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Szemerédi regularity lemma

Theorem
[E. Szemerédi, 1975] Every large enough graph can be partitioned
into boundedly many sets so that on almost all pairs of those sets
the edges are approximately uniformly distributed at random.



Szemerédi regularity lemma

Theorem
[E. Szemerédi, 1975] Given ε > 0, there exists K = K (ε) such that:
for any finite bipartite graph R ⊆ A× B, there exist partitions
A = A1 ∪ . . . ∪ Ak and B = B1 ∪ . . . ∪ Bk into non-empty sets, and
a set Σ ⊆ {1, . . . , k} × {1, . . . , k} of good pairs with the following
properties.
1. (Bounded size of the partition) k ≤ K.

2. (Few exceptions)
∣∣∣⋃(i ,j)∈Σ Ai × Bj

∣∣∣ ≥ (1− ε) |A| |B|.

3. (ε-regularity) For all (i , j) ∈ Σ, and all A′ ⊆ Ai ,B ′ ⊆ Bj :∣∣∣∣R ∩ (A′ × B ′
)∣∣− dij

∣∣A′∣∣ ∣∣B ′∣∣∣∣ ≤ ε |A| |B| ,
where dij =

|R∩(Ai×Bj)|
|Ai×Bj | .



Szemerédi regularity lemma

Consider the incidence matrix of a bipartite graph (R,A,B):
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Szemerédi regularity lemma

Consider the incidence matrix of a bipartite graph (R,A,B):



Szemerédi regularity lemma: bounds and applications

I Exist various versions for weaker and stronger partitions, for
hypergraphs, etc.

I Increasing the error a little one may assume that the sets in
the partition are of (approximately) equal size.

I Has many applications in extreme graph combinatorics,
additive number theory, computer science, etc.

I [T. Gowers, 1997] The size of the partition K (ε) grows as an
exponential tower 22... of height

(
1/ε

1
64

)
.

I Can get better bounds for restricted families of graphs (e.g.
coming from algebra, geometry, etc.)? Some recent positive
results fit nicely into the model-theoretic classification picture.



Shelah’s classification program
Theorem
[M. Morley, 1965] Let T be a countable first-order theory. Assume
T has a unique model (up to isomorphism) of size κ for some
uncountable cardinal κ. Then for any uncountable cardinal λ it has
a unique model of size λ.

I Morley’s conjecture: for any T , the function

fT : κ 7→ |{M : M |= T , |M| = κ}|

is non-decreasing on uncountable cardinals.
I Shelah’s “radical” solution: describe all possible functions

(distinguished by T (not) being able to encode certain
combinatorial configurations).

I Additional outcome: stability theory and its generalizations.
I Later, Zilber, Hrushovski and many others: geometric stability

theory — close connections with algebraic objects interpretable
in those structures.



Model-theoretic classification

I See G. Conant’s ForkingAndDividing.com for an interactive map of the
(first-order) universe.



Stability

I Given a theory T in a language L, a (partitioned) formula
φ (x , y) ∈ L (x , y are tuples of variables), a model M |= T and
b ∈ M |y |, let φ (M, b) =

{
a ∈ M |x | : M |= φ (a, b)

}
.

I Let Fφ,M =
{
φ (M, b) : b ∈ M |y |

}
be the family of φ-definable

subsets of M. All dividing lines are expressed as certain
conditions on the combinatorial complexity of the families
Fφ,M (independent of the choice of M).

Definition

1. A formula φ (x , y) is k-stable if there are no M |= T and
(ai , bi : i < k) in M such that

M |= φ (ai , bj) ⇐⇒ i ≤ j .

2. φ (x , y) is stable if it is k-stable for some k ∈ ω.
3. A theory T is stable if it implies that all formulas are stable.



Stable examples

Example
The following structures are stable:
1. abelian groups and modules,
2. (C,+,×, 0, 1) (more generally,

algebraically/separably/differentially closed fields),
3. [Z. Sela] free groups (in the pure group language

(
·,−1 , 0

)
),

4. planar graphs (in the language with a single binary relation).



Stability theory

I There is a rich machinery for analyzing types and models of
stable theories (ranks, forking calculus, weight, indiscernible
sequences, etc.).

I These results have substantial infinitary Ramsey-theoretic
content (in disguise).

I Making it explicit and finitizing leads to results in
combinatorics.

I The same principle applies to various generalizations of
stability.



Stable regularity lemma



Recalling general regularity lemma

Theorem
[E. Szemerédi, 1975] Given ε > 0, there exists K = K (ε) such that:
for any finite bipartite graph R ⊆ A× B, there exist partitions
A = A1 ∪ . . . ∪ Ak and B = B1 ∪ . . . ∪ Bk into non-empty sets, and
a set Σ ⊆ {1, . . . , k} × {1, . . . , k} of good pairs with the following
properties.
1. (Bounded size of the partition) k ≤ K.

2. (Few exceptions)
∣∣∣⋃(i ,j)∈Σ Ai × Bj

∣∣∣ ≥ (1− ε) |A| |B|.

3. (ε-regularity) For all (i , j) ∈ Σ, and all A′ ⊆ Ai ,B ′ ⊆ Bj :∣∣∣∣R ∩ (A′ × B ′
)∣∣− dij

∣∣A′∣∣ ∣∣B ′∣∣∣∣ ≤ ε |A| |B| ,
where dij =

|R∩(Ai×Bj)|
|Ai×Bj | .



Stable regularity lemma

Theorem
[M. Malliaris, S. Shelah, 2012] Given ε > 0 and k, there exists
K = K (ε, k) such that:
for any k-stable finite bipartite graph R ⊆ A× B, there exist
partitions A = A1 ∪ . . .∪Ak and B = B1 ∪ . . .∪Bk into non-empty
sets, and a set Σ ⊆ {1, . . . , k} × {1, . . . , k} of good pairs with the
following properties.
1. (Bounded size of the partition) k ≤ K.
2. (No exceptions) Σ = {1, . . . , k} × {1, . . . , k}.
3. (ε-regularity) For all (i , j) ∈ Σ, and all A′ ⊆ Ai ,B ′ ⊆ Bj :∣∣∣∣R ∩ (A′ × B ′

)∣∣− dij
∣∣A′∣∣ ∣∣B ′∣∣∣∣ ≤ ε |A| |B| ,

where dij =
|R∩(Ai×Bj)|
|Ai×Bj | .

4. Moreover, can take K ≤
(1
ε

)c for some c = c (k).



Stable regularity lemma, some remarks

I In particular this applies to finite graphs whose edge relation
(up to isomorphism) is definable in a model of a stable theory.

I An easier proof is given recently by [M. Malliaris, A. Pillay,
2015] and applies also to infinite definable stable graphs, with
respect to more general measures.



Simple theories



Recalling general regularity lemma

Theorem
[E. Szemerédi, 1975] Given ε > 0, there exists K = K (ε) such that:
for any finite bipartite graph R ⊆ A× B, there exist partitions
A = A1 ∪ . . . ∪ Ak and B = B1 ∪ . . . ∪ Bk into non-empty sets, and
a set Σ ⊆ {1, . . . , k} × {1, . . . , k} of good pairs with the following
properties.
1. (Bounded size of the partition) k ≤ K.

2. (Few exceptions)
∣∣∣⋃(i ,j)∈Σ Ai × Bj

∣∣∣ ≥ (1− ε) |A| |B|.

3. (ε-regularity) For all (i , j) ∈ Σ, and all A′ ⊆ Ai ,B ′ ⊆ Bj :∣∣∣∣R ∩ (A′ × B ′
)∣∣− dij

∣∣A′∣∣ ∣∣B ′∣∣∣∣ ≤ ε |A| |B| ,
where dij =

|R∩(Ai×Bj)|
|Ai×Bj | .



Tao’s algebraic regularity lemma
Theorem
[T. Tao, 2012] If t > 0, there exists K = K (t) > 0 s. t.: whenever
F is a finite field, A ⊆ Fn,B ⊆ Fm,R ⊆ A× B are definable sets in
F of complexity at most t (i.e. n,m ≤ t and can be defined by
some formula of length bounded by t), there exist partitions
A = A0 ∪ . . . ∪ Ak ,B = B0 ∪ . . . ∪ Bk satisfying the following.
1. (Bounded size of the partition) k ≤ K.
2. (No exceptions) Σ = {1, . . . , k} × {1, . . . , k}.
3. (Stronger regularity) For all (i , j) ∈ Σ, and all

A′ ⊆ Ai ,B ′ ⊆ Bj :∣∣∣∣R ∩ (A′ × B ′
)∣∣− dij

∣∣A′∣∣ ∣∣B ′∣∣∣∣ ≤ (c |F|−1/4
)
|A| |B|,

where dij =
|R∩(Ai×Bj)|
|Ai×Bj | .

4. Moreover, the sets A1, . . . ,Ak ,B1, . . . ,Bk are definable, of
complexity at most K.



Simple theories

1. It is really a result about graphs definable in pseudofinite fields
(with respect to the non-standard counting measure) — a
central example of a structure with a simple theory.

2. A theory is simple if one cannot encode an infinite tree via a
uniformly definable family of sets
Fφ,M =

{
φ (M, b) : b ∈ M |y |

}
in some model of T , is for any

formula φ.
3. Some parts of stability theory, especially around forking, were

generalized to the class of simple theories by Hrushovski, Kim,
Pillay and others.



Simple theories and pseudo-finite fields

1. A field F is pseudofinite if it is elementarily equivalent to an
ultraproduct of finite fields modulo a non-principal ultrafilter.

2. Model-theory of pseudofinite fields was studied extensively,
starting with [J. Ax, 1968].

3. Tao’s proof relied on the quantifier elimination and bounds on
the size of definable subsets in pseudo-finite fields due to [Z.
Chatzidakis, L. van den Dries, A. Macintyre, 1992] and some
results from étale cohomology.

4. Fully model-theoretic proofs of Tao’s theorem (replacing étale
cohomology by some local stability and forking calculus,
well-understood in the 90’s) and some generalizations to larger
subclasses of simple theories were given by [E. Hrushovski], [A.
Pillay, S. Starchenko], [D. Garcia, D. Macpherson, C.
Steinhorn].



NIP theories



Semialgebraic regularity lemma
I A set A ⊆ Rd is semialgebraic if it can be defined by a finite

boolean combination of polynomial equalities and inequalities.
I The description complexity of a semialgebraic set A ⊆ Rd is
≤ t if d ≤ t and A can be defined by a boolean combination
involving at most t polynomial inequalities, each of degree at
most t.

I Examples of semialgebraic graphs: incidence relation between
points and lines on the plane, pairs of circles in R3 that are
linked, two parametrized families of semialgebraic varieties
having a non-empty intersection, etc.

I [J.Fox, M. Gromov, V. Lafforgue, A. Naor, J. Pach, 2010] +
[J. Fox, J. Pach, A. Suk, 2015] Regularity lemma for
semialgebraic graphs of bounded complexity.

I In a joint work with S. Starchenko we prove a generalization
for graphs definable in distal structures, with respect to a
larger class of generically stable measures.



Distal theories

I NIP (“No Independence Property”) is an important dividing
line in Shelah’s classification theory generalizing the class of
stable theories.

I Turned out to be closely connected to the
Vapnik–Chervonenkis dimension, or VC-dimension — a notion
from combinatorics introduced around the same time (central
in computational learning theory).

I The class of distal theories was introduced and studied by [P.
Simon, 2011] in order to capture the class of “purely unstable”
NIP theories.

I The original definition is in terms of a certain property of
indiscernible sequences.

I [C., Simon, 2012] gives a combinatorial characterization of
distality:



Distal structures
I Theorem/Definition An NIP structure M is distal if and only if for

every definable family
{
φ (x , b) : b ∈ Md} of subsets of M there is a

definable family
{
ψ (x , c) : c ∈ Mkd} such that for every a ∈ M and

every finite set B ⊂ Md there is some c ∈ Bk such that a ∈ ψ (x , c) and
for every a′ ∈ ψ (x , c) we have a′ ∈ φ (x , b)⇔ a ∈ φ (x , b), for all b ∈ B.



Examples of distal structures

I All (weakly) o-minimal structures are distal, e.g.
M = (R,+,×, ex).

I Any p-minimal theory with Skolem functions is distal. E.g.
(Qp,+,×) for each prime p is distal (e.g. due to the p-adic
cell decomposition of Denef).

I Presburger arithmetic.



Distal theories



Distal regularity lemma

Theorem
[C., Starchenko] Let M be distal. For every definable R (x , y) and
every ε > 0 there is some K = K (ε,R) such that: for any
generically stable measures µ on M |x | and ν on M |y |, there are
A0, . . . ,Ak ⊆ M |x | and B0, . . . ,Bk ⊆ M |y | uniformly definable by
instances of formulas depending just on R and ε , and a set
Σ ⊆ {1, . . . , k}2 such that:
1. (Bounded size of the partition) k ≤ K,

2. (Few exceptions) ω
(⋃

(i ,j)∈Σ Ai × Bj

)
≥ 1− ε, where ω is the

product measure of µ and ν,
3. (The best possible regularity) for all (i , j) ∈ Σ, either

(Ai × Bj) ∩ R = ∅ or Ai × Bj ⊆ R.
4. Moreover, K is bounded by a polynomial in

(1
ε

)
.



Generically stable measures and some examples

I By a generically stable measure we mean a finitely additive
probability measure on the Boolean algebra of definable
subsets of Mn that is “well-approximated by frequency
measures”. The point is that in NIP (via VC theory) uniformly
definable families of sets satisfy a uniform version of the weak
law of large numbers with respect to such measures.

I Examples of generically stable measures:
I A (normalized) counting measure concentrated on a finite set.
I Lebesgue measure on [0, 1] over reals, restricted to definable

sets.
I Haar measure on a compact ball over p-adics.

I Moreover, we show that any structure such that all graphs
definable in it satisfy this strong regularity lemma is distal.



An application (in case I still have time)

I Let (G ,V ) be an undirected graph. A subset V0 ⊆ V is
homogeneous if either (v , v ′) ∈ E for all v 6= v ′ ∈ V0 or
(v , v ′) /∈ E for all v 6= v ′ ∈ V0.

I A class of finite graphs G has the Erdős-Hajnal property if
there is δ > 0 such that every G ∈ G has a homogeneous
subset of size ≥ |V (G )|δ.

I Erdős-Hajnal conjecture. For every finite graph H, the class
of all H-free graphs has the Erdős-Hajnal property.

I Fact. If G is a class of finite graphs closed under subgraphs
and G satisfies distal regularity lemma (without requiring
definability of pieces), then G has the Erdős-Hajnal property.

I Thus, we obtain many new families of graphs satisfying the
Erdős-Hajnal conjecture (e.g. quantifier-free definable graphs
in arbitrary valued fields of characteristic 0).


