Definably amenable groups in NIP

Artem Chernikov

(Paris 7)

Lyon,

21 Nov 2013

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

► Joint work with Pierre Simon.

◆□ > < 個 > < E > < E > E 9 < 0</p>

Setting

- ► *T* is a complete first-order theory in a language *L*, countable for simplicity.
- M ⊨ T a monster model, κ (M)-saturated for some sufficiently large strong limit cardinal κ (M).
- G a definable group (over \emptyset for simplicity).
- As usual, for any set A we denote by $S_x(A)$ the (compact, Hausdorff) space of types (in the variable x) over A and by $S_G(A) \subseteq S_x(A)$ the space of types in G. Def_x(A) denotes the boolean algebra of A-definable subsets of \mathbb{M} .
- ► G acts naturally on $S_G(\mathbb{M})$ by homeomorphisms: for $a \models p(x) \in S_G(\mathbb{M})$ and $g \in G(\mathbb{M})$, $g \cdot p = \operatorname{tp}(g \cdot a) = \{\phi(x) \in L(\mathbb{M}) : \phi(g^{-1} \cdot x) \in p\}.$
- From now on T will be NIP.

Model-theoretic connected components

Let A be a small subset of \mathbb{M} . We define:

- $G_A^0 = \bigcap \{ H \le G : H \text{ is } A \text{-definable, of finite index} \}.$
- $G_A^{00} = \bigcap \{ H \le G : H \text{ is type-definable over } A, \text{ of bounded index} \}.$
- $G_A^{\infty} = \bigcap \{ H \leq G : H \text{ is Aut } (\mathbb{M} / A) \text{-invariant, of bounded index} \}.$
- ▶ Of course $G_A^0 \supseteq G_A^{00} \supseteq G_A^\infty$, and in general all these subgroups get smaller as A grows.

ション ふゆ く 山 マ チャット しょうくしゃ

Connected components in NIP

Fact

Let T be NIP. Then for every small set A we have:

• [Baldwin-Saxl]
$$G_{\emptyset}^{0} = G_{A}^{0}$$
,

- [Shelah] $G_{\emptyset}^{00} = G_A^{00}$,
- [Shelah for abelian groups, Gismatullin in general] $G_{\emptyset}^{\infty} = G_A^{\infty}$.
- ► All these are normal Aut (M)-invariant subgroups of G of bounded index. We will be omitting Ø in the subscript.

Example

[Conversano, Pillay] There are NIP groups in which $G^{00} \neq G^{\infty}$ (*G* is a saturated elementary extension of $\widetilde{SL}(2,\mathbb{R})$, the universal cover of $SL(2,\mathbb{R})$, in the language of groups. *G* is not actually denable in an *o*-minimal structure, but one can give another closely related example which is).

The logic topology on G/G^{00}

- Let $\pi: G \to G/G^{00}$ be the quotient map.
- We endow G/G⁰⁰ with the logic topology: a set S ⊆ G/G⁰⁰ is closed iff π⁻¹(S) is type-definable over some (any) small model M.
- With this topology, G/G^{00} is a compact topological group.

In particular, there is a normalized left-invariant Haar probability measure h₀ on it.

Examples

- 1. If $G^0 = G^{00}$ (e.g. G is a stable group), then G/G^{00} is a profinite group: it is the inverse image of the groups G/H, where H ranges over all definable subgroups of finite index.
- 2. If $G = SO(2, \mathcal{R})$ is the circle group defined in a real closed field \mathcal{R} , then G^{00} is the set of infinitesimal elements of G and G/G^{00} is canonically isomorphic to the standard circle group $SO(2, \mathbb{R})$.
- 3. More generally, if G is any definably compact group defined in an o-minimal expansion of a field, then G/G^{00} is a compact Lie group. This is part of the content of Pillay's conjecture (now a theorem).

Measures

- A Keisler measure µ over a set of parameters A ⊆ M is a finitely additive probability measure on the boolean algebra Def_x (A).
- S (μ) denotes the support of μ, i.e. the closed subset of S_x (A) such that if p ∈ S (μ), then μ (φ(x)) > 0 for all φ(x) ∈ p.
- Let 𝔐_x (A) be the space of Keisler measures over A. It can be naturally viewed as a closed subset of [0, 1]^{L(A)} with the product topology, so 𝔐_x (A) is compact. Every type can be associated with a Dirac measure concentrated on it, thus S_x (A) is a closed subset of 𝔐_x (A).
- ► There is a canonical bijection {Keisler measures over A} ↔ {Regular Borel probability measures on S_x (A)}.

The weak law of large numbers

- Let (X, μ) be a probability space.
- Given a set $S \subseteq X$ and $x_1, \ldots, x_n \in X$, we define Av $(x_1, \ldots, x_n; S) = \frac{1}{n} |S \cap \{x_1, \ldots, x_n\}|.$
- For $n \in \omega$, let μ^n be the product measure on X^n .

Fact

(Weak law of large numbers) Let $S \subseteq X$ be measurable and fix $\varepsilon > 0$. Then for any $n \in \omega$ we have:

$$\mu^{n}\left(\bar{x}\in X^{n}:\left|\operatorname{Av}\left(x_{1},\ldots,x_{n};S\right)-\mu\left(S\right)\right|\geq\varepsilon\right)\leq\frac{1}{4n\varepsilon^{2}}.$$

ション ふゆ く 山 マ チャット しょうくしゃ

A uniform version for families of finite VC dimension

Fact

[VC theorem] Let (X, μ) be a probability space, and let \mathcal{F} be a family of measurable subsets of X of finite VC-dimension d such that:

- 1. for each n, the function $f_n(x_1,...,x_n) = \sup_{S \in \mathcal{F}} |Av(x_1,...,x_n;S) - \mu(S)| \text{ is a}$ measurable function from X^n to \mathbb{R} ;
- 2. for each n, the function $g_n(x_1, \ldots, x_n, x'_1, \ldots, x'_n) = \sup_{S \in \mathcal{F}} |Av(x_1, \ldots, x_n; S) Av(x'_1, \ldots, x'_n; S)|$ from X^{2n} to \mathbb{R} is measurable.

Then for every $\varepsilon > 0$ and $n \in \omega$ we have:

$$\mu^{n}\left(\sup_{S\in\mathcal{F}}\left|\operatorname{Av}\left(x_{1},\ldots,x_{n};S\right)-\mu\left(S\right)\right|>\varepsilon\right)\leq8O\left(n^{d}\right)\exp\left(-\frac{n\varepsilon^{2}}{32}\right)$$

Approximating measures by types

In particular this implies that in NIP measures can be approximated by the averages of types:

Corollary

(*) [Hrushovski, Pillay] Let T be NIP, $\mu \in \mathfrak{M}_{x}(A)$, $\phi(x, y) \in L$ and $\varepsilon > 0$ arbitrary. Then there are some $p_{0}, \ldots, p_{n-1} \in S(\mu)$ such that $\mu(\phi(x, a)) \approx^{\varepsilon} Av(p_{0}, \ldots, p_{n-1}; \phi(x, a))$ for all $a \in \mathbb{M}$.

Definably amenable groups

Definition

A definable group G is *definably amenable* if there is a global (left) G-invariant measure on G.

- If for some model M there is a left-invariant Keisler measure μ_0 on M-definable sets (e.g. G(M) is amenable as a discrete group), then G is definably amenable.
- ► Any stable groups is definably amenable. In particular the free group F₂ is known by the work of Sela to be stable as a pure group, and hence is definably amenable.
- Definably compact groups in *o*-minimal structures are definably amenable.
- If K is an algebraically closed valued field or a real closed field and n > 1, then SL(n, K) is not definably amenable.
- Any pseudo-finite group is definably amenable.

Problem

- Problem. Classify all G-invariant measures in a definably amenable group (to some extent)?
- The set of measures on S (M) can be naturally viewed as a subset of C* (S (M)), the dual space of the topological vector space of continuous functions on S (M), with the weak* topology of pointwise convergence (i.e. µ_i → µ if ∫ fdµ_i → ∫ fdµ for all f ∈ C (S (M))). One can check that this topology coincides with the logic topology on the space of 𝔅(M) that we had introduced before.
- The set of G-invariant measures is a compact convex subset, and extreme points of this set are called *ergodic* measures.
- Using Choquet theory, one can represent arbitrary measures as integral averages over extreme points.
- ► We will characterize ergodic measures on G as liftings of the Haar measure on G/G⁰⁰ w.r.t. certain "generic" types.

Invariant and strongly f-generic types Fact

- [Hrushovski, Pillay] If T is NIP and p ∈ S_x (M) is invariant over M, then it is Borel-definable over M: for every φ(x, y) ∈ L the set {a ∈ M : φ(x, a) ∈ p} is defined by a finite boolean combination of type-definable sets over M.
- [Shelah] If T is NIP and M is a small model, then there are at most 2^{|M|} global M-invariant types.

Definition

A global type $p \in S_{\times}(\mathbb{M})$ is strongly *f*-generic if there is a small model *M* such that $g \cdot p$ is invariant over *M* for all $g \in G(\mathbb{M})$.

Fact

1. An NIP group is definably amenable iff there is a strongly *f*-generic type.

2. If
$$p \in S_G(\mathbb{M})$$
 is strongly f-generic then
Stab $(p) = G^{00} = G^{\infty}$.

f-generic types

Definition

A global type $p \in S_x(\mathbb{M})$ is *f*-generic if for every $\phi(x) \in p$ and some/any small model *M* such that $\phi(x) \in L(M)$ and any $g \in G(\mathbb{M})$, $g \cdot \phi(x)$ contains a global *M*-invariant type.

Theorem

Let G be an NIP group, and $p \in S_G(\mathbb{M})$.

- 1. G is definably amenable iff it has a bounded orbit (i.e. exists $p \in S_G(\mathbb{M})$ s.t. $|Gp| < \kappa(\mathbb{M})$).
- 2. If G is definably amenable, then p is f-generic iff it is G^{00} -invariant iff Stab (p) has bounded index in G iff the orbit of p is bounded.
- (1) confirms a conjecture of Petrykowski in the case of NIP theories (it was previously known in the o-minimal case [Conversano-Pillay]).
- Our proof uses the theory of forking over models in NIP from [Ch., Kaplan] (more later in the talk).

f-generic vs strongly *f*-generic

- ► Are the notions of *f*-generic and strongly *f*-generic different?
- ► Remark. p ∈ S (M) is strongly f-generic iff it is f-generic and invariant over some small model M.

うして ふゆう ふほう ふほう うらつ

 There are *f*-generic types which are not strongly *f*-generic (already in RCF). Getting a (strongly) *f*-generic type from a measure

Proposition. Let μ be *G*-invariant, and assume that $p \in S(\mu)$. Then p is *f*-generic.

Proof.

Fix $\phi(x) \in p$, let M be some small model such that ϕ is defined over M. By [Ch., Pillay, Simon], every G(M)-invariant measure μ on S(M) extends to a global G-invariant, M-invariant measure μ' (one can take an "invariant heir" of μ). As $\mu|_M(\phi(x)) > 0$, it follows that $\phi(x) \in q$ for some $q \in S(\mu')$. But every type in the support of an M-invariant measure is M-invariant.

Getting a measure from an f-generic type

- We explain the connection between G-invariant measures and f-generic types.
- ▶ Let $p \in S_G(\mathbb{M})$ be *f*-generic (so in particular *gp* is G^{00} -invariant for all $g \in G$).
- Let A_{φ,p} = { ḡ ∈ G/G⁰⁰ : φ(x) ∈ g ⋅ p }. It is a measurable subset of G/G⁰⁰ (using Borel-definability of invariant types in NIP).

Definition

For $\phi(x) \in L(\mathbb{M})$, we define $\mu_p(\phi(x)) = h_0(A_{\phi,p})$.

• The measure μ_p is *G*-invariant and $\mu_{g \cdot p} = \mu_p$ for any $g \in G$.

Properties of μ_p 's

- Lemma. For a fixed formula φ (x, y), the family of all A_{φ(x,b),p} where b varies over M and p varies over all f-generic types. Then A_φ has finite VC-dimension.
- Corollary. For fixed φ(x) ∈ L(M) and an f-generic p ∈ S_x (M), the family F = {g ⋅ A_{φ(x),p} : g ∈ G/G⁰⁰} has finite VC-dimension (as changing the formula we can assume that every translate of φ is an instance of φ).

Lemma ().** For any $\phi(x) \in L$, $\varepsilon > 0$ and a finite collection of f-generic types $(p_i)_{i < n}$ there are some $g_0, \ldots, g_{m-1} \in G$ such that for any $g \in G$ and i < n we have $\mu_{p_i}(g \cdot \phi(x)) \approx^{\varepsilon} \operatorname{Av}(g_j \cdot g \cdot \phi(x) \in p_i).$

Proof.

Enough to be able to apply the VC-theorem to the family \mathcal{F} .

- ► It has finite VC-dimension by the previous corollary
- We have to check that f_n, g_n are measurable for all n ∈ ω. Using invariance of h₀ this can be reduced to checking that certain analytic sets are measurable.
- ► As L is countable, G/G⁰⁰ is a Polish space (the logic topology can be computed over a fixed countable model). Analytic sets in Polish spaces are universally measurable.
- Remark. In fact the proof shows that one can replace finite by countable.

Properties of μ_p 's

Proposition. Let *p* be an *f*-generic type, and assume that $q \in \overline{Gp}$. Then *q* is *f*-generic and $\mu_p = \mu_q$.

Proof.

- ► q is f-generic as the space of f-generic types is closed.
- Fix some φ (x). It follows from Lemma (**) that the measure μ_p (φ (x)) is determined up to ε by knowing which cosets of φ (x) belong to p. These cosets are the same for both types p and q by topological considerations on S_x (M).

It follows that for a given G-invariant measure μ, the set of f-generic types p for which μ_p = μ is closed. **Proposition.** Let *p* be *f*-generic. Then for any definable set $\phi(x)$, if $\mu_p(\phi(x)) > 0$, then there is a finite union of translates of $\phi(x)$ which has μ_p -measure 1.

Proof.

Can cover the support $S(\mu_p)$ by finitely many translates using the previous lemma and compactness.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Properties of μ_p 's

Lemma (*).** Let μ be *G*-invariant. Then for any $\varepsilon > 0$ and $\phi(x, y)$, there are some *f*-generic p_0, \ldots, p_{n-1} such that $\mu(\phi(x, b)) \approx^{\varepsilon} Av(\mu_{p_i}(\phi(x, b)))$ for any $b \in \mathbb{M}$. Proof.

- WLOG every translate of an instance of ϕ is an instance of ϕ .
- On the one hand, by Lemma (*) and G-invariance of µ there are types p₀,..., p_{n-1} from the support of µ such that µ (φ (x, b)) ≈^ε Av (gφ (x, b) ∈ p_i) for any g ∈ G and b ∈ M.

- ▶ We know that *p_i*'s are *f*-generic.
- ▶ Then, by Lemma (**) for every $b \in \mathbb{M}$ there are some $g_0, \ldots, g_{m-1} \in G$ such that for any i < n, $\mu_{p_i}(\phi(x, b)) \approx^{\varepsilon} \operatorname{Av}(g_j \cdot \phi(x, b) \in p_i)$.
- Combining and re-enumerating we get that $\mu(\phi(x, b)) \approx^{2\varepsilon} Av(\mu_{p_i}(\phi(x, b))).$

Ergodic measures

Theorem

Global ergodic measures are exactly the measures of the form μ_p for p varying over f-generic types.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Proof: μ_p 's are ergodic.

- We had defined ergodic measures as extreme points of the convex set of G-invariant measures.
- Equivalently, a *G*-invariant measure $\mu \in \mathfrak{M}_{\times}(\mathbb{M})$ is *ergodic* if $\mu(Y)$ is either 0 or 1 for every Borel set $Y \subseteq S_{\times}(\mathbb{M})$ such that $\mu(Y \triangle g Y) = 0$ for all $g \in G$.
- Fix a global f-generic type p, and for any Borel set X ⊆ S (M) let f_p(X) = {g ∈ G/G⁰⁰ : gp ∈ X}. Note that f_p(X) is Borel. The measure μ_p defined earlier extends naturally to all Borel sets by taking μ_p(X) = h₀(f_p(X)), defined this way it coincides with the usual extension of a finitely additive Keisler measure μ_p to a regular Borel measure.
- ► As h_0 is ergodic on G/G^{00} and $f_p(X \triangle gX) = f_p(X) \triangle gf_p(X)$, it follows that μ_p is ergodic.

Proof: μ ergodic $\Rightarrow \mu = \mu_p$ for some *f*-generic *p*

- Let μ be an ergodic measure.
- By Lemma (**), as L is countable, μ can be written as a limit of a sequence of averages of measures of the form μ_p.
- ► Let S be the set of all µ_p's ocurring in this sequence, S is countable.
- ► It follows that $\mu \in \overline{\text{Conv}S}$, and it is still an extreme point of $\overline{\text{Conv}S}$.
- Fact [e.g. Bourbaki]. Let E be a real, locally convex, linear Hausdorff space, and C a compact convex subset of E, S ⊆ C. Then C = ConvS iff S includes all extreme points of C.
- Then actually $\mu \in \overline{S}$.
- ▶ It remains to check that if *p* is the limit of a *countable* set of p_i 's along some ultrafilter \mathcal{U} , then also the μ_{p_i} 's converge to μ_p along \mathcal{U} . By the countable version of Lemma (*), given $\varepsilon > 0$ and $\phi(x)$, we can find $g_0, \ldots, g_{m-1} \in G$ such that $\mu_{p_i}(\phi(x)) \approx^{\varepsilon} \operatorname{Av}(g_j\phi(x) \in p_i)$ for all $i \in \omega$. But then $\{i \in \omega : \mu_{p_i}(\phi(x)) \approx^{\varepsilon} \mu_p(\phi(x))\} \in \mathcal{U}$, so we can conclude.

Several notions of genericity

- Stable setting: a formula φ(x) is generic if there are finitely many elements g₀,..., g_{n-1} ∈ G such that G = ⋃_{i < n} g_i · φ(x).
- A global type p ∈ S_x (M) is generic if every formula in it is generic.
- Problem: generic types need not exist in unstable groups.
- Several weakenings coming from different contexts were introduced by different people (in the definably amenable setting, and more generally).

Several notions of genericity

Theorem

Let G be definably amenable, NIP. Then the following are equivalent:

- 1. $\phi(x)$ is f-generic (i.e. belongs to an f-generic type),
- 2. $\phi(x)$ is weakly generic (i.e. exists a non-generic $\psi(x)$ such that $\phi(x) \cup \psi(x)$ is generic),
- 3. $\phi(x)$ does not G-divide (i.e. there is no sequence $(g_i)_{i \in \omega}$ in G and $k \in \omega$ such that $\{g_i \phi(x)\}_{i \in \omega}$ is k-inconsistent),
- 4. $\mu(\phi(x)) > 0$ for some *G*-invariant measure μ ,
- 5. $\mu_p(\phi(x)) > 0$ for some ergodic measure μ_p .

If there is a generic type, then all these notions are equivalent to " $\phi(x)$ is generic". G admits a generic type iff it is uniquely ergodic.

The hardest step is to show that if $\phi(x)$ is *f*-generic, then it has positive measure.

Key proposition. Let φ (x) be f-generic. Then there are some global f-generic types p₀,..., p_{n-1} ∈ S_G (M) such that for every g ∈ G (M) we have gφ(x) ∈ p_i for some i < n.</p>

うして ふゆう ふほう ふほう うらつ

- (as then $\mu_{p_i}(\phi(x)) \ge \frac{1}{n}$ for some i < n).
- Idea of the proof:

Dividing and forking

Fact

Let T be NIP, M a small model and $\phi(x, a)$ is a formula. Then the following are equivalent:

- 1. There is a global M-invariant type p(x) such that $\phi(x, a) \in p$.
- 2. $\phi(x, a)$ does not divide over M.
- This is a combination of non-forking=invariance for global types and a theorem of [Ch.,Kaplan] on forking=dividing for formulas in NIP.
- With this fact, a formula φ(x) is f-generic iff for every M over which it is defined, and for every g ∈ G (M), gφ(x) does not divide over M.

Adding G to the picture

Theorem

Let G be definably amenable, NIP.

- 1. Non-f-generic formulas form an ideal (in particular every f-generic formula extends to a global f-generic type by Zorn's lemma).
- 2. Moreover, this ideal is S1 in the terminology of Hrushovski: assume that $\phi(x)$ is f-generic and definable over M. Let $(g_i)_{i \in \omega}$ be an M-indiscernible sequence, then $g_0\phi(x) \wedge g_1\phi(x)$ is f-generic.
- There is a form of lowness for f-genericity, i.e. for any formula φ(x, y) ∈ L(M), the set B_φ = {b ∈ M : φ(x, b) is not f-generic} is type-definable over M.

(p, q)-theorem

Definition

We say that $\mathcal{F} = \{X_a : a \in A\}$ satisfies the (p, q)-property if for every $A' \subseteq A$ with $|A'| \ge p$ there is some $A'' \subseteq A'$ with $|A''| \ge q$ such that $\bigcap_{a \in A''} X_a \ne \emptyset$.

Fact

[Alon, Kleitman]+[Matousek] Let \mathcal{F} be a finite family of subsets of S of finite VC-dimension d. Assume that $p \ge q \gg d$. Then there is an N = N(p,q) such that if \mathcal{F} satisfies the (p,q)-property, then there are $b_0, \ldots, b_N \in S$ such that for every $a \in A$, $b_i \in X_a$ for some i < N.

The point is that if φ(x) is f-generic, then the family
F = {gφ(x) ∩ Y : g ∈ G} with Y the set of global f-generic types, satisfies the (p, q)-property for some p and q.

Problem

- We return to the topological dynamics point of view (which was the original motivation of Newelski).
- ► The set of weakly generic types is the closure of the set of almost periodic types in (G, S_G (M)).
- ▶ By the theorem, a type is weakly generic iff it is *f*-generic.
- ► Minimal flows are exactly of the form S (µ_p) with p varying over f-generic types.
- We still don't know however if weakly generic types are almost periodic, equivalently if p ∈ S (μ_p) for an f-generic type p.

Ellis group conjecture

- Let T be NIP, M a small model, and let S_{G,M} (M) be the space of types in S_G (M) finitely satisfiably in M.
- We consider the dynamical system (G, S_{G,M}(M)), then its enveloping Ellis semigroup is E (M) = (S_{G,M}(M), ·) where p · q = tp (a · b/M) for some/any b ⊨ q, a ⊨ p|_{M b}. This operation is left-continuous
- Let *M* be a minimal ideal in *E*(*M*), and let *u* ∈ *M* be an idempotent. Then *u* · *M* is a *group*, and it doesn't depend on the choice of *M* and *u*. We call it the Ellis group (attached to the data).
- There is a natural surjective group homomorphism $\pi: u \cdot \mathcal{M} \to G/G^{00}$.
- **Conjecture** [Newelski]: G/G^{00} is isomorphic to the Ellis group when G is NIP.
- ▶ [Gismatullin, Penazzi, Pillay] $SL_2(\mathbb{R})$ is a counter-example.

Ellis group conjecture

- Corrected conjecture [Pillay]: Let G be definably amenable, NIP. Then π is an isomorphism of G/G⁰⁰ and the Ellis group.
- Partial results:
 - ▶ NIP with fsg [Pillay]
 - groups definable in o-minimal theories [Ch., Pillay, Simon]

うして ふゆう ふほう ふほう うらつ

Theorem

The Ellis group conjecture holds.