Model theory of multilinear forms

Artem Chernikov
UCLA
"London Logic Seminar", Imperial College / QMUL, UK (via Zoom)
Nov 9, 2022

Joint work in progress with Nadja Hempel.

Non-degeneracy of bilinear forms

- Let V be a vector space over a field K.
- A bilinear form $\langle-,-\rangle: V^{2} \rightarrow K$ is degenerate if there exists a vector $v \in V, v \neq 0$ such that $\langle v, w\rangle=0$ for all $w \in V$.
- If V has finite dimension, a bilinear form $\langle-,-\rangle$ is non-degenerate if and only if it is a perfect pairing, i.e. the maps $V \rightarrow V^{*}, v \mapsto\langle v,-\rangle$ and $V \rightarrow V^{*}, v \mapsto\langle-, v\rangle$ are isomorphisms.
- In other words, for any basis v_{1}, \ldots, v_{n} of V and any $k_{1}, \ldots, k_{n} \in K$ there is $w \in V$ such that $\left\langle v_{i}, w\right\rangle=k_{i}$ for all $i=1, \ldots, n$.
- A "local" version holds in infinite dimensional spaces: the bilinear form $\langle-,-\rangle$ is non-degenerate if and only if for any $m \in \mathbb{N}$, any linearly independent vectors v_{1}, \ldots, v_{m} in V and any $k_{1}, \ldots, k_{m} \in K$ there is $w \in V$ such that $\left\langle v_{i}, w\right\rangle=k_{i}$ for all $i=1, \ldots, m$.

Towards non-degeneracy of n-linear forms, 1

- A naive attempt to generalize non-degeneracy to n-linear forms $\langle-, \ldots,-\rangle_{n}: V^{n} \rightarrow K$ would be: for any non-zero $v_{1}, \ldots, v_{n-1} \in V$ there is $w \in V$ such that $\left\langle v_{1}, \ldots, v_{n}, w\right\rangle \neq 0$.
- However, this condition typically cannot be satisfied under additional requirements, like alternation: we have for example that $\left\langle v, v, v_{3}, \ldots, v_{n-1}, w\right\rangle_{n}=0$ regardless of the choice of $v, v_{3}, \ldots, v_{n-1}, w \in V$.
- To circumvent this issue, we work in the tensor product space $\bigotimes^{n-1} V$ modulo the subspace N of $\bigotimes^{n-1} V$ generated by the elements $v_{1} \otimes \ldots \otimes v_{n-1}$ for which the map $V \rightarrow K, w \mapsto\left\langle v_{1}, \ldots, v_{n-1}, w\right\rangle$ should be the zero map.

Towards non-degeneracy of n-linear forms, 2

- For example, for alternating n-linear forms, we take the subspace N to be

$$
\text { Alt }:=\operatorname{Span}\left(\left\{v_{1} \otimes \ldots \otimes v_{n-1} \mid v_{1}, \ldots, v_{n-1} \text { are lin. dep. }\right\}\right)
$$

- For symmetric n-linear forms we let N be

$$
\begin{aligned}
\operatorname{Sym}:=\operatorname{Span} & \left(\left\{v_{1} \otimes \ldots \otimes v_{n-1}-v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(n-1)} \mid\right.\right. \\
& \sigma \in \operatorname{Sym}(\{1, \ldots, n-1\})\}) .
\end{aligned}
$$

- Then $\left(\bigotimes^{n-1} V\right) /$ Alt $=\bigwedge^{n-1} V$,i.e. the $(n-1)$ th exterior power of V, and
- $\left(\otimes^{n-1} V\right) /$ Sym $=\bigvee^{n-1} V$, i.e. the $(n-1)$ th symmetric power of V .

Towards non-degeneracy of n-linear forms, 3

- Any n-linear form $\langle-, \ldots,-\rangle_{n}$ on V gives rise to a bilinear form $\langle-,-\rangle_{2}$ on $\left(\otimes^{n-1} V\right) \times V$ defined by

$$
\left\langle v_{1} \otimes \ldots \otimes v_{n-1}, v\right\rangle_{2}:=\left\langle v_{1}, \ldots, v_{n-1}, v\right\rangle_{n} .
$$

- We say that an n-linear form $\langle-, \ldots,-\rangle_{n}$ on V is of type N if $t / N=s / N$ in $\left(\bigotimes^{n-1} V\right) / N$ implies that $\langle t, v\rangle_{2}=\langle s, v\rangle_{2}$ for all $v \in V$.
- In this case we refer to the pair $\left(V,\langle-, \ldots,-\rangle_{n}\right)$ as an n-linear space of type N. For such a space the associated bilinear form $\langle-,-\rangle_{2}$ is well-defined on $\left(\left(\otimes^{n-1} V\right) / N\right) \times V$.

Non-degeneracy of n-linear forms

An n-linear space $\left(V,\langle-, \ldots,-\rangle_{n}\right)$ of type N is:

- non-degenerate if for any non-zero $t \in\left(\otimes^{n-1} V\right) / N$ there is $w \in V$ such that $\langle t, w\rangle_{2} \neq 0$;
- a perfect pairing if the maps

$$
\begin{aligned}
& V \rightarrow\left(\left(\otimes^{n-1} V\right) / N\right)^{*}, v \mapsto\langle-, v\rangle_{2} \text { and } \\
& \left(\otimes^{n-1} V\right) / N \rightarrow V^{*}, t \mapsto\langle t,-\rangle_{2}
\end{aligned}
$$

are vector space isomorphisms;

- generic if for any $m \in \mathbb{N}$ and any linearly independent elements $t_{1}, \ldots, t_{m} \in\left(\otimes^{n-1} V\right) / N$ and $k_{1}, \ldots, k_{m} \in K$ there is $w \in V$ such that $\left\langle t_{i}, w\right\rangle_{2}=k_{i}$ for all $i=1, \ldots, m$.
- Note: any perfect pairing is generic.

Non-degeneracy of n-linear forms, 2

- Lemma. Let $\left(V,\langle-, \ldots,-\rangle_{n}\right)$ be an n-linear space with V of infinite dimension. Then $\langle-, \ldots,-\rangle_{n}$ is non-degenerate if and only if $\langle-, \ldots,-\rangle_{n}$ is generic.
- For an infinite dimensional vector space V, if the dimension of $\left(\otimes^{n-1} V\right) / N$ is at least as big as the dimension of V, which is the case for Alt and Sym, then an n-linear form on V can never be a perfect pairing.
- Let V be of dimension $d \in \mathbb{N}<\infty$, then all three notions coincide. If $n>2$ and $d \neq n$ (respectively, $d \neq 1$), an n-linear form of type Alt (respectively, Sym) cannot be non-degenerate (for dimensional reasons). Thus, in contrast to the bilinear case $n=2$, for $n>2$ there are no non-degenerate n-linear forms of type Alt or Sym on vector spaces of dimension greater than n.

Non-degenerate n-linear forms exist

- Lemma. For any n-linear space $\left(U,\langle-, \ldots,-\rangle_{n}\right)$ of type N there is a vector space V of dimension at most $\aleph_{0}+\operatorname{dim}(U)$ containing U and an n-linear form $[-, \ldots,-]_{n}$ on V of type N extending $\langle-, \ldots,-\rangle_{n}$ and such that $\left(V,[-, \ldots,-]_{n}\right)$ is non-degenerate.

N-linear forms as first-order structures

- We consider n-linear spaces as structures in the language \mathcal{L} consisting of two sorts V and K, the ring language on K, the vector space language on V, scalar multiplication function $K \times V \rightarrow V$ and a function symbol $\langle-, \ldots,-\rangle_{n}$ for an n-linear form $V^{n} \rightarrow K$.
- The language $\mathcal{L}_{\theta, f}$ is obtained from \mathcal{L} by adding:
- for each $p \in \omega$ a p-ary predicate $\theta_{p}\left(v_{1}, \ldots, v_{p}\right)$ which holds if and only if $v_{1}, \ldots, v_{p} \in V$ are linearly independent over K;
- for each $p \in \omega$ and $i \leq p$, a $(p+1)$-ary function symbol $f_{i}^{p}: V^{p+1} \rightarrow K$ interpreted as: $f_{i}^{p}\left(v ; v_{1}, \ldots, v_{p}\right)=\lambda_{i}$ if $\vDash \theta_{p}\left(v_{1}, \ldots, v_{p}\right)$ and $v=\sum_{i=1}^{p} \lambda_{i} v_{i}$ for some $\lambda_{1}, \ldots, \lambda_{p} \in K$; and 0 otherwise.
- Let \mathcal{L}^{K} be an expansion of the language of rings by relations on $K^{p}, p \in \omega$ definable in the language of rings such that K eliminates quantifiers in \mathcal{L}^{K} (can always take Morleyzation of K).
- Let $\mathcal{L}_{\theta, f}^{K}:=\mathcal{L}_{\theta, f} \cup \mathcal{L}^{K}$.

Quantifier elimination for non-degenerate n-linear forms

- Let $T:=T_{n, N}^{K}$ be the theory of infinite dimensional non-degenerate n-linear spaces of type N, with the field sort a model of $\operatorname{Th}(K)$, in the language $\mathcal{L}_{\theta, f}^{K}$ (it is consistent - as every n-linear form extends to a non-degenerate one).
- Proposition. The set of partial $\mathcal{L}_{\theta, f}^{K}$-isomorphisms between two ω-saturated non-degenerate n-linear spaces of type Alt (over elementarily equivalent fields) has the back-and-forth property (and is non-empty).
- Theorem. The theory $T_{n, \text { Alt }}^{K}$ of infinite dimensional non-degenerate n-linear spaces of type Alt over K has quantifier elimination (in the language $\mathcal{L}_{\theta, f}^{K}$) and is complete.
- For $n=2$ is essentially due to Granger. The necessity of adding the functions f_{i}^{p} for QE was missed in Granger's work, and pointed out by D. MacPherson.
- In the symmetric case, some assumptions on the field K are needed (e.g. closure under square roots, in the case $n=2$).

N-dependence

We fix a complete theory T in a language \mathcal{L}. For $k \geq 1$ we define:

- A formula $\varphi\left(x ; y_{1}, \ldots, y_{k}\right)$ is k-dependent if there are no infinite sets $A_{i}=\left\{a_{i, j}: j \in \omega\right\} \subseteq M_{y_{i}}, i \in\{1, \ldots, k\}$ in a model \mathcal{M} of T such that $A=\prod_{i=1}^{n} A_{i}$ is shattered by φ, where " A shattered" means: for any $s \subseteq \omega^{k}$, there is some $b_{s} \in M_{x}$ s.t.
$\mathcal{M} \models \varphi\left(b_{s} ; a_{1, j_{1}}, \ldots, a_{k, j_{k}}\right) \Longleftrightarrow\left(j_{1}, \ldots, j_{k}\right) \in s$.
- T is k-dependent if all formulas are k-dependent.
- T is strictly k-dependent if it is k-dependent, but not ($k-1$)-dependent.
- 1-dependent $=$ NIP $\subsetneq 2$-dependent $\subsetneq \ldots$, as witnessed e.g. by the theory of the random k-hypergraph.

N-dependent theories

All known "algebraic" n-dependent examples come from bilinear forms over NIP fields:

- [Cherlin-Hrushovski] smoothly approximable structures are 2-dependent, and coordinatizable via bilinear forms over finite fields,
- infinite extra-special p-groups, and strictly n-dependent pure groups constructed using Mekler's construction [C., Hempel] are essentially of this form as well, using Baudisch's interpretation in alternating bilinear maps.
- Speculation. If T is n-dependent, then it is "linear, or 1-based" relative to its NIP part.
- Conjecture. If K is an n-dependent field (pure, or with valuation, derivation, etc.), then K is NIP.
- Mounting evidence: n-dependent fields are Artin-Schreier closed (Hempel), valued char p are Henselian (C., Hempel), for valued fields reduces to pure fields (Boissonneau),...

N-dependence of n-linear forms

- Theorem. If the field K is NIP, then $T_{n, \text { Alt }}^{K}$ is (strictly) n-dependent.
- (And if $K \models A C F$, then $T_{n, \text { Alt }}^{K}$ is NSOP_{1}, essentially by the same proof as for $n=2$ in [C., Ramsey].)
- By QE and analysis of generalized indiscernibles, the proof that $T_{n, \text { Alt }}^{K}$ is n-dependent reduces to showing that the composition of a relation definable in an NIP structure with arbitrary k-ary functions is k-dependent:

Composition Lemma

- Theorem [Composition Lemma] Let \mathcal{M} be an \mathcal{L}^{\prime}-structure such that its reduct to a language $\mathcal{L} \subseteq \mathcal{L}^{\prime}$ is NIP. Let $d, k \in \mathbb{N}, \varphi\left(x_{1}, \ldots, x_{d}\right)$ be an \mathcal{L}-formula, and $\left(y_{0}, \ldots, y_{k}\right)$ be arbitrary $k+1$ tuples of variables. For each $1 \leq t \leq d$, let $0 \leq i_{1}^{t}, \ldots, i_{k}^{t} \leq k$ be arbitrary, and let $f_{t}: M_{y_{i_{1}^{t}}} \times \ldots \times M_{y_{i t}} \rightarrow M_{x_{t}}$ be an arbitrary \mathcal{L}^{\prime}-definable k-ary function. Then the formula

$$
\psi\left(y_{0} ; y_{1}, \ldots, y_{k}\right):=\varphi\left(f_{1}\left(y_{i_{1}^{1}}, \ldots, y_{i_{k}^{1}}\right), \ldots, f_{d}\left(y_{i_{1}^{d}}, \ldots, y_{i_{k}^{d}}\right)\right)
$$

is k-dependent.

- Our earlier proof for $k=2$ used a certain type counting criterion for types over infinite indiscernible sequences, and set-theoretic absoluteness.

Proof of the Composition Lemma, 1

- Given a formula $\varphi\left(x ; y_{1}, \ldots, y_{k}\right), \varepsilon \in \mathbb{R}_{>0}$ and a function $f: \mathbb{N} \rightarrow \mathbb{N}$, we consider the following condition.
$(\dagger)_{f, \varepsilon}$ There exists some $n^{*} \in \mathbb{N}$ such that the following holds for all $n^{*} \leq n \leq m \in \mathbb{N}$: For any mutually indiscernible sequences I_{1}, \ldots, I_{k} of finite length, with $I_{i} \subseteq \mathbb{M}_{y_{i}}$, $n=\left|I_{1}\right|=\ldots=\left|I_{k-1}\right|, m=\left|I_{k}\right|$, and $b \in \mathbb{M}_{x}$ an arbitrary tuple there exists an interval $J \subseteq I_{k}$ with $|J| \geq \frac{m}{f(n)}-1$ satisfying $\left|S_{\varphi, J}\left(b, I_{1}, \ldots, I_{k-1}\right)\right|<2^{n^{k-1-\varepsilon}}$.
- Proposition. The following are equivalent for a formula $\varphi\left(x ; y_{1}, \ldots, y_{k}\right)$, with $k \geq 2$:

1. $\varphi\left(x ; y_{1}, \ldots, y_{k}\right)$ is k-dependent.
2. There exist some $\varepsilon>0$ and $d \in \mathbb{N}$ such that φ satisfies $(\dagger)_{f, \varepsilon}$ with respect to the function $f(n)=n^{d}$.
3. There exist some $\varepsilon>0$ and some function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that φ satisfies $(\dagger)_{f, \varepsilon}$.

- This type-counting criterion can then be used to obtain some combinatorial stabilization of shattering on indiscernible arrays:

Proof of the Composition Lemma, 2

("Kasse II, portato" by Frank Lepold)

Connected components G^{00} and G^{∞}

- Let T be a theory and G a type-definable group (over \emptyset), and $A \subseteq \mathbb{M}$ a small subset.
- Let G_{A}^{00} (resp., G_{A}^{∞}) be the smallest type-definable (resp., invariant) over A subgroup of G of bounded index.
- [Shelah, Gismatullin] If T is NIP, then $G_{A}^{00}=G_{\emptyset}^{00}$ and $G_{A}^{\infty}=G_{\emptyset}^{\infty}$ for all small A.
- Example. Let $G:=\bigoplus_{\omega} \mathbb{F}_{p}$. Let $\mathcal{M}:=\left(G, \mathbb{F}_{p}, 0,+, \cdot\right)$ with. the bilinear form $\left(a_{i}\right) \cdot\left(b_{i}\right)=\sum_{i} a_{i} b_{i}$ from G to \mathbb{F}_{p}.
- Then G is 2-dependent and $G_{A}^{00}=\left\{g \in G: \bigcap_{a \in A} g \cdot a=0\right\}$ - gets smaller when enlarging A.
- However, for any A, B we have $G_{A \cup B}^{00}=G_{A}^{00} \cap G_{B}^{00}$.
- And for a non-degenerate n-linear form over \mathbb{F}_{p} and any $A_{1}, \ldots, A_{n}, G_{A_{1} \cup \ldots \cup A_{n}}^{00}=\bigcap_{i=1}^{n} G_{\bigcup_{j \neq i} A_{j}}^{00}$.

Connected components G^{00} and G^{∞} for n-dependent G

- Theorem. If T is n-dependent and $G=G(\mathbb{M})$ is a type-definable group (over \emptyset), then for any small model \mathcal{M} and finite tuples b_{1}, \ldots, b_{n-1} in \mathbb{M} sufficiently independent over \mathcal{M}, we have

$$
\begin{gathered}
G_{\mathcal{M} \cup b_{1} \cup \ldots \cup b_{n-1}}^{00}=\bigcap_{i=1, \ldots, n-1} G_{\mathcal{M} \cup b_{1} \cup \ldots \cup b_{i-1} \cup b_{i+1} \cup \ldots \cup b_{n-1}}^{00} \\
\cap G_{C \cup b_{1} \cup \cdots \cup b_{n-1}}^{00}
\end{gathered}
$$

for some $C \subseteq \mathcal{M}$ of absolutely bounded size.

- This generalizes [Shelah] for $n=1,2$, where general position is not needed.
- So far, we can prove an analogous statement for G^{∞} when G is abelian.

"Sufficiently independent"

- (κ-coheirs) For a cardinal κ, any model \mathcal{M}, and any tuple a we write $a \downarrow_{\mathcal{M}}^{u, \kappa} B$ if for any set $C \subset B \cup \mathcal{M}$ of size $<\kappa$, $\operatorname{tp}(a / C)$ is realized in \mathcal{M}.
- Let \mathcal{M} be a small model, and $\bar{b}_{1}, \ldots, \bar{b}_{n-1}$ finite tuples in \mathbb{M}. We say that $\left(\mathcal{M}, \bar{b}_{1}, \ldots, \bar{b}_{n-1}\right)$ are in a generic position if there exist regular cardinals $\kappa_{1}<\kappa_{2}<\ldots<\kappa_{n-1}$ and models $\mathcal{M}_{0} \preceq \mathcal{M}_{1} \preceq \ldots \preceq \mathcal{M}_{n-1}=\mathcal{M}$ such that $\beth_{2}\left(\left|\mathcal{M}_{i}\right|\right)^{+} \leq \kappa_{i+1}$ for $i=0, \ldots, n-2$ and

$$
\bar{b}_{i} \downarrow_{\mathcal{M}_{i}}^{u, \kappa_{i}} \bar{b}_{<i} \mathcal{M}_{n-1}
$$

for all $1 \leq i \leq n-1$.

- Generic position can always be arranged using mutually indiscernible sequences / commuting global invariant types.
- We don't know if any assumption on the b_{i} at all is needed.

Thank you!

- On n-dependence, Artem Chernikov, Daniel Palacin and Kota Takeuchi, Notre Dame J. Formal Logic, Volume 60, Number 2 (2019), 195-214
- On n-dependent groups and fields, Mathematical Logic Quarterly, Vol. 62(3): 215-224, 2016
- Mekler's construction and generalized stability, Artem Chernikov and Nadja Hempel, Isr. J. Math. (2019), Vol. 230: 745-769.
- On n-dependent groups and fields II, Artem Chernikov and Nadja Hempel, Forum of Mathematics, Sigma, 9, E38, 1-51
- On n-dependent groups and fields III, Artem Chernikov and Nadja Hempel, in preparation

