ (f) and all finite A, B C R with |A| = |B| = n.
» Doesn't hold when only one of the operations occurs between
the two variables:
> fis additive, i.e. f(x,y) =g (h(x)+i(y)) for some
univariate polynomials g, h, i
(as then |f (A x B)| = O(n) for A, B such that h(A),i(B)
are arithmetic progressions).
> fis multiplicative, i.e. f(x,y) =g (h(x)-i(y)) for some
univariate polynomials g, h, i
(as then |f (A x B)| = O(n) for A, B such that h(A),i(B)
are geometric progressions).



Elekes-Rényai

» But these are the only exceptions!

» [Elekes, Rényai] Let f € R[x, y] be a polynomial of degree d
that is not additive or multiplicative. Then for all A,B C R
with |A| = |B| = n one has

If (A x B)| = Qq (n%) .

» The improved bound and the independence of the exponent
from the degree of f is due to [Raz, Sharir, Solymosi.

» Analogous results hold with C instead of R (and slightly worse
bounds).

» The exceptional role played by the additive and multiplicative
forms suggests that (algebraic) groups play a special role in
this type of theorems — made precise by [Elekes, Szabd].



Definable hypergraphs

> We fix a structure M, d_efinable sets Xi,...,Xs, and a
definable relation @ C X = X1 x ... x X;.

» Eg. M = (C,+,x) and Q, X; C C% are constructible sets; or
M = (R, +, x) and Q, X; C RY are semi-algebraic sets.

> Write A; C, X; if A; C X; with |A,| <n.

> By a grid on X we mean aset AC X with A= A; x ... x Ag
and A,' - X,'.

» By an n-grid on X we mean a grid A= A; x ... x As with
Ai Ch Xi-



Fiber-algebraic relations

> A relation Q C X is fiber-algebraic if there is some d € N such
that for any 1 </ < s we have

M ): VXl e Xj—1Xi41 - - XSHSdX,' Q (X17 . ,Xs) .

> E.g. if QC X1 x X5 x Xz is fiber-algebraic, then for any
A; Cp Xi we have |[Q N Ay x Ay x Az| < dn®.

» Conversely, let a fiber-algebraic @ C C3 be given by
x1+x2—x3=0,and let Ay =A,=A3={0,...,n—1}.
Then

n(n+1
|QﬁA1 ><A2><A3‘ :%:Q(Iﬁ).

» This indicates that the upper and lower bounds match for the
graph of addition in an abelian group (up to a constant) —
and the Elekes-Szabé principle suggests that in many
situations this is the only possibility.



Grids in general position

> We assume M is equipped with an integer-valued dimension
dim on definable sets. E.g. Zariski dimension on algebraic
subsets of C?, or topological dimension on semialgebraic
subsets of RY.

» Let X be M-definable and F a (uniformly) M-definable
family of subset of X. For £ € N, aset AC X is in
(F,¢)-general position if |AN F| </ for every F € F with
dim(F) < dim(X).

> Let X;, i=1,...,s, be M-definable sets and
F = (F1,...,Fs), where F; is a definable family of subsets of
X;. A grid A on X is in (F,{)-general position if each A; is in
(Fi, ¢)-general position.



General position: an example

» E.g. if X is strongly minimal and F is any definable family of
subsets of X, then for any large enough ¢ = ¢(F) € N, every
A C X is in (F,{)-general position.

» On the other hand, let X = C? and let F, be the family of all
algebraic curves of degree d. If £ < d, then any set AC X is
not in (Fqg, £)-general position.



Generic correspondence with group multiplication

> Let @ C X be a definable relation and (G, -) a type-definable

group in M9 which is connected (i.e. G = G°).
> We say that @ is in a generic correspondence with

multiplication in G if there exist elements gi,...,gs € G(M),
where M is a saturated elementary extension of M, such that:

1. g1-...- g =1g;

2. g1,...,8s—1 are independent generics in G over M, i.e. each
g doesn’t belong to any definable set of dimension smaller
than G definable over MU {g1,...,8-1,8+1,---,8s—1};

3. Foreach i =1,...,s there is a generic element a; € X;

interalgebraic with g; over M, such that = Q(ay, ..

» If X; are irreducible (i.e. can’t be split into two definable sets

of the same dimension), then (3) holds for all g1, ...

satisfying (1) and (2), providing a generic finite-to-finite
correspondence between Q and the graph of (s — 1)-fold

multiplication in G.



The Elekes-Szabé principle

Let Xi,...,Xs be irreducible definable sets in M with
dim(X;) = k. We say that X satisfies the Elekes-Szabé principle if
for any irreducible fiber-algebraic definable relation Q@ C X, one of
the following holds.
1. Q admits power saving. there exist some ¢ € R+ and some
definable families F; on X; such that: for any £ € N and any
n-grid A C X in (F,{)-general position, we have

QN A| = 0, (n<s—1>—8) :

2. @ is in a generic correspondence with multiplication in a
type-definable abelian group of dimension k.



Known cases of the Elekes-Szabé principle

1. [Elekes, Szab6'12] M = ACFy, s = 3, k arbitrary;
2. [Raz, Sharir, de Zeeuw'18] M = ACFy, s =4, k =1;

3. [Bays, Breuillard'18] M = ACFy, s and k arbitrary,
recognized that the arising groups are abelian (they work with
a more relaxed notion of general position and arbitrary
codimension, however no bounds on ¢);

4. [C., Starchenko'18] M is any strongly minimal structure
interpretable in a distal structure, s = 3, k = 1.

Related work: [Raz, Sharir, de Zeeuw'15], [Wang'15]; [Bukh,
Tsimmerman' 12], [Tao'12]; [Hrushovski'13]; [Raz, Shem-Tov'18];
[Jing, Roy, Tran'19].



Main theorem

Theorem
The Elekes-Szabé principle holds in the following two cases:

1. M is a stable structure interpretable in a distal structure, with
respect to p-dimension.

2. M is an o-minimal structure, with respect to the usual
dimension (in this case, on a type-definable generic subset of
X, we get a definable coordinate-wise bijection of Q with the
graph of multiplication of G).

» Moreover, the bound on the power saving exponent ¢ is
explicit.



The o-minimal case, over the reals

» The main difference between stable and o-minimal cases is
that in the stable case “generically” means “almost
everywhere”, and in the o-minimal case it means “on some
open definable set” (that may be very small).

» Assume M = (R, <,...) is o-minimal, with R the field of real
numbers.

» Then, using the theory of o-minimal groups, in the group case
of the Main Theorem the conclusion can be made more
explicit as follows:

» there is an abelian Lie group G of dimension k, an open
neighborhood of identity U C G, for each i = 1,...,s open
definable V; C X; and definable homeomorphisms 7;: V; — U
such that for all x; € V; we have

Q(x1,...xs) <= mi(x1) - ... 7ws(xs) = e.

» In particular, this answers a question of Elekes-Szabé.



Main theorem: stable case

>

| 2

We choose a saturated elementary extension M of a stable
structure M.

By a p-pair we mean a pair (X, px), where X is an
M-definable set and px € S(M) is a complete stationary type
on X.

Assume we are given p-pairs (Xj, p;) for 1 < i <s. We say
that a definable Y C X7 x ... x Xs is p-generic if
YeEp®...Qps|u.

Finally, we define the p-dimension via dim,(Y’) > k if for some
projection 7 of X onto k components, 7(Y) is p-generic.
p-dimension enjoys definability/additivity properties that may
fail for Morley rank in general w-stable theories (e.g. DCFy).
However, if X is a definable subset of finite Morley rank k and
degree one, taking px to be the unique type on X of Morley
rank k, we have that k - dim, = MR, and the Main Theorem
implies that the Elekes-Szabé principle holds with respect to
Morley rank in this case.



Distality and abstract incidence bounds, 1

> Distality is used to obtain the following abstract
“Szemerédi-Trotter” theorem for relations definable in distal
structures, generalizing several results in the literature.

Theorem (C., Galvin, Starchenko'16)

If EC U x V is a binary relation definable in a distal structure M
and E is K; »-free for some t € N, then there is some § > 0 such
that: for all AC, U,B C, V we have |[ENA x B| = O(n2 %),

» The power saving € in the main theorem can be estimated
explicitly in terms of this 6, and § — in terms of the size of a
distal cell decomposition for E.

» Explicit bounds on ¢ and/or distal cell decompositions are
known in some special cases:



Distality and abstract incidence bounds, 2

» [Szemerédi-Trotter'83] O(n%) for E the point-line incidence
relation in R?.

» Bounds for (semi-)algebraic R C M% x M% with M =R
[Fox, Pach, Sheffer, Suk, Zahl'15], ....

> For E C M2 x M2 for an o-minimal M, also O(n3) ([C.,
Galvin, Starchenko'16] or [Basu, Raz'16]) — optimal; for
E C M% x M% [Anderson’20+].

» For E C M% x M% with M locally modular o-minimal,
Oy(n1+7) for an arbitrary v > 0 [Basit, C., Starchenko, Tao,
Tran'20].

» ACFy, DCFy, CCM — stable with distal expansions (but no
explicit bounds are known for the latter two).



Recovering groups from abelian s-gons

» Let M be stable (the o-minimal case is analogous, but easier).

» An s-gonover Ais a tuple ay,...,as such that any s — 1 of its
elements are independent over A, and any element in it is in
the algebraic closure of the other ones and A.

» \We say that an s-gon is abelian if, after any permutation of its

elements, we have ajap \LacIA (a132)acl(23...a5) 93+ 35"

> If (G,") is a type-definable abelian group, gi,...,8s_1 are
independent generics in G and gs :=g1 ... gs_1, then
gi,--.,8s is an abelian s-gon (associated to G).

» Conversely,

Theorem

Let s > 4 and a1, ...,as be an abelian s-gon. Then there is a
type-definable (in M?®9) connected abelian group (G,-) and an
abelian s-gon g1, ..., gs associated to G, such that after a base

change each g; is interalgebraic with a;.



Distinction of cases in the Main Theorem, 1

» Assume s > 4 (the case s = 3 is reduced to s = 4 by a
separate argument).

» We may assume dim(Q) =s—1, and let 3= (a1,...,as) in
M be a generic tuple in Q over M.

> As Q is fiber-algebraic, 3 is an s-gon over M.

Theorem
One of the following is true:

1. Foru= (a1, az) and v = (as,...,as) we have
u J-/.a\cl,\/,(u)ﬂaclM(v) v

2. Q, as a relation on U x V, for U = X; x Xo and
V =X3x...xXs, is a "pseudo-plane”.



Distinction of cases in the Main Theorem, 2

» In case (2) the incidence bound for distal relations can be
applied inductively to obtain power saving O(n(s=1)=¢) for Q.

» Thus we may assume that that for any permutation of
{1,...,s} we have

a1a2 J-/acl,\,,(31‘92)ﬁac|/\/,(‘2)3...as) ... ds,

i.e. the s-gon 3 is abelian.

» Hence the previous theorem can be applied to establish generic
correspondence with a type-definable abelian group.



Thank youl!




