Recognizing groups and fields in Erdős geometry and model theory

Artem Chernikov

UCLA

Géométrie et Théorie des Modèles, ENS, Paris (via Zoom) Apr 23, 2021

Hypergraphs and Zarankiewicz's problem

- We fix r ∈ N≥2 and let H = (V₁,..., V_r; E) be an r-partite and r-uniform hypergraph (or just r-hypergraph) with vertex sets V₁,..., V_r with |V_i| = n_i, (hyper-) edge set E ⊆ ∏_{i∈[r]} V_i, and n = ∑^r_{i=1} n_i is the total number of vertices.
- When r = 2, we say "bipartite graph" instead of "2-hypergraph".
- ▶ For $k \in \mathbb{N}$, let $K_{k,...,k}$ denote the complete *r*-hypergraph with each part of size *k* (i.e. $V_i = [k]$ and $E = \prod_{i \in [k]} V_i$).
- H is K_{k,...,k}-free if it does note contain an isomorphic copy of K_{k,...,k}.
- Zarankiewicz's problem: for fixed r, k, what is the maximal number of edges |E| in a K_{k,...,k}-free r-hypergraph H? (As a functions of n₁,..., n_r).

Number of edges in a $K_{k,...,k}$ -free hypergraph

The following fact is due to [Kővári, Sós, Turán'54] for r = 2 and [Erdős'64] for general r.

Fact (The Basic Bound)

If H is a $K_{k,\ldots,k}$ -free r-hypergraph then $|E| = O_{r,k}\left(n^{r-\frac{1}{k^{r-1}}}\right)$.

- "= O_{r,k}(-)" means "≤ c · -" for some constant c ∈ ℝ depending only on r and k.
- So the exponent is slightly better than the maximal possible r (we have n^r edges in K_{n,...,n}). A probabilistic construction in [Erdős'64] shows that it cannot be substantially improved (but whether it is sharp up to a constant is open).

Families of hypergraphs induced by definable relations

- ▶ Let $\mathcal{M} = (M,...)$ be a first-order structure in a language \mathcal{L} , and let $R \subseteq M_{x_1} \times ... \times M_{x_r}$ be a definable relation on the product of some sorts of \mathcal{M} .
- ▶ We let *F_R* be the family of all finite *r*-hypergraphs induced by *R*, i.e. hypergraphs of the form

$$H = (V_1, \ldots, V_r; R \upharpoonright_{V_1 \times \ldots \times V_r})$$

for some finite $V_i \subseteq M_{x_i}, i \in [r]$.

- ► Question. What properties of the structure *M* are reflected by the *exponents* in Zarankiewicz-style bounds for the families of hypergraphs *F_R* with *R* definable in *M*?
- Turns out many: NIP, distality, in certain "geometric" contexts — the trichotomy principle.

NIP graphs

Fact (Fox, Pach, Sheffer, Suk, Zahl '15)

Let \mathcal{M} be an NIP structure and $R \subseteq M_{x_1} \times M_{x_2}$ a definable relation. Then there exists d = d(R) (can take d = VC(R)), such that for every k we have: every $K_{k,k}$ -free bipartite graph $H \in \mathcal{F}_R$ satisfies $|E| = O_{d,k} \left(n^{2-\frac{1}{d}} \right)$.

- Conversely, independence of the bounding exponent from k implies that R is NIP:
 - 1. if *R* is not NIP, it contains every bipartite graph as an induced subgraph, and
 - 2. [Bohman, Keevash'10] $\forall k \geq 5$, there exists a bipartite $K_{k,k}$ -free graph with $\geq cn^{2-\frac{2}{k+1}}$ edges.

Point-line incidences, char p

- Let K |= ACF_p be an algebraically closed field of positive characteristic.
- Let R ⊆ K² × K² be the (definable) incidence relation between points and lines in K², i.e.

$$R(x_1, x_2; y_1, y_2) \iff x_2 = y_1 x_1 + y_2.$$

- Note that R is K_{2,2}-free (there is a unique line through any two distinct points).
- ▶ Let q be a power of p, then $\mathbb{F}_q \subseteq K$ and we take $V_1 = V_2 = (\mathbb{F}_q)^2$ (i.e. the set of all points and the set of all lines in \mathbb{F}_q^2), $E = R \upharpoonright_{V_1 \times V_2}$. Then $H = (V_1, V_2; E) \in \mathcal{F}_R$.
- We have $|V_1| = |V_2| = q^2$ and $|E| = q |V_2| = q^3$.

▶ Let
$$n := q^2$$
, then $|V_1| = |V_2| = n$ and $|E| \ge n^{\frac{3}{2}}$ — matches the Basic Bound for $r = k = 2$.

Points-lines incidences, char 0

On the other hand, over the reals a bound strictly better than the Basic Bound holds (⁴/₃ < ³/₂):

Fact (Szémeredi-Trotter '83)

Let $R \subseteq \mathbb{R}^2 \times \mathbb{R}^2$ be the incidence relation between points and lines in \mathbb{R}^2 . Then every $H \in \mathcal{F}_R$ satisfies $|E| = O\left(n^{\frac{4}{3}}\right)$.

- Known to be optimal up to a constant.
- ▶ In fact, the same holds in ACF₀:

Fact (Tóth '03)

Let $R \subseteq \mathbb{C}^2 \times \mathbb{C}^2$ be the incidence relation between points and lines in \mathbb{C}^2 . Then every $H \in \mathcal{F}_R$ satisfies $|E| = O\left(n^{\frac{4}{3}}\right)$.

- Szémeredi-Trotter theorem has numerous generalizations for semialgebraic graphs [Pach, Sharir'98], [Elekes, Szabó'12], [Fox, Pach, Sheffer, Suk, Zahl'15].
- ▶ Reason: ACF_0 is a reduct of a *distal* theory, while ACF_p is not.

Distality

Definition

A structure \mathcal{M} is *distal* if and only if for every definable family $\{\varphi(x, b) : b \in M_y\}$ of subsets of M_x there is a definable family $\{\theta(x, c) : c \in M_y^k\}$ such that for every $a \in M_x$ and every finite set $B \subset M_y$ there is some $c \in B^k$ such that:

•
$$a \models \theta(x, c);$$

▶ $θ(x,c) \vdash tp_{φ}(a/B)$, that is for every $a' \models θ(x,c)$ and $b \in B$ we have $a' \models φ(x,b) \Leftrightarrow a \models φ(x,b)$.

Examples of distal structures

- \mathcal{M} distal $\implies \mathcal{M}$ is NIP, unstable.
- Examples of distal structures: (weakly) o-minimal structures, various valued fields of char 0 (e.g. Q_p, RCVF, the valued differential field of transseries).
- Stable structures with distal expansions: ACF₀, DCF_{0,m}, CCM, abelian groups.
- Stable structures without distal expansions: ACF_p [C., Starchenko'15], a disjoint union of finite expander graphs (e.g. Ramanujan graphs) of growing degree and expansion [Jiang, Nesetril, Ossona de Mendez, Siebertz'20].
- > Problem. Do non-abelian free groups have distal expansions?

Stronger bounds for hypergraphs definable in distal structures

 Generalizing [Fox, Pach, Sheffer, Suk, Zahl'15] in the semialgebraic case, we have:

Fact (C., Galvin, Starchenko'16)

Let \mathcal{M} be a distal structure and $R \subseteq M_{x_1} \times M_{x_2}$ a definable relation. Then there exists some $\varepsilon = \varepsilon(R, k) > 0$ such that every $K_{k,k}$ -free bipartite graph $H \in \mathcal{F}_R$ satisfies $|E| = O_{R,k}(n^{t-\varepsilon})$, where t is the exponent given by the Basic Bound of Erdős for arbitrary graphs.

- In fact, ε is given in terms of k and the size of the smallest distal cell decomposition for R.
- ► E.g. if R ⊆ M² × M² for an *o*-minimal M, then t − ε = ⁴/₃ ([C., Galvin, Starchenko'16]; independently, [Basu, Raz'16]).
- Bounds for R ⊆ M^{d₁} × M^{d₂} with M ⊨ RCF [Fox, Pach, Sheffer, Suk, Zahl'15]; hypergraphs [Do'18]; M is o-minimal [Anderson'21].

Connections to the "trichotomy principle" in model theory

- If *M* is sufficiently tame model-theoretically (e.g. stable/geometric + distal expansion; or more concretely, ACF₀ or *o*-minimal), the exponents in Zarankiewicz bounds of definable (hyper-)graphs appear to reflect the trichotomy principle, and detect presence of algebraic structures (groups, fields).
- Instances of this principle are also known in combinatorics extremal configuration for various counting problems tend to come from algebraic structures.
- We discuss two results demonstrating that they have to come from algebraic structures in certain cases, focusing here on the o-minimal case.

Elekes-Szabó theorem, 1

 [Erdős, Szemerédi'83] There exists some c ∈ ℝ_{>0} such that: for every finite A ⊆ ℝ,

$$\max\left\{\left|A+A\right|,\left|A\cdot A\right|\right\}=\Omega\left(\left|A\right|^{1+c}\right).$$

- [Solymosi], [Konyagin, Shkredov] Holds with ⁴/₃ + ε for some sufficiently small ε > 0. (Conjecturally: with 2 − ε for any ε).
- [Elekes, Rónyai'00] Let f ∈ ℝ [x, y] be a polynomial of degree d, then for all A, B ⊆_n ℝ,

$$|f(A \times B)| = \Omega_d\left(n^{\frac{4}{3}}\right),$$

unless f is either of the form g(h(x) + i(y)) or $g(h(x) \cdot i(y))$ for some univariate polynomials g, h, i.

Elekes-Szabó theorem, 2

▶ [Elekes-Szabó'12] provide a conceptual generalization: for any algebraic surface $R(x_1, x_2, x_3) \subseteq \mathbb{R}^3$ so that the projection onto any two coordinates is finite-to-one, exactly one of the following holds:

1. there exists $\gamma > 0$ s.t. for any finite $A_i \subseteq_n \mathbb{R}$ we have

$$|R \cap (A_1 \times A_2 \times A_3)| = O(n^{2-\gamma}).$$

2. There exist open sets $U_i \subseteq \mathbb{R}$ and $V \subseteq \mathbb{R}$ containing 0, and analytic bijections with analytic inverses $\pi_i : U_i \to V$ such that

$$\pi_1(x_1) + \pi_2(x_2) + \pi_3(x_3) = 0 \Leftrightarrow R(x_1, x_2, x_3)$$

for all $x_i \in U_i$.

Generalizations of the Elekes-Szabó theorem

Let $R \subseteq X_1 \times \ldots \times X_r$ be an algebraic surface (or just a definable set) with finite-to-one projection onto any r - 1 coordinates and $\dim(X_i) = m$.

- 1. [Elekes, Szabó'12] r = 3, m arbitrary over \mathbb{C} (only count on grids in *general position*, correspondence with a complex algebraic group of dimension m);
- 2. [Raz, Sharir, de Zeeuw'18] r = 4, m = 1 over \mathbb{C} ;
- 3. [Raz, Shem-Tov'18] m = 1, R of the form $f(x_1, ..., x_{r-1}) = x_r$ for any r over \mathbb{C} .
- 4. [Bays, Breuillard'18] r and m arbitrary over \mathbb{C} , recognized that the arising groups are abelian (however no bounds on γ);
- Related work: [Raz, Sharir, de Zeeuw'15], [Wang'15]; [Bukh, Tsimmerman' 12], [Tao'12]; [Hrushovski'13]; [Jing, Roy, Tran'19].
- 6. [C., Peterzil, Starchenko] Any r and m, any o-minimal structure (or stable with a distal expansion) and explicit bounds on γ . A special case:

One-dimensional o-minimal case

Theorem (C., Peterzil, Starchenko)

Assume $r \ge 3$, \mathcal{M} is an o-minimal expansion of \mathbb{R} and $R \subseteq \mathbb{R}^r$ is definable, such that the projection of R to any r - 1 coordinates is finite-to-one. Then exactly one of the following holds.

1. For any finite $A_i \subseteq_n \mathbb{R}$, $i \in [r]$, we have

$$|R \cap (A_1 \times \ldots \times A_r)| = O_R(n^{r-1-\gamma}),$$

where $\gamma = \frac{1}{3}$ if $r \ge 4$, and $\gamma = \frac{1}{6}$ if r = 3.

2. There exist open sets $U_i \subseteq \mathbb{R}$, $i \in [r]$, an open set $V \subseteq \mathbb{R}$ containing 0, and homeomorphisms $\pi_i : U_i \to V$ such that

$$\pi_1(x_1) + \cdots + \pi_r(x_r) = 0 \Leftrightarrow R(x_1, \ldots, x_r)$$

for all $x_i \in U_i, i \in [r]$.

General o-minimal case

Theorem (C., Peterzil, Starchenko)

Let \mathcal{M} be an o-minimal expansion of \mathbb{R} . Assume $r \geq 3$, $R \subseteq X_1 \times \cdots \times X_r$ are definable with dim $(X_i) = m$, and the projection of R to any r - 1 coordinates is finite-to-one. Then exactly one of the following holds.

1. For any finite $A_i \subseteq_n X_i$ in general position, $i \in [r]$, we have

$$|R \cap (A_1 \times \ldots \times A_r)| = O_R(n^{r-1-\gamma})$$

for $\gamma = \frac{1}{8m-5}$ if $s \ge 4$, and $\gamma = \frac{1}{16m-10}$ if s = 3.

There exist definable relatively open sets U_i ⊆ X_i, i ∈ [s], an abelian Lie group (G,+) of dimension m and an open neighborhood V ⊆ G of 0, and definable homeomorphisms π_i: U_i → V, i ∈ [s], such that for all x_i ∈ U_i, i ∈ [s]

$$\pi_1(x_1) + \cdots + \pi_s(x_s) = 0 \Leftrightarrow R(x_1, \ldots, x_s).$$

Remarks

- If *M* is *o*-minimal but is not elementarily equivalent to an expansion of ℝ — only get correspondence with a type-definable group.
- 2. One ingredient improved Zarankiewicz bounds in distal structures discussed above (the power saving γ in the non-group case corresponds to the improvement on the basic Zarankiewicz bound).
- Another a higher arity generalization of the Abelian Group Configuration theorem of Zilber and Hrushovski on recognizing groups from a "generic chunk". We discuss a simple purely combinatorial case sufficient for *o*-minimal:

Recognizing groups, 1

- 1. Assume that (G, +, 0) is an abelian group, and consider the *r*-ary relation $R \subseteq \prod_{i \in [r]} G$ given by $x_1 + \ldots + x_r = 0$.
- 2. Then *R* is easily seen to satisfy the following two properties, for any permutation of the variables of *R*:

$$\forall x_1, \dots, \forall x_{r-1} \exists ! x_r R(x_1, \dots, x_r),$$
(P1)

$$\forall x_1, x_2 \forall y_3, \dots, y_r \forall y'_3, \dots, y'_r \Big(R(\bar{x}, \bar{y}) \land R(\bar{x}, \bar{y}') \rightarrow$$
(P2)

$$\Big(\forall x'_1, x'_2 R(\bar{x}', \bar{y}) \leftrightarrow R(\bar{x}', \bar{y}') \Big) \Big).$$

We show a converse, assuming $r \ge 4$:

Recognizing groups, 2

Theorem (C., Peterzil, Starchenko) Assume $r \in \mathbb{N}_{\geq 4}$, X_1, \ldots, X_r and $R \subseteq \prod_{i \in [r]} X_i$ are sets, so that Rsatisfies (P1) and (P2) for any permutation of the variables. Then there exists an abelian group $(G, +, 0_G)$ and bijections $\pi_i : X_i \to G$ such that for every $(a_1, \ldots, a_r) \in \prod_{i \in [r]} X_i$ we have

$$R(a_1,\ldots,a_r) \iff \pi_1(a_1)+\ldots+\pi_r(a_r)=0_G.$$

- If X₁ = ... = X_r, property (P1) is equivalent to saying that the relation R is an (r − 1)-dimensional permutation on the set X₁, or a Latin (r − 1)-hypercube, as studied by Linial and Luria. Thus the condition (P2) characterizes, for r ≥ 3, those Latin r-hypercubes that are given by the relation "x₁ + ... + x_{r-1} = x_r" in an abelian group.
- If R is definable and X_i are type-definable in a (saturated) M, then G is type-definable and π_i are relatively definable in M.

Recognizing groups in the stable case

- In the stable case of the theorem, we only get "generic correspondence" with a type-definable group.
- ► An *r*-gon is a tuple a₁,..., a_r such that any r − 1 of its elements are (forking-)independent, and any element in it is in the algebraic closure of the other ones.
- An r-gon is abelian if, after any permutation of its elements, we have a₁a₂ ↓ acl(a₁a₂)∩acl(a₃...ar) a₃...ar.
- If (G, ·) is a type-definable abelian group, g₁,..., g_{r-1} are independent generics in G and g_r := g₁ · ... · g_{r-1}, then g₁,..., g_r is an abelian r-gon (associated to G).

Conversely,

Theorem (C., Peterzil, Starchenko; independently Hrushovski) Let $r \ge 4$ and a_1, \ldots, a_r be an abelian r-gon. Then there is a type-definable (in \mathcal{M}^{eq}) connected abelian group (G, \cdot) and an abelian r-gon g_1, \ldots, g_s associated to G, such that after a base change each g_i is interalgebraic with a_i .

Recognizing fields

- ► For the semialgebraic $K_{2,2}$ -free point-line incidence relation $R = \{(x_1, x_2; y_1, y_2) \in \mathbb{R}^4 : x_2 = y_1x_1 + y_2\} \subseteq \mathbb{R}^2 \times \mathbb{R}^2$ we have the (optimal) lower bound $|R \cap (V_1 \times V_2)| = \Omega(n^{\frac{4}{3}}).$
- To define it we use both addition and multiplication, i.e. the field structure.
- This is not a coincidence any non-trivial lower bound on the Zarankiewicz exponent of R allows to recover a field from it:

Theorem (Basit, C., Starchenko, Tao, Tran)

Assume that $\mathcal{M} = (M, <, ...)$ is o-minimal and $R \subseteq M_{x_1} \times ... \times M_{x_r}$ is a definable relation which is $K_{k,...,k}$ -free, but $|R \cap \prod_{i \in [r]} V_i| \neq O(n^{r-1})$. Then a real closed field is definable in the first-order structure (M, <, R).

Ingredients

- ► An almost optimal Zarankiewicz bound for hypergraphs definable in locally modular *o*-minimal expansions of groups, so e.g. for semilinear (= definable in (ℝ, <, +)) hypergraphs.</p>
- The trichotomy theorem for *o*-minimal structures [Peterzil, Starchenko'98].

Geometric weakly locally modular theories

- Recall that a complete first-order theory *T* is *geometric* if, in any model *M* ⊨ *T*, the algebraic closure operator satisfies the *Exchange Principle* and the quantifier ∃[∞] is eliminated.
- ► Hence, in a model of a geometric theory, acl defines a well-behaved notion of independence ↓.
- ▶ [Berenstein, Vassiliev] A geometric theory is (weakly) locally modular if for any small subsets $A, B \subseteq \mathbb{M} \models T$ there exists some small set $C \downarrow_{\emptyset} AB$ such that $A \downarrow_{\operatorname{acl}(AC) \cap \operatorname{acl}(BC)} B$.
- Intuition: the algebraic closure operator behaves like the linear span in a vector space, as opposed to the algebraic closure in an algebraically closed field.
- ► E.g. any *o*-minimal theory *T* is geometric, and *T* is weakly locally modular if and only if *T* is linear (i.e. any normal interpretable family of plane curves in *T* has dimension ≤ 1).

Zarankiewicz bound for semilinear relations

Theorem (Basit, C., Starchenko, Tao, Tran) Let \mathcal{M} be an o-minimal locally modular expansion of a group and R a definable relation of arity $r \geq 2$, and $K_{k,...,k}$ -free. Then

$$|R \cap \prod_{i \in [r]} V_i| = O_{R,k,\varepsilon}(n^{r-1+\varepsilon})$$

for any $\varepsilon > 0$. More precisely, there are $\alpha = \alpha(r, s, k) \in \mathbb{R}$ and $\beta = \beta(r, s) \in \mathbb{N}$, where s is the **description complexity** of R, such that

$$|R \cap \prod_{i \in [r]} V_i| \leq \alpha n^{r-1} (\log n)^{\beta}.$$

We can take $\beta(r, s) := s(2^{r-1} - 1)$.

Corollary for semilinear hypergraphs

Corollary

For every $s, k \in \mathbb{N}$ there exist some $\alpha = \alpha(r, s, k) \in \mathbb{R}$ and $\beta(r, s) := s(2^{r-1} - 1)$ satisfying the following. Suppose that $r \ge 2, d = d_1 + \ldots + d_r \in \mathbb{N}$ and $R \subseteq \mathbb{R}^{d_1} \times \ldots \times \mathbb{R}^{d_r}$ is semilinear and defined by $\le s$ linear equalities and inequalities. Then for every $K_{k,\ldots,k}$ -free r-hypergraph $H \in \mathcal{F}_R$ we have

 $|E| \leq \alpha n^{r-1} \left(\log n\right)^{\beta}.$

An application to incidences with polytopes

• Applying with r = 2 we get the following:

Corollary

For every $s, k \in \mathbb{N}$ there exists some $\alpha = \alpha(s, k) \in \mathbb{R}$ satisfying the following.

Let $d \in \mathbb{N}$ and $H_1, \ldots, H_q \subseteq \mathbb{R}^d$ be finitely many (closed or open) half-spaces in \mathbb{R}^d . Let \mathcal{F} be the (infinite) family of all polytopes in \mathbb{R}^d cut out by arbitrary translates of H_1, \ldots, H_q . For any set V_1 of n_1 points in \mathbb{R}^d and any set V_2 of n_2 polytopes in \mathcal{F} , if the incidence graph on $V_1 \times V_2$ is $K_{k,k}$ -free, then it contains at most $\alpha n (\log n)^q$ incidences.

In particular (a similar result was obtained independently by [Tomon, Zakharov]):

Corollary

For any set V_1 of n_1 points and any set V_2 of n_2 (solid) boxes with axis parallel sides in \mathbb{R}^d , if the incidence graph on $V_1 \times V_2$ is $K_{k,k}$ -free, then it contains at most $O_{d,k}$ $(n(\log n)^{2d})$ incidences.

Dyadic rectangles and a lower bound

- Is the logarithmic factor necessary?
- We focus on the simplest case of incidences with rectangles with axis-parallel sides in ℝ². The previous corollary gives the bound O_{d,k} (n(log n)⁴).
- A box is *dyadic* if it is the direct products of intervals of the form [s2^t, (s + 1)2^t) for some integers s, t.
- ▶ Using a different argument, restricting to dyadic boxes we get a stronger upper bound $O\left(n\frac{\log n_1}{\log \log n_1}\right)$, and give a construction showing a matching lower bound (up to a constant).
- [Tomon, Zakharov] use our construction to disprove a conjecture of Alon, Basavaraju, Chandran, Mathew, and Rajendraprasad regarding the maximal possible number of edges in a graph of bounded separation dimension.

Problem

What is the optimal bound on the power of log n? In particular, does it have to grow with the dimension d?

Bound for $K_{k,...,k}$ -free relations in geometric weakly locally modular structures

In our bounds, we can get rid of the logarithmic factor entirely restricting to the family of all finite *r*-hypergraphs induced by a given K_{k,...,k}-free relation (as opposed to all K_{k,...,k}-free *r*-hypergraphs induced by a given relation).

Theorem (Basit, C., Starchenko, Tao, Tran)

Assume that T is a geometric, weakly locally modular theory, and $\mathcal{M} \models T$. Assume that $r \in \mathbb{N}_{\geq 2}$ and $R \subseteq M_{x_1} \times \ldots \times M_{x_r}$ is definable and $K_{k,\ldots,k}$ -free. Then there exists some $\alpha = \alpha(R) > 0$ such that for every $H \in \mathcal{F}_R$ we have

$$|E| \le \alpha n^{r-1}.$$

Moreover, if T is distal, then can relax " $K_{k,...,k}$ -free" to "does not contain the direct product of r infinite sets".

A related observation was made by Evans in the binary case for certain stable theories.

Recovering a field in the o-minimal case

Fact (Peterzil, Starchenko'98)

Let \mathcal{M} be an o-minimal saturated structure. TFAE:

- *M* is not weakly locally modular;
- there exists a real closed field definable in M.
- Combining this with the previous theorem, we thus get:

Corollary

Let \mathcal{M} be an o-minimal structure. TFAE:

- ▶ *M* is weakly locally modular;
- For every definable $K_{k,...,k}$ -free R, every $H \in \mathcal{F}_R$ satisfies $|E| \leq \alpha n^{r-1}$.
- ▶ no infinite field is definable in *M*.

Thank you!

- Model-theoretic Elekes-Szabó for stable and o-minimal hypergraphs, Artem Chernikov, Ya'acov Peterzil, Sergei Starchenko (arXiv:2104.02235)
- Zarankiewicz's problem for semilinear hypergraphs, Artem Chernikov, Abdul Basit, Sergei Starchenko, Terence Tao and Chieu-Minh Tran (arXiv:2009.02922)