Some applications of model theory to geometric Ramsey theory

Artem Chernikov

(IMJ-PRG, FSMP)

GTM, Paris Nov 14, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Joint work with Sergei Starchenko.

Szemerédi regularity lemma

Theorem

[E. Szemerédi, 1975] If $\varepsilon > 0$, then there exists $K = K(\varepsilon)$ such that: for any finite bipartite graph $R \subseteq A \times B$, there exist partitions $A = A_0 \cup \ldots \cup A_k$ and $B = B_0 \cup \ldots \cup B_k$ into non-empty sets, and a set $\Sigma \subseteq \{1, \ldots, k\} \times \{1, \ldots, k\}$ with the following properties.

- 1. Bounded size of the partition: $k \leq K$.
- 2. Few exceptions: $\left| \bigcup_{(i,j)\in\Sigma} A_i \times B_j \right| \ge (1-\varepsilon) |A \times B|.$
- 3. ε -regularity: for all $(i, j) \in \Sigma$, and all $A' \subseteq A_i, B' \subseteq B_j$, one has

$$\left|\frac{|R \cap (A' \times B')|}{|A' \times B'|} - \frac{|R \cap (A_i \times B_j)|}{|A_i \times B_j|}\right| \le \varepsilon$$

うして ふゆう ふほう ふほう うらつ

Szemerédi regularity lemma: bounds and applications

- Has many applications in extreme graph combinatorics, additive number theory, computer science, etc.
- Exist various versions for weaker and stronger partitions, for hypergraphs, etc.
- Limitations:
 - [T. Gowers, 1997] The size of the partition K (ε) grows as a tower of twos 2^{2^{···}} of height (1/ε¹⁶).

- Not so useful for sparse graphs.
- Can one obtain stronger versions for restricted families of graphs?

Stronger regularity for restricted families of graphs

- 1. [T. Tao, 2012] Algebraic graphs of bounded complexity in large finite fields (pieces of the partition are algebraic, no exceptional pairs, stronger regularity).
- 2. [L. Lovász, B. Szegedi, 2010] Graphs of bounded VC-dimension, i.e. NIP graphs (density arbitrarily close to 0 or 1, the size of the partition is bounded by a polynomial in $(\frac{1}{\varepsilon})$).
 - 2.1 [M. Malliaris, S. Shelah, 2011]: graphs without arbitrary large half-graphs, i.e. stable graphs (no exceptional pairs).
 - 2.2 Alon, Conlon, Fox, Gromov, Naor, Pach, Pinchasi, Radoičić, Sharir, Sudakov, Lafforgue, Suk: semialgebraic graphs of bounded complexity.
- All these cases are orthogonal to each other, and curiously have something to do with model theoretic classification theory.

Semialgebraic graphs

- A set A ⊆ ℝ^d is semialgebraic if it is defined by a finite boolean combination of polynomial equalities and inequalities.
- We say that the *description complexity* of a semialgebraic set $A \subseteq \mathbb{R}^d$ is $\leq t$ if $d \leq t$ and A can be defined by a boolean combination of at most t polynomials, each of degree at most t.
- ▶ We say that a graph $R \subseteq \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ is semialgebraic if its edge relation is.
- Examples of semialgebraic graphs of bounded complexity: the incidence relation between points and lines on the plane, two parametrized families of semialgebraic varieties having a non-empty intersection, etc.

Semialgebraic Ramsey, 1

- ▶ We say that a pair of sets (A, B) is *R*-homogeneous if either $A \times B \subseteq R$ or $(A \times B) \cap R = \emptyset$.
- [N. Alon, J. Pach, R. Pinchasi, R. Radoičić, M. Sharir, "Crossing patterns of semi-algebraic sets", 1995]:

Theorem

For every $t \in \mathbb{N}$ there is some $\varepsilon > 0$ such that: if $R \subseteq \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ is semialgebraic, of complexity bounded by t, then for any finite sets $A_i \subseteq \mathbb{R}^{d_i}$ there are some $A'_i \subseteq A_i$ such that $|A'_i| \ge \varepsilon |A_i|$ and (A'_1, A'_2) is R-homogeneous. Moreover, $A'_i = A_i \cap S_i$, where S_i is a certain semialgebraic relation of complexity bounded in terms of t.

Using this [J.Fox, M. Gromov, V. Lafforgue, A. Naor, and J. Pach, "Overlap properties of geometric expanders", 2010] obtain a semialgebraic regularity lemma — we'll return to it soon.

Semialgebraic Ramsey, 2

- ▶ By Tarski's quantifier elimination for real closed fields, this can be reformulated by saying that (ℝ, +, ×) satisfies the following property.
- (*) For every formula φ (x₁, x₂, z) there is some ε > 0 such that: for every choice of the parameter c ∈ M^{|z|}, for every finite A_i ⊆ M^{|x_i|} there are some A'_i ⊆ A_i such that |A'_i| ≥ ε |A_i| and (A'₁, A'₂) is φ (x₁, x₂, c)-homogeneous. Moreover, A'_i = A_i ∩ S_i, where S_i ⊆ M^{|x_i|} is definable by a certain formula depending just on φ.
- (*) is a property of Th (M): if it holds in one structure, then it holds in all structures elementarily equivalent to it.
- Which other theories satisfy (*)?

NIP theories

- Were introduced by [S.Shelah] for purposes of his classification theory: in some model *M*, some formula picks out all subsets of an infinite set.
- There is a rather elaborate theory of NIP theories based on invariant types, Keisler measures, indiscernible sequences, forking, etc — methods from infinitary combinatorics, ultrafilters, etc. Attracted a lot of attention recently.
- [C. Laskowski]: connection to finite VC-dimension, a notion from combinatorics introduced around the same time (central in computational learning theory), i.e. a theory is NIP iff all families of uniformly definable sets have finite VC-dimension.
- Key examples of NIP theories: algebraically closed fields, o-minimal theories (e.g. reals with exponentiation), p-adics, ACVF.

(*) implies NIP

 It follows from an easy probabilistic argument due to Pach that (*) implies NIP (even without requiring definability of the homogeneous subsets).

- ► [S. Basu, 2007] Topologically closed graphs in *o*-minimal expansions of real closed fields satisfy (*).
- Do all NIP theories satisfy (*)?
- No!

(*) fails in ACF_p

- For a finite field 𝔽_q, let P_q be the set of all points in 𝔽²_q and let L_q be the set of all lines in 𝔽²_q. Then |P_q| = q² and |L_q| = q² + q ~ q².
- Let I ⊆ P_q × L_q be the incidence relation. Using that fact that the lazy Szemerédi-Trotter bound
 |I (P_q, L_q)| ≤ |L_q| |P_q|^{1/2} + |P| is optimal in finite fields one can show:
- Claim. For any fixed δ > 0, for all large enough q if L₀ ⊆ L_q and P₀ ⊆ P_q with |P₀| ≥ δq² and |L₀| ≥ δq² then I (P₀, L₀) ≠ Ø.
- As every field of char p can be embedded into 𝔽_p, it follows that (*) fails in 𝔽_p (even without requiring definability of the homogeneous pieces) for *I* the incidence relation.

Results

- ACF_p is a nice stable theory. Turns out that stability is the problem.
- ▶ We will generalize (*) (and further theory) in two directions: proving it for a larger class of theories (covering all *o*-minimal theories and *p*-adics) and for a larger class of measures (rather than just the counting ones, covering Lebesgue and Haar measures). Moreover, we will show that (*) is equivalent to distality.

Let us describe the context first.

Distal theories

- The class of *distal theories* was introduced by [P. Simon, 2011] in an attempt to capture the class of purely unstable NIP theories.
- The original definition is in terms of a certain property of indiscernible sequences (see later).

Theorem

[Ch., Simon, 2012] An NIP theory T is distal if and only if for every formula $\phi(x, y)$ there is a formula $\psi(x, y_1, \ldots, y_n)$ such that for every $a \in M^{|x|}$ and every finite set $B \subset M^{|y|}$ there is some $c \in B^n$ such that $M \models \psi(a, c)$ and $\psi(x, c) \vdash tp_{\phi}(a/B)$.

- The proof uses some model theory along with some deep combinatorial results due to [J. Matoušek] and [N. Alon, D. Kleitman].
- It is enough to verify this property for formulas with |x| = 1.
- All *o*-minimal theories and $(\mathbb{Q}_p, +, \times)$ are distal.
- In a distal theory, any generically stable type is algebraic. So any distal theory is unstable, and ACVF is not distal.

Example: o-minimal theories are distal

- Let *M* be *o*-minimal and let $\phi(x, \bar{y})$ be given.
- For any b
 ∈ M^{|y|}, φ(x, b) is a finite union of intervals whose endpoints are of the form f_i (b) for some definable f₀(y),..., f_k(y).
- ► Given a finite set $B \subseteq M^{|\bar{y}|}$, the set of points { $f_i(\bar{b}) : i < k, \bar{b} \in B$ } divides M into finitely many intervals, and any two points in the same interval have the same ϕ -type over B.
- ▶ Thus, for any $a \in M$, either $a = f_i(\bar{b})$ for some i < k and $\bar{b} \in B$, or $f_i(\bar{b}) < x < f_j(\bar{b}') \vdash tp_{\phi}(a/B)$ for some i, j < k and $\bar{b}, \bar{b}' \in B$.

うしつ 山 (山) (山) (山) (山) (山) (山) (山)

Keisler measures

- A (Keisler) measure µ over a set of parameters A ⊆ M is a finitely additive probability measure on the boolean algebra Def_× (A) of A-definable subsets of M.
- Every measure can be viewed as a measure defined on all clopen subsets of the compact space of types $S_x(A)$, and then it admits a unique extension to a regular Borel probability measure on $S_x(A)$.
- Let 𝔐_x (A) be the space of measures over A. It can be naturally viewed as a closed subset of [0, 1]^{L(A)} with the product topology, so 𝔐_x (A) is compact. Every type with a zero-one measure concentrated on it, thus S_x (A) is a closed subset of 𝔐_x (A).
- ► A global measure is a measure over M.

Generically stable measures, 1

- A global measure µ is smooth over a small model M ≤ M if it is the unique measure extending µ|_M.
- A global measure µ in an NIP theory is generically stable over a small model M if it is the unique Aut (M / M)-invariant Keisler measure extending µ|_M.
- [Vapnik–Chervonenkis, 1971]+[E. Hrushovski, A. Pillay, P. Simon, 2010]. Generically stable measures in NIP theories are uniformly approximable by frequency measures: for every φ(x, y) ∈ L and ε > 0 there is some n ∈ N such that for every global generically stable measure μ there are some a₀,..., a_{n-1} ∈ M such that for any b ∈ M we have |μ(φ(x, b)) |{i < n: ⊨φ(a_i, b)}| / n ≤ ε.

Generically stable measures, 2

- [Simon] A theory is distal iff every generically stable measure is smooth.
- Examples:
 - A global type viewed as a measure is smooth if and only if it is realized.
 - A counting measure concentrated on a finite set is smooth (in any theory).
 - ► Lebesgue measure on [0, 1] (over reals, restricted to the definable sets) is smooth.
 - ► Haar measure on a ball over *p*-adics is smooth.
 - Let G be a definably compact group in an o-minimal theory. Then it admits a unique G-invariant measure, which is moreover smooth.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Generically stable measures, 3

- Given measures µ₁ on M^{|x₁|} and µ₂ on M^{|x₂|}, we say that a measure µ on M^{|x₁|+|x₂|} is a product measure of µ₁ and µ₂ if for every definable set S ⊆ M^{|x₁|+|x₂|} such that S = S₁ × S₂ with S_i ⊆ M^{|x_i|} definable, we have µ(S) = µ₁(S₁)µ₂(S₂).
- Let T be NIP. Given generically stable measures µ₁ on M^{|x₁|} and µ₂ on M^{|x₂|}, there is a generically stable product measure of µ₁ and µ₂ (possibly non-unique, can take µ₁ ⊗ µ₂).
- If both μ₁ and μ₂ are smooth, then there is a unique smooth product measure μ.

Main results: Distal Ramsey

Theorem

[Ch., Starchenko] Let T be distal. Then it satisfies:

- (*)' For every φ (x₁, x₂, y) there is some ε > 0 such that: for all c ∈ M^{|y|} and all generically stable measures μ_i on M^{|x_i|} there are some sets S_i ⊆ M^{|x_i|} definable by an instance of a formula depending just on φ, such that μ_i (S_i) ≥ ε and (S₁, S₂) is φ (x₁, x₂, c)-homogeneous. (Of course, (*)' implies (*) by taking μ_i to be the counting measure concentrated on a finite set A_i.)
- 2. Moreover, if T satisfies (*)' just for the counting measures then T is distal.
- Using it, we generalize the semialgebraic regularity lemma of [J.Fox, M. Gromov, V. Lafforgue, A. Naor, and J. Pach, 2010]:

Main results: Distal regularity lemma

Theorem

[Ch., Starchenko] Let T be distal. For every $\phi(x_1, x_2, y)$ and every $\varepsilon > 0$ there is some $K = K(\varepsilon, \phi)$ such that: for any choice of the parameter $c \in \mathbb{M}^{|y|}$ and any generically stable measures μ_i on $\mathbb{M}^{|x_i|}$, there are $A_0^i, \ldots, A_k^i \subseteq M^{|x_i|}$ uniformly definable depending just on ϕ and ε , and a set $\Sigma \subseteq \{1, \ldots, k\}^2$ such that:

- 1. $k \leq K$, 2. $\mu \left(\bigcup_{(j,j')\in\Sigma} A_j^1 \times A_{j'}^2 \right) \geq 1 - \varepsilon$, where μ is the product measure of μ_1 and μ_2 ,
- 3. for all $(j, j') \in \Sigma$, the pair $(A_j^1, A_{j'}^2)$ is $\phi(x_1, x_2, c)$ -homogeneous.
- Moreover, for a fixed φ we have K (ε) ≤ c₁ (¹/_ε)^{c₂ log(¹/_ε)} for some c₁, c₂ > 0.

うして ふゆう ふほう ふほう うらつ

Remarks

- If µ₁, µ₂ also satisfy a certain "uniform non-atomicity" condition, then we can choose the sets in the partition to be of approximately equal size.
- Without requiring definability of the homogeneous subsets (*) holds in ACF₀ and in ACVF_{0,0}: as a model *M* of ACVF_{0,0} can be embedded into a model *N* of RCVF, which is weakly o-minimal, so distal.
- By the same reason, weak (*) holds for all quantifier-free definable graphs in arbitrary (valued) fields of (equi-)characteristic 0.
- There are many further results in the semialgebraic setting relying on (*) and the regularity lemma. For example:

Applications: Erdős-Hajnal property

- Let (G, V) be an undirected graph. A subset V₀ ⊆ V is homogeneous if either (v, v') ∈ E for all v ≠ v' ∈ V₀ or (v, v') ∉ E for all v ≠ v' ∈ V₀.
- A class of finite graphs G has the Erdős-Hajnal property if there is δ > 0 such that every G ∈ G has a homogeneous subset of size ≥ |V(G)|^δ.
- Erdős-Hajnal conjecture: for every finite graph H, the class of all H-free graphs has the Erdős-Hajnal property.
- Fact. If G is a class of finite graphs closed under subgraphs and G satisfies (*) (without requiring definability of pieces), then G has the Erdős-Hajnal property.
- Thus, we obtain many new families of graphs satisfying the Erdős-Hajnal conjecture.

Applications: Ramsey numbers

- Let R be a symmetric definable n-ary relation on M^k, and let M be distal.
- A subset V ⊆ M^k is R-mohogeneous if either (v₁,..., v_n) ∈ R for all pairwise distinct v₁,..., v_n ∈ M or (v₁,..., v_n) ∉ R for all pairwise distinct v₁,..., v_n ∈ M.
- Using the case Erdős-Hajnal property as a basis of induction with n = 2, the proof of [D. Conlon, J. Fox, J. Pach, B. Sudakov, A. Suk] for the semialgebraic case gives:

Theorem

There is c = c(R) such that for every m, every finite set of size $m^{m \cdots m^c}$ (i.e. (n-1)-tower of m's) contains an R-homogeneous subset of size m.

► The bound is tight when k is close to n, but for k = 1 it is much smaller [B. Bukh, J. Matoušek].

Some comments on the proof

- The semialgebraic version of (*) is proved using the Clarkson-Shor random sampling technique and a polynomial cutting lemma of Guth and Katz.
- For our argument we replace the polynomial cutting lemma by an abstract version of a cutting obtained using distality and frequency approximation of generically stable measures using the VC-theorem.

 For the converse, we use the average measure of an indiscernible sequence.