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I Joint work with Pierre Simon, continues previous work with
Anand Pillay and Pierre Simon.



Setting

I T is a complete first-order theory in a language L, countable
for simplicity.

I M |= T — a monster model, κ (M)-saturated for some
sufficiently large strong limit cardinal κ (M).

I G — a definable group (over ∅ for simplicity).
I As usual, for any set A we denote by Sx (A) the (compact,

Hausdorff) space of types (in the variable x) over A and by
SG (A) ⊆ Sx (A) the space of types in G .
Defx (A) denotes the boolean algebra of A-definable subsets of
M.

I G acts naturally on SG (M) by homeomorphisms:
for a |= p (x) ∈ SG (M) and g ∈ G (M),
g · p = tp (g · a) =

{
φ (x) ∈ L (M) : φ

(
g−1 · x

)
∈ p
}
.



VC-dimension

I Let F = {Xa : a ∈ A} be a family of subsets of a set S .
I For a set B ⊆ S , let F ∩ B = {Xa ∩ B : a ∈ A}.
I We say that B ⊆ S is shattered by F if F ∩ B = 2B .
I Let the Vapnik-Chervonenkis dimension (VC dimension) of F

be the largest integer n such that some subset of S of size n is
shattered by F (otherwise ∞).

I Let πF (n) = max {|F ∩ B| : B ⊂ S , |B| = n}.
I If the VC dimension of F is infinite, then πF (n) = 2n for all n.

However,

Fact
[Sauer-Shelah lemma] If F has VC dimension d, then
πF (n) = O

(
nd).

I Computational learning theory, probability/combinatorics,
functional analysis, model theory...



NIP theories

I A formula φ (x , y) (where x , y are tuples of variables) is NIP if
the family Fφ = {φ (x , a) : a ∈M} has finite VC-dimension.

I T is NIP if it implies that every formula φ (x , y) ∈ L is NIP.

Fact
[Shelah] T is NIP iff every formula φ (x , y) with |x | = 1 is NIP.

I Examples of NIP theories:
I stable theories (e.g. modules, algebraically / separably /

differentially closed fields, free groups by Sela),
I o-minimal theories (e.g. real closed fields with exponentiation),
I ordered abelian groups,
I algebraically closed valued fields, p-adics.

I Non-examples: the theory of the random graph, pseudo-finite
fields, ...



Model-theoretic connected components

Let A be a small subset of M. We define:
I G 0

A =
⋂
{H ≤ G : H is A-definable, of finite index}.

I G 00
A =⋂
{H ≤ G : H is type-definable over A, of bounded index, i.e. < κ (M)}.

I G∞A =⋂
{H ≤ G : H is Aut (M /A)-invariant, of bounded index}.

I Of course G 0
A ⊇ G 00

A ⊇ G∞A , and in general all these subgroups
get smaller as A grows.



Connected components in NIP

Fact
Let T be NIP. Then for every small set A we have:

I [Baldwin-Saxl] G 0
∅ = G 0

A,
I [Shelah] G 00

∅ = G 00
A ,

I [Shelah for abelian groups, Gismatullin in general] G∞∅ = G∞A .
I All these are normal Aut (M)-invariant subgroups of G of finite

(resp. bounded) index. We will be omitting ∅ in the subscript.

Example
[Conversano, Pillay] There are NIP groups in which G 00 6= G∞ (G

is a saturated elementary extension of ˜SL (2,R), the universal cover
of SL (2,R), in the language of groups. G is not actually denable in
an o-minimal structure, but one can give another closely related
example which is).



The logic topology on G/G 00

I Let π : G → G/G 00 be the quotient map.
I We endow G/G 00 with the logic topology: a set S ⊆ G/G 00

is closed iff π−1 (S) is type-definable over some (any) small
model M.

I With this topology, G/G 00 is a compact topological group.
I In particular, there is a normalized left-invariant Haar

probability measure h0 on it.



Examples

1. If G 0 = G 00 (e.g. G is a stable group), then G/G 00 is a
profinite group: it is the inverse image of the groups G/H,
where H ranges over all definable subgroups of finite index.

2. If G = SO (2,R) is the circle group defined in a real closed
field R, then G 00 is the set of infinitesimal elements of G and
G/G 00 is canonically isomorphic to the standard circle group
SO (2,R).

3. More generally, if G is any definably compact group defined in
an o-minimal expansion of a field, then G/G 00 is a compact
Lie group. This is part of the content of Pillay’s conjecture
(now a theorem).

4. This does not hold any more if G is a non-compact Lie group.
For example if G = (R,+), then G 00 = G and G/G 00 is
trivial.



Keisler measures

I A Keisler measure µ over a set of parameters A ⊆M is a
finitely additive probability measure on the boolean algebra
Defx (A).

I S (µ) denotes the support of µ, i.e. the closed subset of Sx (A)
such that if p ∈ S (µ), then µ (φ (x)) > 0 for all φ (x) ∈ p.

I Let Mx (A) be the space of Keisler measures over A. It can be
naturally viewed as a closed subset of [0, 1]L(A) with the
product topology, so Mx (A) is compact. Every type can be
associated with a Dirac measure concentrated on it.

Fact
There is a natural bijection {Keisler measures over A} ↔
{Regular Borel probability measures on S (A)}.

I We will use this equivalence freely and will just say “measure”.



The weak law of large numbers

I Let (X , µ) be a probability space.
I Given a set S ⊆ X and x1, . . . , xn ∈ X , we define

Av (x1, . . . , xn; S) = 1
n |S ∩ {x1, . . . , xn}|.

I For n ∈ ω, let µn be the product measure on X n.

Fact
(Weak law of large numbers) Let S ⊆ X be measurable and fix
ε > 0. Then for any n ∈ ω we have:

µn (x̄ ∈ X n : |Av (x1, . . . , xn; S)− µ (S)| ≥ ε) ≤ 1
4nε2

.



A uniform version for families of finite VC dimension

Fact
[VC theorem] Let (X , µ) be a probability space, and let F be a
family of measurable subsets of X of finite VC-dimension such that:

1. for each n, the function
fn (x1, . . . , xn) = supS∈F |Av (x1, . . . , xn; S)− µ (S)| is a
measurable function from X n to R;

2. for each n, the function gn (x1, . . . , xn, x ′1, . . . , x
′
n) =

supS∈F |Av (x1, . . . , xn; S)− Av (x ′1, . . . , x
′
n; S)| from X 2n to R

is measurable.
Then for every ε > 0 and n ∈ ω we have:

µn
(
sup
S∈F
|Av (x1, . . . , xn; S)− µ (S)| > ε

)
≤ 8πF (n) exp

(
−nε2

32

)
.

(recall that πF (n) is bounded by a polynomial by Sauer-Shelah).



Approximating

I In particular this implies that in NIP measures can be
approximated by the averages of types:

Corollary
(*) [Hrushovski, Pillay] Let T be NIP, µ ∈Mx (A), φ (x , y) ∈ L
and ε > 0 arbitrary. Then there are some p0, . . . , pn−1 ∈ S (µ) such
that µ (φ (x , a)) ≈ε Av (p0, . . . , pn−1;φ (x , a)) for all a ∈M.



Definably amenable groups

Definition
A definable group G is definably amenable if there is a global (left)
G -invariant Keisler measure on G .

I If G is definably amenable, then it also admits a global
measure which is right-invariant (ν (φ (x)) = µ

(
φ
(
x−1))).

I If for some model M there is a left-invariant Keisler measure
µ0 on M-definable sets, then G is definably amenable.



Examples of definably amenable groups

1. If for some model M, the group G (M) is amenable as a
discrete group, then G is definably amenable.

2. If G admits a left-invariant type, that is a global type p such
that g · p = p for all g ∈ G , then it is definably amenable.
Such groups are called definably extremely amenable.

3. Suppose T has a model M such that G is defined over M and
G (M) has a compact (Hausdorff) group topology such that
every definable subset of G is Haar measurable. Then G is
definably amenable. (e.g. let G (R) be a compact Lie group,
seen as a definable group in RCF . Then G is definably
amenable)

4. In particular, the group SO3 (R) is definably amenable, but it
is not amenable (Banach-Tarski paradox).

5. More generally, definably compact groups in o-minimal
structures are definably amenable.



Examples of definably amenable groups

Examples

1. Any stable groups is definably amenable. In particular the free
group F2 is known by the work of Sela to be stable as a pure
group, and hence is definably amenable.

2. Any pseudo-finite group is definably amenable.
3. If K is an algebraically closed valued field or a real closed field

and n > 1, then SL (n,K ) is not definably amenable.



Problem

I Problem. Classify all G -invariant measures in a definably
amenable group (to some extent)?

I The set of measures on S (M) can be naturally viewed as a
subset of C ∗ (S (M)), the dual space of the topological vector
space of continuous functions on S (M), with the weak∗

topology of pointwise convergence (i.e. µi → µ if´
fdµi →

´
fdµ for all f ∈ C (S (M))). One can check that

this topology coincides with the topology on the space of
M (M) that we had introduced before.

I The set of G -invariant measures is a compact convex subset,
and extreme points of this set are called ergodic measures.

I Using Choquet theory, one can represent arbitrary measures as
integral averages over extreme points.

I We will characterize ergodic measures on G as liftings of the
Haar measure on G/G 00 w.r.t. certain “generic” types.



Invariant types
Definition

1. A global type p ∈ Sx (M) is invariant over a small set A if
p = σp for all σ ∈ Aut (M /A), where
σp = {φ (x , σ (a)) : φ (x , a) ∈ p}.

2. A global type p ∈ Sx (M) is invariant if it is invariant over
some small model M.

I Every definable type is invariant. In fact, a weak converse is
true in NIP:

Fact

1. [Hrushovski, Pillay] If T is NIP and p ∈ Sx (M) is invariant
over M, then it is Borel-definable over M, more precisely for
every φ (x , y) ∈ L the set {a ∈M : φ (x , a) ∈ p} is defined by
a finite boolean combination of type-definable sets over M.

2. [Shelah] If T is NIP and M is a small model, then there are at
most 2|M| global M-invariant types.



Strongly f -generic types

I Now we also have a definable group G acting on types.

Definition
A global type p ∈ Sx (M) is strongly f -generic if there is a small
model M such that g · p is invariant over M for all g ∈ G (M).

Fact
[Hrushovski, Pillay]
1. An NIP group is definably amenable if and only if there is a

strongly f -generic type.
2. If p ∈ SG (M) is strongly f -generic then Stab (p) = G 00 = G∞

(where Stab (p) = {g ∈ G : gp = p}).



f -generic types
Definition
A global type p ∈ Sx (M) is f -generic if for every φ (x) ∈ p and
some/any small model M such that φ (x) ∈ L (M) and any
g ∈ G (M), g · φ (x) contains a global M-invariant type.

Theorem
Let G be an NIP group, and p ∈ SG (M).
1. G is definably amenable if and only if it has a bounded orbit

(i.e. exist p ∈ SG (M) s.t. |Gp| < κ (M)).
2. If G is definably amenable, then p is f -generic iff it is

G 00-invariant iff Stab (p) has bounded index in G iff the orbit
of p is bounded.

I (1) confirms a conjecture of Petrykowski in the case of NIP
theories (it was previously known in the o-minimal case
[Conversano-Pillay]).

I Our proof uses the theory of forking over models in NIP from
[Ch., Kaplan] (I’ll say more later in the talk).



f -generic vs strongly f -generic

I Are the notions of f -generic and strongly f -generic different?
I Proposition. p ∈ S (M) is strongly f -generic iff it is f -generic

and invariant over some small model M.

Example
There are f -generic types which are not strongly f -generic.
Let R be a saturated model of RCF , and let G =

(
R2,+

)
. Let

p(x) denote the definable 1-type at +∞ and q (y) a global 1-type
which is not invariant over any small model (hence corresponds to a
cut of maximal cofinality from both sides). Then p and q are weakly
orthogonal types, i.e. p (x) ∪ q (y) determines a complete type. Let
(a, b) |= p (x) ∪ q (y) and consider r = tp (a, a · b/R). Then r is a
G -invariant type which is not invariant over any small model.



Lifting measures from G/G 00

I We explain the connection between G -invariant measures and
f -generic types.

I Let p ∈ SG (M) be f -generic (so in particular gp is
G 00-invariant for all g ∈ G ).

I Let Aφ,p =
{
ḡ ∈ G/G 00 : φ (x) ∈ g · p

}
.

I Claim. Aφ,p is a measurable subset of G/G 00 (using
Borel-definability of invariant types in NIP).

Definition
For φ (x) ∈ L (M), we define µp (φ (x)) = h0 (Aφ,p).

I The measure µp is G -invariant and µg ·p = µp for any g ∈ G .



Properties of µp’s

I Lemma. For a fixed formula φ (x , y), let Aφ be the family of
all Aφ(x ,b),p where b varies over M and p varies over all
f -generic types. Then Aφ has finite VC-dimension.

I Corollary. For fixed φ (x) ∈ L (M) and an f -generic
p ∈ Sx (M) , the family F =

{
g · Aφ,p : g ∈ G/G 00} has

finite VC-dimension (as changing the formula we can assume
that every translate of φ is an instance of φ).



Lemma (**). For any φ (x) ∈ L, ε > 0 and a finite collection of
f -generic types (pi )i<n there are some g0, . . . , gm−1 ∈ G such that
for any g ∈ G and i ∈ ω we have
µpi (g · φ (x)) ≈ε Av (gj · g · φ (x) ∈ pi ).

Proof.
Enough to be able to apply the VC-theorem to the family F . It has
finite VC-dimension by the previous corollary, we have to check that
fn, gn are measurable for all n ∈ ω. Using invariance of h0 this can
be reduced to checking that certain analytic sets are measurable.
As L is countable, G/G 00 is a Polish space (the logic topology can
be computed over a fixed countable model). Luckily, analytic sets
in Polish spaces are universally measurable (follows from the
projective determinacy for analytic sets).

I Remark. In fact the proof shows that one can replace finite by
countable.



Properties of µp’s

Proposition. Let p be an f -generic type, and assume that q ∈ Gp.
Then q is f -generic and µp = µq.

Proof.
q is f -generic as the space of f -generic types is closed. Fix some
φ (x). It follows from Lemma (**) that the measure µp (φ (x)) is
determined up to ε by knowing which cosets of φ (x) belong to p.
These cosets are the same for both types p and q by topological
considerations on Sx (M).

I It follows that for a given G -invariant measure µ, the set of
f -generic types p for which µp = µ is closed.



Properties of µp’s

Proposition. Let p be f -generic. Then for any definable set φ (x),
if µp (φ (x)) > 0, then there is a finite union of translates of φ (x)
which has µp-measure 1.

Proof.
Can cover the support S (µp) by finitely many translates using the
previous lemma and compactness.
Proposition. Let µ be G -invariant, and assume that p ∈ S (µ).
Then p is f -generic.

Proof.
Fix φ (x) ∈ p, let M be some small model such that φ is defined
over M. By [Ch., Pillay, Simon], every G (M)-invariant measure µ
on S(M) extends to a global G -invariant, M-invariant measure µ′

(one can take an “invariant heir” of µ). As µ|M (φ (x)) > 0, it
follows that φ (x) ∈ q for some q ∈ S (µ′). But every type in the
support of an M-invariant measure is M-invariant.



Properties of µp’s
Lemma (***). Let µ be G -invariant. Then for any ε > 0 and
φ (x , y), there are some f -generic p0, . . . , pn−1 such that
µ (φ (x , b)) ≈ε Av (µpi (φ (x , b))) for any b ∈M.

Proof.
I WLOG every translate of an instance of φ is an instance of φ.
I On the one hand, by Lemma (*) and G -invariance of µ there

are types p0, . . . , pn−1 from the support of µ such that
µ (φ (x , b)) ≈ε Av (gφ (x , b) ∈ pi ) for any g ∈ G and b ∈M.

I By the previous lemma pi ’s are f -generic.
I On the other hand, by Lemma (**) for every b ∈M there are

some g0, . . . , gm−1 ∈ G such that for any i < n,
µpi (φ (x , b)) ≈ε Av (gj · φ (x , b) ∈ pi ).

I Combining and re-enumerating we get that
µ (φ (x , b)) ≈2ε Av (µpi (φ (x , b))).



Ergodic measures

Theorem
Global ergodic measures are exactly the measures of the form µp
for p varying over f -generic types.



Proof: µp’s are ergodic.

I We had defined ergodic measures as extreme points of the
convex set of G -invariant measures.

I Equivalently, a G -invariant measure µ ∈Mx (M) is ergodic if
µ (Y ) is either 0 or 1 for every Borel set Y ⊆ Sx (M) such that
µ (Y4gY ) = 0 for all g ∈ G .

I Fix a global f -generic type p, and for any Borel set X ⊆ S (M)
let fp (X ) =

{
g ∈ G/G 00 : gp ∈ X

}
. Note that fp (X ) is

Borel. The measure µp defined earlier extends naturally to all
Borel sets by taking µp (X ) = h0 (fp (X )), defined this way it
coincides with the usual extension of a finitely additive Keisler
measure µp to a regular Borel measure.

I As h0 is ergodic on G/G 00 and fp (X4gX ) = fp (X )4gfp (X ),
it follows that µp is ergodic.



Proof: µ ergodic ⇒ µ = µp for some f -generic p
I Let µ be an ergodic measure.
I By Lemma (**) , as L is countable, µ can be written as a limit

of a sequence of averages of measures of the form µp.
I Let S be the set of all µp’s ocurring in this sequence, S is

countable.
I It follows that µ ∈ ConvS , and it is still an extreme point of

ConvS .
I Fact [e.g. Bourbaki]. Let E be a real, locally convex, linear

Hausdorff space, and C a compact convex subset of E , S ⊆ C .
Then C = ConvS iff S includes all extreme points of C .

I Then actually µ ∈ S .
I It remains to check that if p is the limit of a countable set of

pi ’s along some ultrafilter U , then also the µpi ’s converge to
µp along U . By the countable version of Lemma (*), given
ε > 0 and φ (x), we can find g0, . . . , gm−1 ∈ G such that
µpi (φ (x)) ≈ε Av (gjφ (x) ∈ pi ) for all i ∈ ω. But then
{i ∈ ω : µpi (φ (x)) ≈ε µp (φ (x))} ∈ U , so we can conclude.



Several notions of genericity

I Another basic question: when a definable set contains a
“generic” type? And also what is the right definition of
“generic” outside of the stable context?

I For the action of the automorphism group, i.e. whether a
definable set contains an invariant type – the answer is given
by the theory of forking.

I Action of a definable group G – ... as well.



Several notions of genericity

I Stable setting: a formula φ (x) is generic if there are finitely
many elements g0, . . . , gn−1 ∈ G such that
G =

⋃
i<n gi · φ (x).

I A global type p ∈ Sx (M) is generic if every formula in it is
generic.

I Problem: generic types need not exist in unstable groups.
I Several weakenings coming from different contexts were

introduced by different people (in the definably amenable
setting, and more generally).



Several notions of genericity

Theorem
Let G be definably amenable, NIP. Then the following are
equivalent
1. φ (x) is f -generic (i.e. belongs to an f -generic type),
2. φ (x) is weakly generic (i.e. exists a non-generic ψ (x) such

that φ (x) ∪ ψ (x) is generic),
3. µ (φ (x)) > 0 for some G-invariant measure µ,
4. µp (φ (x)) > 0 for some ergodic measure µp.

If there is a generic type, then all these notions are equivalent to
“φ (x) is generic”.

I Proposition. G admits a generic type iff it is uniquely
ergodic. In this case the invariant measure is both left and
right invariant.



Some comments on the proof

The key step is the following:
I Proposition. Let φ (x) be f -generic. Then there are some

global f -generic types p0, . . . , pn−1 ∈ SG (M) such that for
every g ∈ G (M) we have gφ (x) ∈ pi for some i < n.

I Our proof is a combination of some results on forking and the
so-called (p, q)-theorem.



Dividing and forking

Definition

1. A formula φ (x , a) divides over a set A if there is a sequence
(ai )i∈ω ∈M and k ∈ ω such that:

1.1 tp (ai/A) = tp (a/A) for all i < ω,
1.2 the family {φ (x , ai )}i∈ω is k-inconsistent (i.e. for every

i0 < i1 . . . < ik−1 ∈ ω we have
⋂

i<k φ (x , ai ) = ∅).

2. A formula φ (x , a) forks over A if there are finitely many
ψ0 (x , b0) , . . . , ψn−1 (x , bn−1) such that
φ (x , a) `

∨
i<n ψi (x , bi ) and each of ψi (x , bi ) divides over A.

3. The set of formulas forking over A is an ideal in Def (M)
generated by the formulas dividing over A.



Dividing and forking

Fact
Let T be NIP, M a small model and φ (x , a) is a formula. Then the
following are equivalent:
1. There is a global M-invariant type p (x) such that φ (x , a) ∈ p.
2. φ (x , a) does not divide over M.

I This is a combination of non-forking=invariance for global
types and a theorem of [Ch.,Kaplan] on forking=dividing for
formulas in NIP.

I With this fact, a formula φ (x) is f -generic iff for every M over
which it is defined, and for every g ∈ G (M), gφ (x) does not
divide over M.



Adding G to the picture

I G is definably amenable, NIP.

Theorem

1. Non-f -generic formulas form an ideal (in particular every
f -generic formula extends to a global f -generic type by Zorn’s
lemma).

2. Moreover, this ideal is S1 in the terminology of Hrushovski:
assume that φ (x) is f -generic and definable over M. Let
(gi )i∈ω be an M-indiscernible sequence, then g0φ (x) ∧ g1φ (x)
is f -generic.

3. There is a form of lowness for f -genericity, i.e. for any formula
φ (x , y) ∈ L (M), the set
Bφ = {b ∈M : φ (x , b) is not f -generic} is type-definable over
M.



(p, q)-theorem

Definition
We say that F = {Xa : a ∈ A} satisfies the (p, q)-property if for
every A′ ⊆ A with |A′| ≥ p there is some A′′ ⊆ A′ with |A′′| ≥ q
such that

⋂
a∈A′′ Xa 6= ∅.

Fact
[Alon, Kleitman]+[Matousek] Let F be a finite family of subsets of
S of finite VC-dimension d. Assume that p ≥ q � d. Then there
is an N = N (p, q) such that if F satisfies the (p, q)-property, then
there are b0, . . . , bN ∈ S such that for every a ∈ A, bi ∈ Xa for
some i < N.

I The point is that if φ (x) is f -generic, then the family
F = {gφ (x) ∩ Y : g ∈ G} with Y the set of global f -generic
types, satisfies the (p, q)-property for some p and q.
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