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Intro
I I will discuss generalizations of various results in Erdős-style

geometry concerned with the combinatorial behavior of
algebraic or semialgebraic relations on finite sets of points.

I Recently many tools from algebraic geometry began to play a
prominent role in this area (see Sharir’s talk).

I I will try to argue: for many of these results model theory
provides a natural more general context.

I Algebraic sets correspond to sets definable in C, semialgebraic
— to sets definable in R, but there are many other structures
where large part of the theory can be developed (so it’s not
just about the polynomials).

I Turns out that Shelah-style classification in model theory
provides an explanation for many of the related phenomena,
such as:

I why certain restricted families of graphs satisfy much better
bounds, or

I what makes the bounds in fields of characteristic 0 better than
in characteristic p.



Definable relations and definable families
I Given a first-order structureM in some language L, a

(partitioned) formula φ (x , y) ∈ L (where x , y are tuples of
variables) defines a binary relation
Φ =

{
(a, b) ∈ M |x | ×M |y | :M |= φ (a, b)

}
.

I Given b ∈ M |y |, we denote by Φb =
{
a ∈ M |x | : (a, b) ∈ Φ

}
the fiber of Φ at b.

I By a (φ-)definable subset of M |x | we mean a set of the form
Φb for some b ∈ M |y |.

I Let Fφ =
{

Φb : b ∈ M |y |
}
be the family of all φ-definable

subsets of M |x |.
I Example. LetM := (R,+,×, 0, 1, <) be the field of reals.

Every family of semialgebraic subsets of Rd of bounded
description complexity is of the form Fφ for some φ (where the
varying tuple b in Φb corresponds to the choice of the
coefficients of the polynomials).
By Tarski’s quantifier elimination, the converse also holds.



Shelah’s classification

I Aims to classify infinite structures according to the complexity
of their definable families and to develop combinatorially
“naive algebraic geometry” (dimension, generic points, etc.)
for sets definable in structures on the tame side (picture — see
the board).

I Applications to families of finite structures — typically via
passing to an ultraproduct.

I M is NIP (No Independence Property) if every family of the
form Fφ has finite VC-dimension.

I Stable and distal structures give two extreme opposite cases of
NIP structures.

I M is stable if for every formula φ there is a bound on the size
of the half graphs contained in Φ (i.e. for some d ∈ N there
are no ai ∈ M |x |, bj ∈ M |y | such that (ai , bj) ∈ Φ ⇐⇒ i ≤ j).



Examples

I Stable structures:
I algebraically closed fields of any characteristic,
I modules,
I differentially closed fields,
I free groups [Sela],
I nowhere dense graphs, e.g. planar graphs [Podewski-Ziegler].

I Examples of distal structures:
I any o-minimal structure, e.g.(

R,+,×, ex , f �[0,1]n
)
,

where f lists all functions that are real analytic on some open
neighborhood of [0, 1]n ([Wilkie], [van den Dries, Miller]).

I the field Qp and its analytic expansions,
I the (valued, differential) field of transseries.



Distal cell decomposition

I Let Φ ⊆ U × V and A ⊆ U be given.
I For b ∈ V , we say that Φb crosses A if Φb ∩ A 6= ∅ and
¬Φb ∩ A 6= ∅.

I A is Φ-complete over B ⊆ V if A is not crossed by any Φb

with b ∈ B .
I A family F of subsets of U is a cell decomposition for Φ over

B ⊆ V if U ⊆
⋃
F and every A ∈ F is Φ-complete over B .

I A cell decomposition for Φ is an assignment T s.t. for each
finite B ⊆ V , T (B) is a cell decomposition for Φ over B .

I A cell decomposition T is distal if for some k ∈ N there is a
relation D ⊆ U ×V k s.t. all finite B ⊆ V , T (B) = {D(b1,...,bk ) :
b1, . . . , bk ∈ B and D(b1,...,bk ) is Φ-complete over B}.

I This is an abstraction from the various notions of distal cell
decompositions in incidence geometry. The cells here are not
required to have any “geometric” properties, and can intersect.



Distality implies cell decomposition

I Distal structures were introduced by Simon (2011) in order to
capture the class of purely unstable NIP theories.

Theorem
[C., Simon, 2012] A structureM is a distal if and only if every
definable relation Φ admits a definable distal cell decomposition D.

I Checking distality of a structure is often easier using the
original definition in terms of the indiscernible sequences, but
the proof of the equivalence uses Matoušek’s (p, q)-theorem
for families of finite VC-dimension along with Ramsey
theorem, so it doesn’t give any good bounds on the size of the
decomposition.



Distal cell decomposition in o-minimal structures

I Establishing optimal bounds is difficult in general. Generalizing
the method of “vertical cell decompositions”, we have at least
the planar case in o-minimal structures.

Theorem
[C., Galvin, Starchenko, 2016] IfM is an o-minimal expansion of a
field and Φ ⊆ M2 ×Mt is definable, then Φ admits a definable
distal cell decomposition T with |T (B)| = O

(
|B|2

)
for all finite

sets B ⊆ Mt .

I Problem. Does the same bound hold in Qp?



Cuttings

I So called cutting lemmas give an important “divide and
conquer” method for counting incidences in geometric
combinatorics.

I We say that a relation Φ ⊆ U ×V admits a cutting if for every
ε > 0 there is some t = t (ε) ∈ N satisfying the following:
For every finite B ⊆ V with |B| = n there are some
A1, . . . ,At ⊆ U such that:

I U ⊆
⋃t

i=1 Ai and
I for each i , Ai is crossed by at most εn of the sets from
{Φb : b ∈ B}.

I We say that such a cutting is of polynomial size, with
exponent d , if t = O

((1
ε

)d).
I Problem. Are there relations that admit a cutting, but don’t

admit a cutting of polynomial size?



Distal cell decomposition implies cutting lemma

I Distal cell decomposition provides a rigorous setting in which a
version of the random sampling method of Clarkson and Shor
can be carried out (generalizing Matoušek’s axiomatic
treatment, but with some nitpicks, e.g. there is no notion of
“general position” here).

Theorem
[C., Galvin, Starchenko, 2016] (Distal cutting lemma) Assume
Φ ⊆ M |x | ×M |y | admits a (definable) distal cell decomposition T
with |T (B)| = O

(
|B|d

)
for all finite sets B ⊆ M |y |. The Φ

admits a (definable) cutting of polynomial size with exponent d .



Strong Erdős-Hajnal property

Definition
We say that Φ ⊆ U × V satisfies the strong Erdős-Hajnal property,
or strong EH, if there is δ ∈ R>0 such that for any finite
A ⊆ U,B ⊆ V there are some A0 ⊆ A,B0 ⊆ B with
|A0| ≥ δ |A| , |B0| ≥ δ |B| such that the pair (A0,B0) is
Φ-homogeneous, i.e. either (A0 × B0) ⊆ Φ or (A0 × B0) ∩ Φ = ∅.

Fact
[Ramsey + Erdős] With no assumptions on Φ, one can find a
homogeneous pair of subsets of logarithmic size, and it is the best
possible (up to a constant) in general.



Examples with strong EH

I [Alon, Pach, Pinchasi, Radoičić, Sharir, 2005] Let
Φ ⊆ Rd1 × Rd2 be semialgebraic. Then Φ satisfies strong EH.

I [Basu, 2009] Let Φ be a closed, definable relation in an
o-minimal expansion of a field. Then Φ satisfies strong EH.

I Proposition. If Φ admits a (definable) cutting, then it
satisfies (definable) strong EH.



Equivalence
Theorem
[C., Starchenko, 2015] LetM be an NIP structure. TFAE:
1. M is distal.
2. Every definable relation admits a definable distal cell

decomposition.
3. Every definable relation admits a definable cutting.
4. Every definable relation admits a definable cutting of

polynomial size.
5. Every definable relation satisfies the definable strong EH

property.

I In addition, these properties hold not just relatively to the
counting measures, but relatively to a large class of finitely
approximable probability measures on the Boolean algebra of
definable sets (which includes the Lebesgue measure on the
unit cube in R or the Haar measure on a compact ball in Qp).



ACFp doesn’t satisfy strong EH

Example

I Let K be an algebraically closed field of characteristic p (— a
stable structure).

I For a finite field Fq ⊆ K, where q is a power of p, let Pq be the
set of all points in F2

q and let Lq be the set of all lines in F2
q.

I Note |Pq| = |Lq| = q2.
I Let I ⊆ Pq × Lq be the incidence relation. One can check:
I Claim. For any fixed δ > 0, for all large enough q, if L0 ⊆ Lq

and P0 ⊆ Pq with |P0| ≥ δq2 and |L0| ≥ δq2 then
I (P0, L0) 6= ∅.

I As every finite field of char p can be embedded into K, this
shows that strong EH fails for the definable incidence relation
I ⊆ K 2 × K 2.



Regularity lemma
Theorem. [Szemerédi, 1975] Given ε ∈ R>0, there is K = K (ε)
such that: for any finite Φ ⊆ U × V there are partitions
U = U1 ∪ . . . ∪ Um, V = V1 ∪ . . . ∪ Vn and a set Σ ⊆ [m]× [n]
such that:

1. (Bounded size of the partition) m, n ≤ K .

2. (Few exceptions)
∣∣∣⋃(i ,j)∈Σ Ui × Vj

∣∣∣ ≤ ε |U| |V |.
3. (ε-regularity) For all (i , j) /∈ Σ, and all A ⊆ Ui ,B ⊆ Vj ,

||Φ ∩ (A× B)| − dij |A| |B|| ≤ ε |Ui | |Vj | ,

where dij =
|Φ∩(Ui×Vj)|
|Ui×Vj | .

I [Gowers, 1997] K (ε) must grow as an exponential tower 22
...

of height
(1
ε

)d for some fixed d .
I Bad pairs in the partition are unavoidable: the half-graphs of

growing size give an example.



Improved regularity lemmas

I [Alon-Fischer-Newman, 2007], [Lovász, Szegedy, 2010] If the
family {Φb : b ∈ V } has VC-dimension d , then can take the

densities dij ∈ {0, 1} and K (ε) =
(1
ε

)O(d2).
I Generalization to hypergraphs: [C., Starchenko, 2016], [Fox,

Pach, Suk, 2017] with better bounds.
I [Malliaris, Shelah, 2011] If the family {Φb : b ∈ V } is d-stable,

then in addition can avoid bad pairs (i.e. Σ = ∅).
I Generalization to hypergraphs: [C., Starchenko, 2016],

[Ackerman, Freer, Patel, 2017].



Distal regularity lemma

I [Fox, Gromov, Lafforgue, Naor, Pach, 2012], [Fox, Pach, Suk,
2015] Regularity lemma for semialgebraic hypergraphs.

I [C., Starchenko, 2015] Generalization to graphs of the form
(Φ � U × V ,U,V ) whereM is a distal structure,
Φ ⊆ Md1 ×Md2 is definable and U ⊆ Md1 ,V ⊆ Md2 are
finite. Here in addition one has:

I every good pair in the partition is actually homogeneous, and
I sets in the partitions are given by the fibers of a fixed definable

relation independent of ε.



o-minimal “Szémeredi-Trotter”

I Generalizing [Fox, Pach, Sheffer, Suk, Zahl ’15] in the
semialgebraic case, we have (combining distal cutting lemma
+ optimal distal cell decomposition in o-minimal structures):

Theorem
[C., Galvin, Starchenko, 2016] LetM be an o-minimal expansion of
a field and Φ ⊆ M2 ×M2 definable. Then for any k there is some
c satisfying the following.
For any A,B ⊆ M2 of size n, if Φ � A× B is Kk,k -free, then
|Φ ∩ A× B| ≤ cn

4
3 .

I [Basu, Raz, 2016]: same conclusion, under a stronger
assumption that the whole relation Φ is Kk,k -free. Their proof
uses a generalization of the crossing number inequality to
o-minimal structures (which is not available in Qp for example,
where the topology is totally disconnected).



Generalization of Elekes-Szabó
I Generalizing [Elekes, Szabó, 2012] in the caseM = C — a

strongly minimal structure interpretable on R2 in a distal
structure, we have

Theorem
[C., Starchenko, 2018] Let X ,Y ,Z be strongly minimal sets
definable in a sufficiently saturated structureM and let
F ⊆ X × Y × Z be a definable set of Morley rank 2. Assume in
addition thatM is interpretable in a distal structure. Then one of
the following holds.
1. There is ε > 0 such that for all A ⊆n X ,B ⊆n Y ,C ⊆n Z we

have |F ∩ A× B × C | = O(n2−ε).

2. F is group-like.
3. F is cylindrical.

I The proof combines local stability (Shelah, Pillay),
Hrushovski’s group configuration in stable structures and distal
cutting lemma (to get the bound n

3
2−ε for K2,t-free graphs).
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