Recognizing groups in model theory and Erdős geometry

Artem Chernikov
(joint with Y.Peterzil and S. Starchenko)

UCLA

MSRI Model Theory Seminar
"Berkeley", Oct 19, 2020

History: arithmetic and geometric progressions

Given two sets A, B in a field K, we define

- their sumset $A+B=\{a+b: a \in A, b \in B\}$,
- their productset $A \cdot B=\{a \cdot b: a \in A, b \in B\}$.

Example

Let $A_{n}:=\{1,2, \ldots, n\}$.

- $\left|A_{n}+A_{n}\right|=2\left|A_{n}\right|-1=O\left(\left|A_{n}\right|\right)$.
- Let $\pi(n)$ be the number of primes in A_{n}. As the product of any two primes is unique up to permutation, by the Prime Number Theorem we have

$$
\left|A_{n} \cdot A_{n}\right| \geq \frac{1}{2} \pi(n)^{2}=\Omega\left(\left|A_{n}\right|^{2-o(1)}\right) \text {. }
$$

History: sum-product phenomenon

- This generalizes to arbitrary arithmetic progressions: their sumsets are as small as possible, and productsets are as large as possible.
- For a geometric progression, the opposite holds: productset is as small as possible, sumset is as large as possible.
- These are the two extreme cases of the following result.
- [Erdős, Szemerédi] There exists some $c \in \mathbb{R}_{>0}$ such that: for every finite $A \subseteq \mathbb{R}$,

$$
\max \{|A+A|,|A \cdot A|\}=\Omega\left(|A|^{1+c}\right)
$$

- They conjecture: holds with $1+c=2-\varepsilon$ for any $\varepsilon>0$.
- [Solymosi], [Konyagin, Shkredov] Holds with $1+c=\frac{4}{3}+\varepsilon$ for some sufficiently small $\varepsilon>0$.

Elekes: generalization to polynomials

- Since polynomials combine addition and multiplication, a "typical" polynomial $f \in \mathbb{R}[x, y]$ should satisfy

$$
|f(A \times B)|=\Omega\left(n^{1+c}\right)
$$

for some $c=c(f)$ and all finite $A, B \subseteq \mathbb{R}$ with $|A|=|B|=n$.

- Doesn't hold when only one of the operations occurs between the two variables:
- f is additive, i.e. $f(x, y)=g(h(x)+i(y))$ for some univariate polynomials g, h, i (as then $|f(A \times B)|=O(n)$ for A, B such that $h(A), i(B)$ are arithmetic progressions).
- f is multiplicative, i.e. $f(x, y)=g(h(x) \cdot i(y))$ for some univariate polynomials g, h, i (as then $|f(A \times B)|=O(n)$ for A, B such that $h(A), i(B)$ are geometric progressions).

Elekes-Rónyai

- But these are the only exceptions!
- [Elekes, Rónyai] Let $f \in \mathbb{R}[x, y]$ be a polynomial of degree d that is not additive or multiplicative. Then for all $A, B \subseteq \mathbb{R}$ with $|A|=|B|=n$ one has

$$
|f(A \times B)|=\Omega_{d}\left(n^{\frac{4}{3}}\right)
$$

- The improved bound and the independence of the exponent from the degree of f is due to [Raz, Sharir, Solymosi].
- Analogous results hold with \mathbb{C} instead of \mathbb{R} (and slightly worse bounds).
- The exceptional role played by the additive and multiplicative forms suggests that (algebraic) groups play a special role in this type of theorems - made precise by [Elekes, Szabó].

Definable hypergraphs

- We fix a structure \mathcal{M}, definable sets X_{1}, \ldots, X_{s}, and a definable relation $Q \subseteq \bar{X}=X_{1} \times \ldots \times X_{s}$.
- E.g. $\mathcal{M}=(\mathbb{C},+, \times)$ and $Q, X_{i} \subseteq \mathbb{C}^{d_{i}}$ are constructible sets; or $\mathcal{M}=(\mathbb{R},+, \times)$ and $Q, X_{i} \subseteq \mathbb{R}^{d_{i}}$ are semi-algebraic sets.
- Write $A_{i} \subseteq_{n} X_{i}$ if $A_{i} \subseteq X_{i}$ with $\left|A_{i}\right| \leq n$.
- By a grid on \bar{X} we mean a set $\bar{A} \subseteq \bar{X}$ with $\bar{A}=A_{1} \times \ldots \times A_{s}$ and $A_{i} \subseteq X_{i}$.
- By an n-grid on \bar{X} we mean a grid $\bar{A}=A_{1} \times \ldots \times A_{s}$ with $A_{i} \subseteq_{n} X_{i}$.

Fiber-algebraic relations

- A relation $Q \subseteq \bar{X}$ is fiber-algebraic if there is some $d \in \mathbb{N}$ such that for any $1 \leq i \leq s$ we have

$$
\mathcal{M} \equiv \forall x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{s} \exists^{\leq d} x_{i} Q\left(x_{1}, \ldots, x_{s}\right) .
$$

- E.g. if $Q \subseteq X_{1} \times X_{2} \times X_{3}$ is fiber-algebraic, then for any $A_{i} \subseteq_{n} X_{i}$ we have $\left|Q \cap A_{1} \times A_{2} \times A_{3}\right| \leq d n^{2}$.
- Conversely, let a fiber-algebraic $Q \subseteq \mathbb{C}^{3}$ be given by $x_{1}+x_{2}-x_{3}=0$, and let $A_{1}=A_{2}=A_{3}=\{0, \ldots, n-1\}$. Then

$$
\left|Q \cap A_{1} \times A_{2} \times A_{3}\right|=\frac{n(n+1)}{2}=\Omega\left(n^{2}\right)
$$

- This indicates that the upper and lower bounds match for the graph of addition in an abelian group (up to a constant) and the Elekes-Szabó principle suggests that in many situations this is the only possibility.

Grids in general position

- We assume \mathcal{M} is equipped with an integer-valued dimension dim on definable sets. E.g. Zariski dimension on algebraic subsets of \mathbb{C}^{d}, or topological dimension on semialgebraic subsets of \mathbb{R}^{d}.
- Let X be \mathcal{M}-definable and \mathcal{F} a (uniformly) \mathcal{M}-definable family of subset of X. For $\ell \in \mathbb{N}$, a set $A \subseteq X$ is in (\mathcal{F}, ℓ)-general position if $|A \cap F| \leq \ell$ for every $F \in \mathcal{F}$ with $\operatorname{dim}(F)<\operatorname{dim}(X)$.
- Let $X_{i}, i=1, \ldots, s$, be \mathcal{M}-definable sets and $\overline{\mathcal{F}}=\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{s}\right)$, where \mathcal{F}_{i} is a definable family of subsets of X_{i}. A grid \bar{A} on \bar{X} is in $(\overline{\mathcal{F}}, \ell)$-general position if each A_{i} is in $\left(\mathcal{F}_{i}, \ell\right)$-general position.

General position: an example

- E.g. if X is strongly minimal and \mathcal{F} is any definable family of subsets of X, then for any large enough $\ell=\ell(\mathcal{F}) \in \mathbb{N}$, every $A \subseteq X$ is in (\mathcal{F}, ℓ)-general position.
- On the other hand, let $X=\mathbb{C}^{2}$ and let \mathcal{F}_{d} be the family of all algebraic curves of degree d. If $\ell<d$, then any set $A \subseteq X$ is not in $\left(\mathcal{F}_{d}, \ell\right)$-general position.

Generic correspondence with group multiplication

- Let $Q \subseteq \bar{X}$ be a definable relation and (G, \cdot) a type-definable group in \mathbb{M}^{eq} which is connected (i.e. $G=G^{0}$).
- We say that Q is in a generic correspondence with multiplication in G if there exist elements $g_{1}, \ldots, g_{s} \in G(\mathbb{M})$, where \mathbb{M} is a saturated elementary extension of \mathcal{M}, such that:

1. $g_{1} \cdot \ldots \cdot g_{s}=1_{G}$;
2. g_{1}, \ldots, g_{s-1} are independent generics in G over \mathcal{M}, i.e. each g_{i} doesn't belong to any definable set of dimension smaller than G definable over $\mathcal{M} \cup\left\{g_{1}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{s-1}\right\}$;
3. For each $i=1, \ldots, s$ there is a generic element $a_{i} \in X_{i}$ interalgebraic with g_{i} over \mathcal{M}, such that $\models Q\left(a_{1}, \ldots, a_{s}\right)$.

- If X_{i} are irreducible (i.e. can't be split into two definable sets of the same dimension), then (3) holds for all $g_{1}, \ldots, g_{s} \in G$ satisfying (1) and (2), providing a generic finite-to-finite correspondence between Q and the graph of $(s-1)$-fold multiplication in G.

The Elekes-Szabó principle

Let X_{1}, \ldots, X_{s} be irreducible definable sets in \mathcal{M} with $\operatorname{dim}\left(X_{i}\right)=k$. We say that \bar{X} satisfies the Elekes-Szabó principle if for any irreducible fiber-algebraic definable relation $Q \subseteq \bar{X}$, one of the following holds.

1. Q admits power saving: there exist some $\varepsilon \in \mathbb{R}_{>0}$ and some definable families \mathcal{F}_{i} on X_{i} such that: for any $\ell \in \mathbb{N}$ and any n-grid $\bar{A} \subseteq \bar{X}$ in $(\overline{\mathcal{F}}, \ell)$-general position, we have

$$
|Q \cap \bar{A}|=O_{\ell}\left(n^{(s-1)-\varepsilon}\right) .
$$

2. Q is in a generic correspondence with multiplication in a type-definable abelian group of dimension k.

Known cases of the Elekes-Szabó principle

1. [Elekes, Szabó'12] $\mathcal{M}=\mathrm{ACF}_{0}, s=3, k$ arbitrary;
2. [Raz, Sharir, de Zeeuw'18] $\mathcal{M} \models \mathrm{ACF}_{0}, s=4, k=1$;
3. [Bays, Breuillard'18] $\mathcal{M} \models \mathrm{ACF}_{0}, s$ and k arbitrary, recognized that the arising groups are abelian (they work with a more relaxed notion of general position and arbitrary codimension, however no bounds on ε);
4. [C., Starchenko'18] \mathcal{M} is any strongly minimal structure interpretable in a distal structure, $s=3, k=1$.

Related work: [Raz, Sharir, de Zeeuw'15], [Wang'15]; [Bukh, Tsimmerman' 12], [Tao'12]; [Hrushovski'13]; [Raz, Shem-Tov'18]; [Jing, Roy, Tran'19].

Main theorem

Theorem
The Elekes-Szabó principle holds in the following two cases:

1. \mathcal{M} is a stable structure interpretable in a distal structure, with respect to \mathfrak{p}-dimension.
2. \mathcal{M} is an o-minimal structure, with respect to the usual dimension (in this case, on a type-definable generic subset of \bar{X}, we get a definable coordinate-wise bijection of Q with the graph of multiplication of G).

- Moreover, the bound on the power saving exponent ε is explicit.

The o-minimal case, over the reals

- The main difference between stable and o-minimal cases is that in the stable case "generically" means "almost everywhere", and in the o-minimal case it means "on some open definable set" (that may be very small).
- Assume $\mathcal{M}=(\mathbb{R},<, \ldots)$ is o-minimal, with \mathbb{R} the field of real numbers.
- Then, using the theory of o-minimal groups, in the group case of the Main Theorem the conclusion can be made more explicit as follows:
- there is an abelian Lie group G of dimension k, an open neighborhood of identity $U \subseteq G$, for each $i=1, \ldots, s$ open definable $V_{i} \subseteq X_{i}$ and definable homeomorphisms $\pi_{i}: V_{i} \rightarrow U$ such that for all $x_{i} \in V_{i}$ we have

$$
Q\left(x_{1}, \ldots x_{s}\right) \Longleftrightarrow \pi_{1}\left(x_{1}\right) \cdot \ldots \cdot \pi_{s}\left(x_{s}\right)=e
$$

- In particular, this answers a question of Elekes-Szabó.

Main theorem: stable case

- We choose a saturated elementary extension \mathbb{M} of a stable structure \mathcal{M}.
- By a \mathfrak{p}-pair we mean a pair $\left(X, \mathfrak{p}_{X}\right)$, where X is an \mathcal{M}-definable set and $\mathfrak{p}_{X} \in S(\mathcal{M})$ is a complete stationary type on X.
- Assume we are given \mathfrak{p}-pairs $\left(X_{i}, \mathfrak{p}_{i}\right)$ for $1 \leq i \leq s$. We say that a definable $Y \subseteq X_{1} \times \ldots \times X_{s}$ is \mathfrak{p}-generic if $\left.Y \in \mathfrak{p}_{1} \otimes \ldots \otimes \mathfrak{p}_{s}\right|_{\mathbb{M}}$.
- Finally, we define the \mathfrak{p}-dimension via $\operatorname{dim}_{\mathfrak{p}}(Y) \geq k$ if for some projection π of \bar{X} onto k components, $\pi(Y)$ is \mathfrak{p}-generic.
- \mathfrak{p}-dimension enjoys definability/additivity properties that may fail for Morley rank in general ω-stable theories (e.g. DCF_{0}).
- However, if X is a definable subset of finite Morley rank k and degree one, taking \mathfrak{p}_{X} to be the unique type on X of Morley rank k, we have that $k \cdot \operatorname{dim}_{\mathfrak{p}}=\mathrm{MR}$, and the Main Theorem implies that the Elekes-Szabó principle holds with respect to Morley rank in this case.

Distality and abstract incidence bounds, 1

- Distality is used to obtain the following abstract "Szemerédi-Trotter" theorem for relations definable in distal structures, generalizing several results in the literature.

Theorem (C., Galvin, Starchenko'16)
If $E \subseteq U \times V$ is a binary relation definable in a distal structure \mathcal{M} and E is $K_{t, 2}$-free for some $t \in \mathbb{N}$, then there is some $\delta>0$ such that: for all $A \subseteq_{n} U, B \subseteq_{n} V$ we have $|E \cap A \times B|=O\left(n^{\frac{3}{2}-\delta}\right)$.

- The power saving ε in the main theorem can be estimated explicitly in terms of this δ, and δ - in terms of the size of a distal cell decomposition for E.
- Explicit bounds on δ and/or distal cell decompositions are known in some special cases:

Distality and abstract incidence bounds, 2

- [Szemerédi-Trotter'83] $O\left(n^{\frac{4}{3}}\right)$ for E the point-line incidence relation in \mathbb{R}^{2}.
- Bounds for (semi-)algebraic $R \subseteq M^{d_{1}} \times M^{d_{2}}$ with $\mathcal{M}=\mathbb{R}$ [Fox, Pach, Sheffer, Suk, Zahl'15],
- For $E \subseteq M^{2} \times M^{2}$ for an o-minimal \mathcal{M}, also $O\left(n^{\frac{4}{3}}\right)([C$., Galvin, Starchenko'16] or [Basu, Raz'16]) - optimal; for $E \subseteq M^{d_{1}} \times M^{d_{2}}$ [Anderson'20+].
- For $E \subseteq M^{d_{1}} \times M^{d_{2}}$ with \mathcal{M} locally modular o-minimal, $O_{\gamma}\left(n^{1+\gamma}\right)$ for an arbitrary $\gamma>0$ [Basit, C., Starchenko, Tao, Tran'20].
- $\mathrm{ACF}_{0}, \mathrm{DCF}_{0}, \mathrm{CCM}$ - stable with distal expansions (but no explicit bounds are known for the latter two).

Recovering groups from abelian s-gons

- Let \mathcal{M} be stable (the o-minimal case is analogous, but easier).
- An s-gon over A is a tuple a_{1}, \ldots, a_{s} such that any $s-1$ of its elements are independent over A, and any element in it is in the algebraic closure of the other ones and A.
- We say that an s-gon is abelian if, after any permutation of its elements, we have $a_{1} a_{2} \downarrow_{\text {acl }_{A}\left(a_{1} a_{2}\right) \cap a \mathrm{al}_{A}\left(a_{3} \ldots a_{S}\right)} a_{3} \ldots a_{S}$.
- If (G, \cdot) is a type-definable abelian group, g_{1}, \ldots, g_{s-1} are independent generics in G and $g_{s}:=g_{1} \cdot \ldots \cdot g_{s-1}$, then g_{1}, \ldots, g_{s} is an abelian s-gon (associated to G).
- Conversely,

Theorem

Let $s \geq 4$ and a_{1}, \ldots, a_{s} be an abelian s-gon. Then there is a type-definable (in $\mathcal{M}^{\text {eq }}$) connected abelian group (G, \cdot) and an abelian s-gon g_{1}, \ldots, g_{s} associated to G, such that after a base change each g_{i} is interalgebraic with a_{i}.

Distinction of cases in the Main Theorem, 1

- Assume $s \geq 4$ (the case $s=3$ is reduced to $s=4$ by a separate argument).
- We may assume $\operatorname{dim}(Q)=s-1$, and let $\bar{a}=\left(a_{1}, \ldots, a_{s}\right)$ in \mathbb{M} be a generic tuple in Q over \mathcal{M}.
- As Q is fiber-algebraic, \bar{a} is an s-gon over \mathcal{M}.

Theorem

One of the following is true:

1. For $u=\left(a_{1}, a_{2}\right)$ and $v=\left(a_{3}, \ldots, a_{s}\right)$ we have $u \downarrow_{\operatorname{acl}_{M}(u) \operatorname{Racl}_{M}(v)} v$.
2. Q, as a relation on $U \times V$, for $U=X_{1} \times X_{2}$ and $V=X_{3} \times \ldots \times X_{s}$, is a "pseudo-plane".

Distinction of cases in the Main Theorem, 2

- In case (2) the incidence bound for distal relations can be applied inductively to obtain power saving $O\left(n^{(s-1)-\varepsilon}\right)$ for Q.
- Thus we may assume that that for any permutation of $\{1, \ldots, s\}$ we have

$$
a_{1} a_{2} \downarrow_{\operatorname{acl}_{M}\left(a_{1} a_{2}\right) \operatorname{Macl}_{M}\left(a_{3} \ldots a_{S}\right)} a_{3} \ldots a_{s},
$$

i.e. the s-gon \bar{a} is abelian.

- Hence the previous theorem can be applied to establish generic correspondence with a type-definable abelian group.

Thank you!

