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Setting

I T is a complete first-order theory in a language L, countable
for simplicity.

I M |= T — a monster model, κ (M)-saturated for some
sufficiently large strong limit cardinal κ (M).

I G — a definable group (over ∅ for simplicity).
I As usual, for any set A we denote by Sx (A) the (compact,

Hausdorff) space of types (in the variable x) over A and by
SG (A) ⊆ Sx (A) the space of types in G .
Defx (A) denotes the boolean algebra of A-definable subsets of
M.

I G acts naturally on SG (M) by homeomorphisms:
for a |= p (x) ∈ SG (M) and g ∈ G (M),
g · p = tp (g · a) =

{
φ (x) ∈ L (M) : φ

(
g−1 · x

)
∈ p
}
.

I From now on T will be NIP.



Model-theoretic connected components

Let A be a small subset of M. We define:
I G 0

A =
⋂
{H ≤ G : H is A-definable, of finite index}.

I G 00
A =⋂
{H ≤ G : H is type-definable over A, of bounded index}.

I G∞A =⋂
{H ≤ G : H is Aut (M /A)-invariant, of bounded index}.

I Of course G 0
A ⊇ G 00

A ⊇ G∞A , and in general all these subgroups
get smaller as A grows.



Connected components in NIP

Fact
Let T be NIP. Then for every small set A we have:

I [Baldwin-Saxl] G 0
∅ = G 0

A,
I [Shelah] G 00

∅ = G 00
A ,

I [Shelah for abelian groups, Gismatullin in general] G∞∅ = G∞A .
I All these are normal Aut (M)-invariant subgroups of G of

bounded index. We will be omitting ∅ in the subscript.

Example
[Conversano, Pillay] There are NIP groups in which G 00 6= G∞ (G

is a saturated elementary extension of ˜SL (2,R), the universal cover
of SL (2,R), in the language of groups. G is not actually denable in
an o-minimal structure, but one can give another closely related
example which is).



The logic topology on G/G 00

I Let π : G → G/G 00 be the quotient map.
I We endow G/G 00 with the logic topology: a set S ⊆ G/G 00

is closed iff π−1 (S) is type-definable over some (any) small
model M.

I With this topology, G/G 00 is a compact topological group.
I In particular, there is a normalized left-invariant Haar

probability measure h0 on it.



Examples

1. If G 0 = G 00 (e.g. G is a stable group), then G/G 00 is a
profinite group: it is the inverse image of the groups G/H,
where H ranges over all definable subgroups of finite index.

2. If G = SO (2,R) is the circle group defined in a real closed
field R, then G 00 is the set of infinitesimal elements of G and
G/G 00 is canonically isomorphic to the standard circle group
SO (2,R).

3. More generally, if G is any definably compact group defined in
an o-minimal expansion of a field, then G/G 00 is a compact
Lie group. This is part of the content of Pillay’s conjecture
(now a theorem).



Measures

I A Keisler measure µ over a set of parameters A ⊆M is a
finitely additive probability measure on the boolean algebra
Defx (A).

I S (µ) denotes the support of µ, i.e. the closed subset of Sx (A)
such that if p ∈ S (µ), then µ (φ (x)) > 0 for all φ (x) ∈ p.

I Let Mx (A) be the space of Keisler measures over A. It can be
naturally viewed as a closed subset of [0, 1]L(A) with the
product topology, so Mx (A) is compact. Every type can be
associated with a Dirac measure concentrated on it, thus
Sx (A) is a closed subset of Mx (A).

I There is a canonical bijection {Keisler measures over A} ↔
{Regular Borel probability measures on Sx (A)}.



The weak law of large numbers

I Let (X , µ) be a probability space.
I Given a set S ⊆ X and x1, . . . , xn ∈ X , we define

Av (x1, . . . , xn; S) = 1
n |S ∩ {x1, . . . , xn}|.

I For n ∈ ω, let µn be the product measure on X n.

Fact
(Weak law of large numbers) Let S ⊆ X be measurable and fix
ε > 0. Then for any n ∈ ω we have:

µn (x̄ ∈ X n : |Av (x1, . . . , xn; S)− µ (S)| ≥ ε) ≤ 1
4nε2

.



A uniform version for families of finite VC dimension

Fact
[VC theorem] Let (X , µ) be a probability space, and let F be a
family of measurable subsets of X of finite VC-dimension d such
that:
1. for each n, the function

fn (x1, . . . , xn) = supS∈F |Av (x1, . . . , xn; S)− µ (S)| is a
measurable function from X n to R;

2. for each n, the function gn (x1, . . . , xn, x ′1, . . . , x
′
n) =

supS∈F |Av (x1, . . . , xn; S)− Av (x ′1, . . . , x
′
n; S)| from X 2n to R

is measurable.
Then for every ε > 0 and n ∈ ω we have:

µn
(
sup
S∈F
|Av (x1, . . . , xn; S)− µ (S)| > ε

)
≤ 8O

(
nd
)
exp
(
−nε2

32

)
.



Approximating measures by types

I In particular this implies that in NIP measures can be
approximated by the averages of types:

Corollary
(*) [Hrushovski, Pillay] Let T be NIP, µ ∈Mx (A), φ (x , y) ∈ L
and ε > 0 arbitrary. Then there are some p0, . . . , pn−1 ∈ S (µ) such
that µ (φ (x , a)) ≈ε Av (p0, . . . , pn−1;φ (x , a)) for all a ∈M.



Definably amenable groups

Definition
A definable group G is definably amenable if there is a global (left)
G -invariant measure on G .

I If for some model M there is a left-invariant Keisler measure
µ0 on M-definable sets (e.g. G (M) is amenable as a discrete
group), then G is definably amenable.

I Any stable groups is definably amenable. In particular the free
group F2 is known by the work of Sela to be stable as a pure
group, and hence is definably amenable.

I Definably compact groups in o-minimal structures are
definably amenable.

I If K is an algebraically closed valued field or a real closed field
and n > 1, then SL (n,K ) is not definably amenable.

I Any pseudo-finite group is definably amenable.



Problem

I Problem. Classify all G -invariant measures in a definably
amenable group (to some extent)?

I The set of measures on S (M) can be naturally viewed as a
subset of C ∗ (S (M)), the dual space of the topological vector
space of continuous functions on S (M), with the weak∗

topology of pointwise convergence (i.e. µi → µ if´
fdµi →

´
fdµ for all f ∈ C (S (M))). One can check that

this topology coincides with the logic topology on the space of
M (M) that we had introduced before.

I The set of G -invariant measures is a compact convex subset,
and extreme points of this set are called ergodic measures.

I Using Choquet theory, one can represent arbitrary measures as
integral averages over extreme points.

I We will characterize ergodic measures on G as liftings of the
Haar measure on G/G 00 w.r.t. certain “generic” types.



Invariant and strongly f -generic types
Fact

1. [Hrushovski, Pillay] If T is NIP and p ∈ Sx (M) is invariant
over M, then it is Borel-definable over M: for every
φ (x , y) ∈ L the set {a ∈M : φ (x , a) ∈ p} is defined by a
finite boolean combination of type-definable sets over M.

2. [Shelah] If T is NIP and M is a small model, then there are at
most 2|M| global M-invariant types.

Definition
A global type p ∈ Sx (M) is strongly f -generic if there is a small
model M such that g · p is invariant over M for all g ∈ G (M).

Fact

1. An NIP group is definably amenable iff there is a strongly
f -generic type.

2. If p ∈ SG (M) is strongly f -generic then
Stab (p) = G 00 = G∞.



f -generic types
Definition
A global type p ∈ Sx (M) is f -generic if for every φ (x) ∈ p and
some/any small model M such that φ (x) ∈ L (M) and any
g ∈ G (M), g · φ (x) contains a global M-invariant type.

Theorem
Let G be an NIP group, and p ∈ SG (M).
1. G is definably amenable iff it has a bounded orbit (i.e. exists

p ∈ SG (M) s.t. |Gp| < κ (M)).
2. If G is definably amenable, then p is f -generic iff it is

G 00-invariant iff Stab (p) has bounded index in G iff the orbit
of p is bounded.

I (1) confirms a conjecture of Petrykowski in the case of NIP
theories (it was previously known in the o-minimal case
[Conversano-Pillay]).

I Our proof uses the theory of forking over models in NIP from
[Ch., Kaplan] (more later in the talk).



f -generic vs strongly f -generic

I Are the notions of f -generic and strongly f -generic different?
I Remark. p ∈ S (M) is strongly f -generic iff it is f -generic and

invariant over some small model M.
I There are f -generic types which are not strongly f -generic

(already in RCF).



Getting a (strongly) f -generic type from a measure

Proposition. Let µ be G -invariant, and assume that p ∈ S (µ).
Then p is f -generic.

Proof.
Fix φ (x) ∈ p, let M be some small model such that φ is defined
over M. By [Ch., Pillay, Simon], every G (M)-invariant measure µ
on S(M) extends to a global G -invariant, M-invariant measure µ′

(one can take an “invariant heir” of µ). As µ|M (φ (x)) > 0, it
follows that φ (x) ∈ q for some q ∈ S (µ′). But every type in the
support of an M-invariant measure is M-invariant.



Getting a measure from an f -generic type

I We explain the connection between G -invariant measures and
f -generic types.

I Let p ∈ SG (M) be f -generic (so in particular gp is
G 00-invariant for all g ∈ G ).

I Let Aφ,p =
{
ḡ ∈ G/G 00 : φ (x) ∈ g · p

}
. It is a measurable

subset of G/G 00 (using Borel-definability of invariant types in
NIP).

Definition
For φ (x) ∈ L (M), we define µp (φ (x)) = h0 (Aφ,p).

I The measure µp is G -invariant and µg ·p = µp for any g ∈ G .



Properties of µp’s

I Lemma. For a fixed formula φ (x , y), the family of all
Aφ(x ,b),p where b varies over M and p varies over all f -generic
types. Then Aφ has finite VC-dimension.

I Corollary. For fixed φ (x) ∈ L (M) and an f -generic
p ∈ Sx (M) , the family F =

{
g · Aφ(x),p : g ∈ G/G 00} has

finite VC-dimension (as changing the formula we can assume
that every translate of φ is an instance of φ).

Lemma (**). For any φ (x) ∈ L, ε > 0 and a finite collection of
f -generic types (pi )i<n there are some g0, . . . , gm−1 ∈ G such that
for any g ∈ G and i < n we have
µpi (g · φ (x)) ≈ε Av (gj · g · φ (x) ∈ pi ).



Proof.
Enough to be able to apply the VC-theorem to the family F .

I It has finite VC-dimension by the previous corollary
I We have to check that fn, gn are measurable for all n ∈ ω.

Using invariance of h0 this can be reduced to checking that
certain analytic sets are measurable.

I As L is countable, G/G 00 is a Polish space (the logic topology
can be computed over a fixed countable model). Analytic sets
in Polish spaces are universally measurable.

I Remark. In fact the proof shows that one can replace finite by
countable.



Properties of µp’s

Proposition. Let p be an f -generic type, and assume that q ∈ Gp.
Then q is f -generic and µp = µq.

Proof.
I q is f -generic as the space of f -generic types is closed.
I Fix some φ (x). It follows from Lemma (**) that the measure
µp (φ (x)) is determined up to ε by knowing which cosets of
φ (x) belong to p. These cosets are the same for both types p
and q by topological considerations on Sx (M).

I It follows that for a given G -invariant measure µ, the set of
f -generic types p for which µp = µ is closed.



Properties of µp’s

Proposition. Let p be f -generic. Then for any definable set φ (x),
if µp (φ (x)) > 0, then there is a finite union of translates of φ (x)
which has µp-measure 1.

Proof.
Can cover the support S (µp) by finitely many translates using the
previous lemma and compactness.



Properties of µp’s
Lemma (***). Let µ be G -invariant. Then for any ε > 0 and
φ (x , y), there are some f -generic p0, . . . , pn−1 such that
µ (φ (x , b)) ≈ε Av (µpi (φ (x , b))) for any b ∈M.

Proof.
I WLOG every translate of an instance of φ is an instance of φ.
I On the one hand, by Lemma (*) and G -invariance of µ there

are types p0, . . . , pn−1 from the support of µ such that
µ (φ (x , b)) ≈ε Av (gφ (x , b) ∈ pi ) for any g ∈ G and b ∈M.

I We know that pi ’s are f -generic.
I Then, by Lemma (**) for every b ∈M there are some

g0, . . . , gm−1 ∈ G such that for any i < n,
µpi (φ (x , b)) ≈ε Av (gj · φ (x , b) ∈ pi ).

I Combining and re-enumerating we get that
µ (φ (x , b)) ≈2ε Av (µpi (φ (x , b))).



Ergodic measures

Theorem
Global ergodic measures are exactly the measures of the form µp
for p varying over f -generic types.



Proof: µp’s are ergodic.

I We had defined ergodic measures as extreme points of the
convex set of G -invariant measures.

I Equivalently, a G -invariant measure µ ∈Mx (M) is ergodic if
µ (Y ) is either 0 or 1 for every Borel set Y ⊆ Sx (M) such that
µ (Y4gY ) = 0 for all g ∈ G .

I Fix a global f -generic type p, and for any Borel set X ⊆ S (M)
let fp (X ) =

{
g ∈ G/G 00 : gp ∈ X

}
. Note that fp (X ) is

Borel. The measure µp defined earlier extends naturally to all
Borel sets by taking µp (X ) = h0 (fp (X )), defined this way it
coincides with the usual extension of a finitely additive Keisler
measure µp to a regular Borel measure.

I As h0 is ergodic on G/G 00 and fp (X4gX ) = fp (X )4gfp (X ),
it follows that µp is ergodic.



Proof: µ ergodic ⇒ µ = µp for some f -generic p
I Let µ be an ergodic measure.
I By Lemma (**) , as L is countable, µ can be written as a limit

of a sequence of averages of measures of the form µp.
I Let S be the set of all µp’s ocurring in this sequence, S is

countable.
I It follows that µ ∈ ConvS , and it is still an extreme point of

ConvS .
I Fact [e.g. Bourbaki]. Let E be a real, locally convex, linear

Hausdorff space, and C a compact convex subset of E , S ⊆ C .
Then C = ConvS iff S includes all extreme points of C .

I Then actually µ ∈ S .
I It remains to check that if p is the limit of a countable set of

pi ’s along some ultrafilter U , then also the µpi ’s converge to
µp along U . By the countable version of Lemma (*), given
ε > 0 and φ (x), we can find g0, . . . , gm−1 ∈ G such that
µpi (φ (x)) ≈ε Av (gjφ (x) ∈ pi ) for all i ∈ ω. But then
{i ∈ ω : µpi (φ (x)) ≈ε µp (φ (x))} ∈ U , so we can conclude.



Several notions of genericity

I Stable setting: a formula φ (x) is generic if there are finitely
many elements g0, . . . , gn−1 ∈ G such that
G =

⋃
i<n gi · φ (x).

I A global type p ∈ Sx (M) is generic if every formula in it is
generic.

I Problem: generic types need not exist in unstable groups.
I Several weakenings coming from different contexts were

introduced by different people (in the definably amenable
setting, and more generally).



Several notions of genericity

Theorem
Let G be definably amenable, NIP. Then the following are
equivalent:
1. φ (x) is f -generic (i.e. belongs to an f -generic type),
2. φ (x) is weakly generic (i.e. exists a non-generic ψ (x) such

that φ (x) ∪ ψ (x) is generic),
3. φ (x) does not G-divide (i.e. there is no sequence (gi )i∈ω in G

and k ∈ ω such that {giφ (x)}i∈ω is k-inconsistent),
4. µ (φ (x)) > 0 for some G-invariant measure µ,
5. µp (φ (x)) > 0 for some ergodic measure µp.

If there is a generic type, then all these notions are equivalent to
“φ (x) is generic”. G admits a generic type iff it is uniquely ergodic.



Some comments on the proof

The hardest step is to show that if φ (x) is f -generic, then it has
positive measure.

I Key proposition. Let φ (x) be f -generic. Then there are
some global f -generic types p0, . . . , pn−1 ∈ SG (M) such that
for every g ∈ G (M) we have gφ (x) ∈ pi for some i < n.

I (as then µpi (φ (x)) ≥ 1
n for some i < n).

I Idea of the proof:



Dividing and forking

Fact
Let T be NIP, M a small model and φ (x , a) is a formula. Then the
following are equivalent:
1. There is a global M-invariant type p (x) such that φ (x , a) ∈ p.
2. φ (x , a) does not divide over M.

I This is a combination of non-forking=invariance for global
types and a theorem of [Ch.,Kaplan] on forking=dividing for
formulas in NIP.

I With this fact, a formula φ (x) is f -generic iff for every M over
which it is defined, and for every g ∈ G (M), gφ (x) does not
divide over M.



Adding G to the picture

Theorem
Let G be definably amenable, NIP.
1. Non-f -generic formulas form an ideal (in particular every

f -generic formula extends to a global f -generic type by Zorn’s
lemma).

2. Moreover, this ideal is S1 in the terminology of Hrushovski:
assume that φ (x) is f -generic and definable over M. Let
(gi )i∈ω be an M-indiscernible sequence, then g0φ (x) ∧ g1φ (x)
is f -generic.

3. There is a form of lowness for f -genericity, i.e. for any formula
φ (x , y) ∈ L (M), the set
Bφ = {b ∈M : φ (x , b) is not f -generic} is type-definable over
M.



(p, q)-theorem

Definition
We say that F = {Xa : a ∈ A} satisfies the (p, q)-property if for
every A′ ⊆ A with |A′| ≥ p there is some A′′ ⊆ A′ with |A′′| ≥ q
such that

⋂
a∈A′′ Xa 6= ∅.

Fact
[Alon, Kleitman]+[Matousek] Let F be a finite family of subsets of
S of finite VC-dimension d. Assume that p ≥ q � d. Then there
is an N = N (p, q) such that if F satisfies the (p, q)-property, then
there are b0, . . . , bN ∈ S such that for every a ∈ A, bi ∈ Xa for
some i < N.

I The point is that if φ (x) is f -generic, then the family
F = {gφ (x) ∩ Y : g ∈ G} with Y the set of global f -generic
types, satisfies the (p, q)-property for some p and q.



Problem

I We return to the topological dynamics point of view (which
was the original motivation of Newelski).

I The set of weakly generic types is the closure of the set of
almost periodic types in (G , SG (M)).

I By the theorem, a type is weakly generic iff it is f -generic.
I Minimal flows are exactly of the form S (µp) with p varying

over f -generic types.
I We still don’t know however if weakly generic types are almost

periodic, equivalently if p ∈ S (µp) for an f -generic type p.



Ellis group conjecture

I Let T be NIP, M a small model, and let SG ,M (M) be the
space of types in SG (M) finitely satisfiably in M.

I We consider the dynamical system (G , SG ,M (M)), then its
enveloping Ellis semigroup is E (M) = (SG ,M (M) , ·) where
p · q = tp (a · b/M) for some/any b |= q, a |= p|M b. This
operation is left-continuous

I LetM be a minimal ideal in E (M), and let u ∈M be an
idempotent. Then u · M is a group, and it doesn’t depend on
the choice ofM and u. We call it the Ellis group (attached to
the data).

I There is a natural surjective group homomorphism
π : u · M → G/G 00.

I Conjecture [Newelski]: G/G 00 is isomorphic to the Ellis
group when G is NIP.

I [Gismatullin, Penazzi, Pillay] SL2 (R) is a counter-example.



Ellis group conjecture

I Corrected conjecture [Pillay]: Let G be definably amenable,
NIP. Then π is an isomorphism of G/G 00 and the Ellis group.

I Partial results:
I NIP with fsg [Pillay]
I groups definable in o-minimal theories [Ch., Pillay, Simon]

Theorem
The Ellis group conjecture holds.
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