Model theory of multilinear forms

Artem Chernikov

UCLA

"London Logic Seminar", Imperial College / QMUL, UK (via Zoom) Nov 9, 2022 Joint work in progress with Nadja Hempel.

Non-degeneracy of bilinear forms

- Let V be a vector space over a field K.
- A bilinear form (−, −): V² → K is degenerate if there exists a vector v ∈ V, v ≠ 0 such that (v, w) = 0 for all w ∈ V.
- ▶ If V has finite dimension, a bilinear form $\langle -, \rangle$ is non-degenerate if and only if it is a *perfect pairing*, i.e. the maps $V \rightarrow V^*$, $v \mapsto \langle v, - \rangle$ and $V \rightarrow V^*$, $v \mapsto \langle -, v \rangle$ are isomorphisms.
- ▶ In other words, for any basis v_1, \ldots, v_n of V and any $k_1, \ldots, k_n \in K$ there is $w \in V$ such that $\langle v_i, w \rangle = k_i$ for all $i = 1, \ldots, n$.
- A "local" version holds in infinite dimensional spaces: the bilinear form (-, -) is non-degenerate if and only if for any *m* ∈ N, any linearly independent vectors *v*₁,..., *v_m* in *V* and any *k*₁,..., *k_m* ∈ *K* there is *w* ∈ *V* such that (*v_i*, *w*) = *k_i* for all *i* = 1,..., *m*.

Towards non-degeneracy of n-linear forms, 1

- A naive attempt to generalize non-degeneracy to *n*-linear forms $\langle -, \ldots, \rangle_n : V^n \to K$ would be: for any non-zero $v_1, \ldots, v_{n-1} \in V$ there is $w \in V$ such that $\langle v_1, \ldots, v_n, w \rangle \neq 0$.
- However, this condition typically cannot be satisfied under additional requirements, like alternation: we have for example that ⟨v, v, v₃,..., v_{n-1}, w⟩_n = 0 regardless of the choice of v, v₃,..., v_{n-1}, w ∈ V.
- ▶ To circumvent this issue, we work in the tensor product space $\bigotimes^{n-1} V$ modulo the subspace N of $\bigotimes^{n-1} V$ generated by the elements $v_1 \otimes \ldots \otimes v_{n-1}$ for which the map $V \to K$, $w \mapsto \langle v_1, \ldots, v_{n-1}, w \rangle$ should be the zero map.

Towards non-degeneracy of *n*-linear forms, 2

For example, for alternating *n*-linear forms, we take the subspace N to be

$$\mathsf{Alt} := \mathsf{Span}\left(\left\{v_1 \otimes \ldots \otimes v_{n-1} \mid v_1, \ldots, v_{n-1} \text{ are lin. dep.}\right\}\right).$$

▶ For symmetric *n*-linear forms we let *N* be

$$\begin{aligned} \mathsf{Sym} &:= \mathsf{Span}\left(\{v_1 \otimes \ldots \otimes v_{n-1} - v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(n-1)} \mid \\ \sigma \in \mathsf{Sym}\left(\{1, \ldots, n-1\}\right)\}\right). \end{aligned}$$

Towards non-degeneracy of *n*-linear forms, 3

Any *n*-linear form (−,...,−)_n on V gives rise to a bilinear form (−,−)₂ on (⊗^{n−1} V) × V defined by

$$\langle v_1 \otimes \ldots \otimes v_{n-1}, v \rangle_2 := \langle v_1, \ldots, v_{n-1}, v \rangle_n$$

- ▶ We say that an *n*-linear form $\langle -, \ldots, \rangle_n$ on *V* is of type *N* if t/N = s/N in $\left(\bigotimes^{n-1} V\right)/N$ implies that $\langle t, v \rangle_2 = \langle s, v \rangle_2$ for all $v \in V$.
- In this case we refer to the pair (V, ⟨-,...,-⟩_n) as an *n-linear space of type N*. For such a space the associated bilinear form ⟨-,-⟩₂ is well-defined on ((⊗ⁿ⁻¹V)/N) × V.

Non-degeneracy of *n*-linear forms

An *n*-linear space $(V, \langle -, \ldots, - \rangle_n)$ of type N is:

• non-degenerate if for any non-zero $t \in \left(\bigotimes^{n-1} V\right) / N$ there is $w \in V$ such that $\langle t, w \rangle_2 \neq 0$;

• a perfect pairing if the maps

$$V \to \left(\left(\bigotimes^{n-1} V \right) / N \right)^*, v \mapsto \langle -, v \rangle_2$$
 and
 $\left(\bigotimes^{n-1} V \right) / N \to V^*, t \mapsto \langle t, - \rangle_2$

are vector space isomorphisms;

- ▶ generic if for any $m \in \mathbb{N}$ and any linearly independent elements $t_1, \ldots, t_m \in \left(\bigotimes^{n-1} V\right) / N$ and $k_1, \ldots, k_m \in K$ there is $w \in V$ such that $\langle t_i, w \rangle_2 = k_i$ for all $i = 1, \ldots, m$.
- Note: any perfect pairing is generic.

Non-degeneracy of *n*-linear forms, 2

- Lemma. Let (V, ⟨-,...,−⟩_n) be an *n*-linear space with V of infinite dimension. Then ⟨-,...,−⟩_n is non-degenerate if and only if ⟨-,...,−⟩_n is generic.
- For an infinite dimensional vector space V, if the dimension of (⊗ⁿ⁻¹ V) /N is at least as big as the dimension of V, which is the case for Alt and Sym, then an *n*-linear form on V can never be a perfect pairing.
- Let V be of dimension d ∈ N < ∞, then all three notions coincide. If n > 2 and d ≠ n (respectively, d ≠ 1), an n-linear form of type Alt (respectively, Sym) cannot be non-degenerate (for dimensional reasons). Thus, in contrast to the bilinear case n = 2, for n > 2 there are no non-degenerate n-linear forms of type Alt or Sym on vector spaces of dimension greater than n.

Non-degenerate *n*-linear forms exist

Lemma. For any *n*-linear space (U, ⟨-,...,-⟩_n) of type N there is a vector space V of dimension at most ℵ₀ + dim(U) containing U and an *n*-linear form [-,...,-]_n on V of type N extending ⟨-,...,-⟩_n and such that (V, [-,...,-]_n) is non-degenerate.

N-linear forms as first-order structures

- We consider *n*-linear spaces as structures in the language *L* consisting of two sorts *V* and *K*, the ring language on *K*, the vector space language on *V*, scalar multiplication function *K* × *V* → *V* and a function symbol ⟨−,...,−⟩_n for an *n*-linear form *Vⁿ* → *K*.
- The language $\mathcal{L}_{\theta,f}$ is obtained from \mathcal{L} by adding:
 - For each p ∈ ω a p-ary predicate θ_p(v₁,..., v_p) which holds if and only if v₁,..., v_p ∈ V are linearly independent over K;
 - ▶ for each $p \in \omega$ and $i \leq p$, a (p+1)-ary function symbol $f_i^p : V^{p+1} \to K$ interpreted as: $f_i^p(v; v_1, \ldots, v_p) = \lambda_i$ if $\models \theta_p(v_1, \ldots, v_p)$ and $v = \sum_{i=1}^p \lambda_i v_i$ for some $\lambda_1, \ldots, \lambda_p \in K$; and 0 otherwise.
- Let \mathcal{L}^{K} be an expansion of the language of rings by relations on $K^{p}, p \in \omega$ definable in the language of rings such that Keliminates quantifiers in \mathcal{L}^{K} (can always take Morleyzation of K).

• Let
$$\mathcal{L}_{\theta,f}^{K} := \mathcal{L}_{\theta,f} \cup \mathcal{L}^{K}$$
.

Quantifier elimination for non-degenerate *n*-linear forms

- Let T := T^K_{n,N} be the theory of infinite dimensional non-degenerate *n*-linear spaces of type N, with the field sort a model of Th(K), in the language L^K_{θ,f} (it is consistent — as every *n*-linear form extends to a non-degenerate one).
- Proposition. The set of partial L^K_{θ,f}-isomorphisms between two ω-saturated non-degenerate *n*-linear spaces of type Alt (over elementarily equivalent fields) has the back-and-forth property (and is non-empty).
- Theorem. The theory T^K_{n,Alt} of infinite dimensional non-degenerate *n*-linear spaces of type Alt over K has quantifier elimination (in the language L^K_{θ,f}) and is complete.
- For n = 2 is essentially due to Granger. The necessity of adding the functions f^p_i for QE was missed in Granger's work, and pointed out by D. MacPherson.
- In the symmetric case, some assumptions on the field K are needed (e.g. closure under square roots, in the case n = 2).

N-dependence

We fix a complete theory T in a language \mathcal{L} . For $k \geq 1$ we define:

▶ A formula $\varphi(x; y_1, ..., y_k)$ is *k*-dependent if there are no infinite sets $A_i = \{a_{i,j} : j \in \omega\} \subseteq M_{y_i}, i \in \{1, ..., k\}$ in a model \mathcal{M} of T such that $A = \prod_{i=1}^n A_i$ is shattered by φ , where "A shattered" means: for any $s \subseteq \omega^k$, there is some $b_s \in M_x$ s.t.

$$\mathcal{M} \models \varphi(b_s; a_{1,j_1}, \ldots, a_{k,j_k}) \iff (j_1, \ldots, j_k) \in s.$$

- T is k-dependent if all formulas are k-dependent.
- T is strictly k-dependent if it is k-dependent, but not (k - 1)-dependent.
- I-dependent = NIP ⊊ 2-dependent ⊊ ..., as witnessed e.g. by the theory of the random k-hypergraph.

N-dependent theories

All known "algebraic" *n*-dependent examples come from bilinear forms over NIP fields:

- [Cherlin-Hrushovski] smoothly approximable structures are 2-dependent, and coordinatizable via bilinear forms over finite fields,
- infinite extra-special *p*-groups, and strictly *n*-dependent pure groups constructed using Mekler's construction [C., Hempel] are essentially of this form as well, using Baudisch's interpretation in alternating bilinear maps.
- Speculation. If T is n-dependent, then it is "linear, or 1-based" relative to its NIP part.
- Conjecture. If K is an n-dependent field (pure, or with valuation, derivation, etc.), then K is NIP.
- Mounting evidence: n-dependent fields are Artin-Schreier closed (Hempel), valued char p are Henselian (C., Hempel), for valued fields reduces to pure fields (Boissonneau),...

N-dependence of *n*-linear forms

- **Theorem.** If the field K is NIP, then $T_{n,Alt}^{K}$ is (strictly) *n*-dependent.
- (And if $K \models ACF$, then $T_{n,Alt}^{K}$ is NSOP₁, essentially by the same proof as for n = 2 in [C., Ramsey].)
- By QE and analysis of generalized indiscernibles, the proof that T^K_{n,Alt} is *n*-dependent reduces to showing that the composition of a relation definable in an NIP structure with *arbitrary k*-ary functions is *k*-dependent:

Composition Lemma

▶ Theorem [Composition Lemma] Let \mathcal{M} be an \mathcal{L}' -structure such that its reduct to a language $\mathcal{L} \subseteq \mathcal{L}'$ is NIP. Let $d, k \in \mathbb{N}, \varphi(x_1, \ldots, x_d)$ be an \mathcal{L} -formula, and (y_0, \ldots, y_k) be arbitrary k + 1 tuples of variables. For each $1 \leq t \leq d$, let $0 \leq i_1^t, \ldots, i_k^t \leq k$ be arbitrary, and let $f_t : M_{y_{i_1}^t} \times \ldots \times M_{y_{i_k}^t} \to M_{x_t}$ be an arbitrary \mathcal{L}' -definable k-ary function. Then the formula

$$\psi(y_0; y_1, \dots, y_k) := \varphi\left(f_1(y_{i_1}^1, \dots, y_{i_k}^1), \dots, f_d(y_{i_1}^d, \dots, y_{i_k}^d)\right)$$

is k-dependent.

Our earlier proof for k = 2 used a certain type counting criterion for types over infinite indiscernible sequences, and set-theoretic absoluteness.

Proof of the Composition Lemma, 1

- Given a formula $\varphi(x; y_1, \ldots, y_k)$, $\varepsilon \in \mathbb{R}_{>0}$ and a function $f : \mathbb{N} \to \mathbb{N}$, we consider the following condition.
 - (†)_{*f*,ε} There exists some $n^* \in \mathbb{N}$ such that the following holds for all $n^* \leq n \leq m \in \mathbb{N}$: For any mutually indiscernible sequences I_1, \ldots, I_k of finite length, with $I_i \subseteq \mathbb{M}_{y_i}$, $n = |I_1| = \ldots = |I_{k-1}|, m = |I_k|$, and $b \in \mathbb{M}_x$ an arbitrary tuple there exists an interval $J \subseteq I_k$ with $|J| \geq \frac{m}{f(n)} 1$ satisfying $|S_{\varphi,J}(b, I_1, \ldots, I_{k-1})| < 2^{n^{k-1-\varepsilon}}$.
- **Proposition**. The following are equivalent for a formula $\varphi(x; y_1, \ldots, y_k)$, with $k \ge 2$:
 - 1. $\varphi(x; y_1, \ldots, y_k)$ is *k*-dependent.
 - 2. There exist some $\varepsilon > 0$ and $d \in \mathbb{N}$ such that φ satisfies $(\dagger)_{f,\varepsilon}$ with respect to the function $f(n) = n^d$.
 - 3. There exist some $\varepsilon > 0$ and some function $f : \mathbb{N} \to \mathbb{N}$ such that φ satisfies $(\dagger)_{f,\varepsilon}$.

This type-counting criterion can then be used to obtain some combinatorial stabilization of shattering on indiscernible arrays:

Proof of the Composition Lemma, 2

("Kasse II, portato" by Frank Lepold)

Connected components G^{00} and G^{∞}

- Let T be a theory and G a type-definable group (over Ø), and A ⊆ M a small subset.
- ► Let G_A⁰⁰ (resp., G_A[∞]) be the smallest type-definable (resp., invariant) over A subgroup of G of bounded index.
- ▶ [Shelah, Gismatullin] If T is NIP, then $G_A^{00} = G_{\emptyset}^{00}$ and $G_A^{\infty} = G_{\emptyset}^{\infty}$ for all small A.
- ▶ **Example.** Let $G := \bigoplus_{\omega} \mathbb{F}_p$. Let $\mathcal{M} := (G, \mathbb{F}_p, 0, +, \cdot)$ with \cdot the bilinear form $(a_i) \cdot (b_i) = \sum_i a_i b_i$ from G to \mathbb{F}_p .
- ▶ Then G is 2-dependent and $G_A^{00} = \{g \in G : \bigcap_{a \in A} g \cdot a = 0\}$ — gets smaller when enlarging A.
- However, for any A, B we have $G^{00}_{A\cup B} = G^{00}_A \cap G^{00}_B$.
- And for a non-degenerate *n*-linear form over \mathbb{F}_p and any A_1, \ldots, A_n , $G^{00}_{A_1 \cup \ldots \cup A_n} = \bigcap_{i=1}^n G^{00}_{\bigcup_{j \neq i} A_j}$.

Connected components G^{00} and G^{∞} for *n*-dependent *G*

► Theorem. If T is n-dependent and G = G(M) is a type-definable group (over Ø), then for any small model M and finite tuples b₁,..., b_{n-1} in M sufficiently independent over M, we have

$$G^{00}_{\mathcal{M}\cup b_{1}\cup\cdots\cup b_{n-1}} = igcap_{i=1,...,n-1} G^{00}_{\mathcal{M}\cup b_{1}\cup\ldots\cup b_{i-1}\cup b_{i+1}\cup\ldots\cup b_{n-1}} \cap G^{00}_{C\cup b_{1}\cup\cdots\cup b_{n-1}}$$

for some $C \subseteq \mathcal{M}$ of absolutely bounded size.

- ▶ This generalizes [Shelah] for n = 1, 2, where general position is not needed.
- ► So far, we can prove an analogous statement for G[∞] when G is abelian.

"Sufficiently independent"

- (κ-coheirs) For a cardinal κ, any model M, and any tuple a we write a ⊥^{u,κ}_M B if for any set C ⊂ B ∪ M of size < κ, tp(a/C) is realized in M.
- Let *M* be a small model, and *b*₁,..., *b*_{n-1} finite tuples in M. We say that (*M*, *b*₁,..., *b*_{n-1}) are in a generic position if there exist regular cardinals κ₁ < κ₂ < ... < κ_{n-1} and models *M*₀ ≤ *M*₁ ≤ ... ≤ *M*_{n-1} = *M* such that □₂(|*M_i*|)⁺ ≤ κ_{i+1} for *i* = 0,..., *n* − 2 and

$$ar{b}_i ot_{\mathcal{M}_i}^{u,\kappa_i} ar{b}_{< i} \mathcal{M}_{n-1}$$

for all $1 \leq i \leq n-1$.

- Generic position can always be arranged using mutually indiscernible sequences / commuting global invariant types.
- We don't know if any assumption on the b_i at all is needed.

Thank you!

- On n-dependence, Artem Chernikov, Daniel Palacin and Kota Takeuchi, Notre Dame J. Formal Logic, Volume 60, Number 2 (2019), 195-214
- On n-dependent groups and fields, Mathematical Logic Quarterly, Vol. 62(3): 215-224, 2016
- Mekler's construction and generalized stability, Artem Chernikov and Nadja Hempel, Isr. J. Math. (2019), Vol. 230: 745-769.
- On n-dependent groups and fields II, Artem Chernikov and Nadja Hempel, Forum of Mathematics, Sigma, 9, E38, 1-51
- On n-dependent groups and fields III, Artem Chernikov and Nadja Hempel, in preparation