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Continuous logic
I Ben Yaacov, Berenstein, Henson, Usvyatsov “Model theory for

metric structures” (earlier variants by Chang-Keisler, Henson,
...).

I Every structureM = (M, . . .) is a complete metric space of
bounded diameter, with a metric d .

I Signature:
I function symbols with given moduli of uniform continuity

(interpreted as uniformly continuous functions from Mn to M),
I predicate symbols with given moduli of uniform continuity

(interpreted as uniformly continuous functions from M to
[0, 1]).

I Logical connectives: the set of all continuous functions
[0, 1]→ [0, 1], or any subfamily which generates a dense
subset (e.g.

{
¬, x2 ,

·
–
}
).

I Quantifiers: “sup” for “∀”, “ inf” for “∃”.
I 0 is “True”, 1 is “False”.



Keisler randomization, 1

I AssumeM is a first order structure in a language L.
I Given a first-order formula ϕ(x) ∈ L, what is the probability

that a random element fromM satisfies this formula?
I Originally formalized by Keisler in classical logic, later by Ben

Yaacov and Keisler in continuous logic.
I Can be thought of as the structure consisting of the random

variables on some probability space taking valuee in M; as well
as a generalization of the ultraproduct construction, with an
ultrafilter replaced by an arbitrary measure.



Keisler randomization, 2
I Let Ω be a set and (Mω)ω∈Ω a family of L-structures.
I The product

∏
ω∈Ω Mω consists of all functions a : Ω→

⋃
Mω

with a(ω) ∈ Mω for all ω ∈ Ω. Function symbols and terms of
L are interpreted coordinatewise on

∏
Mω.

I For ϕ(x̄) ∈ L, ā ∈ (
∏
ωMω)|x̄ | we define a function

〈ϕ(ā)〉(ω) : ω ∈ Ω 7→ ϕMω(ā(ω)) ∈ [0, 1].

I A randomizationM =MΩ,F ,µ is a continuous (pre-)structure
with two sorts (M,A) in LR s.t.
I (Ω,F , µ) is a probability algebra and A = L1(µ) ⊆ [0, 1]Ω,
I M ⊆

∏
Mω is non-empty, closed under function symbols and

〈P(ā)〉 ∈ A for every predicate P(x̄) ∈ L and ā ∈ M|x̄|.
I the pseudo-metrics d(X ,Y ) = E(|X − Y |) on A and

d(a, b) = E〈d(a, b)〉 =
∫
ω∈Ω

d(a(ω), b(ω))dµ on M.
I LR contains the function symbols from L, a function symbol

[[P(x̄)]] : M|x̄| → A for each predicate P ∈ L, and the
signature

{
0,¬, x2 ,

·
–
}
on A.



Keisler randomization, 3
I Given a randomization LR -pre-structureM = (M,A), its

completion (the metric completion of the quotient by elements
at distance 0) is an LR -structure M̂ = (M̂, Â).

I When M =
∏

Mω, A = [0, 1]Ω, µ := U is an ultrafilter on Ω,
then Â = [0, 1] and M̂ is naturally identified with the
ultraproduct

∏
Mω/U .

I We would like to axiomatize (and find a model companion) for
the theory of randomizations.

I A randomization (M,A) is full if ∀a 6= b ∈ M,X ∈ A∃c ∈ M
s.t. c(ω) = a(ω) for all ω ∈ Ω with X (ω) = 1, c(ω) = b(ω)
for all ω with X (ω) = 0, and c(ω) is arbitrary otherwise.

I (M,A) is atomless if F is an atomless algebra.
I Ex: letM be a structure, (Ω,F , µ) an atomless probability

space, and M ⊆ MΩ consits of all functions a : Ω→ M taking
at most countably many values in M, each on a measurable
set. Then the corresponding (M,A) is a full atomless
randomization.



Keisler randomization, 4

Fact (Ben Yaacov)

1. For a fixed language L, there exists a continuous theory TR
0 so

that: an LR -structure is a model of TR
0 if and only if it is

isomorphic to (M̂, Â) for some full atomless randomization
(M,A); and for every ϕ(x̄) ∈ L and ā ∈ Mx̄ we have
〈ϕ(ā)〉 = [[ϕ(ā)]].

2. For an L-theory T , let TR := TR
0 ∪ {[[ϕ]] = 0 : ϕ ∈ T}. Then

TR eliminates quantifiers down to the formulas of the form
E[[ϕ(x̄)]] with ϕ(x̄) ∈ L.

3. The types in Sn
(
TR
)
are in bijection with regular Borel

probability measures on the space Sn(T ). In particular if T is
complete, then so is TR .



Shelah’s classification

I Classification theory: Shelah’s dividing lines express limitations
on definable binary relations, by forbidding certain finitary
combinatorial configurations (stability, NIP, simplicity, see
Baldwin’s talk).

I Often on the tame case, obtain consequences of the form:
types (over infinite sets) in more than one variable are
controlled by unary types, up to a “small error”
(e.g. stationarity of non-forking in stable theories, up to
algebraic closure).

I Emerging “n-classification theory”: types in any number of
variables are controlled by types in at most n-variables, up to a
“small error”.

I Here we focus on n-dependence introduced by Shelah:



N-dependent theories

I Given an (n + 1)-ary relation E ⊆
∏

1≤i≤n+1 Xi and d ∈ N, we
write VCn(E ) ≤ d if there do not exist sets Ai ⊆ Xi with
|Ai | > d for 1 ≤ i ≤ n and bS ∈ Xn+1 for S ⊆

∏
1≤i≤n Ai so

that
(a1, . . . , an, bS) ∈ E ⇐⇒ (a1, . . . , an) ∈ S

for all (a1, . . . , an) ∈
∏

1≤i≤n Ai .
I Write VCn(E ) <∞ and say E is n-dependent if VCn(E ) ≤ d

for some d ∈ N.
I A theory T is n-dependent if every formula ϕ(x1, . . . , xn+1),

with xi a tuple of variables, defines an n-dependent relation in
any model of T .



N-dependent theories: basic facts and examples

I The case n = 1 corresponds to NIP.
I The property VCn <∞ is preserved under permutations of

variables and Boolean combinations, and n-dependence of a
theory is witnessed by formulas with all but one variable
singletons.

I Examples of n-dependent theories:
I For n ≥ 2, the theory of the generic n-hypergraph is strictly

n-dependent (i.e. n-dependent, but not (n − 1)-dependent).
I [C., Hempel] For each n ≥ 2, there exist strictly n-dependent

pure groups.
I [Cherlin, Hrushovski] Smoothly approximable structures are

2-dependent.
I [C., Hempel] For n ≥ 2, non-degenerate n-linear forms on

vector spaces over NIP fields are strictly n-dependent.
I Conjecturally, there are no strictly n-dependent (pure) fields

for n ≥ 2.



N-dependence in continuous logic

I Stability, NIP, etc. all have natural generalizations in
continuous logic.

I Given a function f :
∏

1≤i≤n+1 Xi → [0, 1] and a countable
sequence d̄ = (d̄r ,s ∈ N : r < s ∈ Q ∩ [0, 1]), we write
VCn(f ) ≤ d̄ if for each r < s ∈ Q ∩ [0, 1] there do not exist
sets Ai ⊆ Xi with |Ai | > dr ,s for 1 ≤ i ≤ n and bS ∈ Xn+1 for
S ⊆

∏
1≤i≤n Ai so that

(a1, . . . , an) ∈ S =⇒ f (a1, . . . , an, bS) ≥ s,

(a1, . . . , an) /∈ S =⇒ f (a1, . . . , an, bS) ≤ r .

I A function f is n-dependent, written VCn(f ) <∞, if
VCn(f ) ≤ d̄ for some sequence d̄ .

I A continuous theory T is n-dependent if for every (continuous)
formula in n + 1 tuples of variables, the function from any
model of T to [0, 1] defined by it is n-dependent.



Randomization and classification

Fact
I [Ben Yaacov, Keisler] If T is (ℵ0-, super-) stable, then TR is

also (ℵ0-, super-) stable.
I [Ben Yaacov] If T is NIP, then TR is also NIP.
I [Ben Yaacov] If T is not NIP, then TR has TP2. In particular

simplicity is not preserved. But at least:
I [Ben Yaacov, C., Ramsey] If T is NSOP1, then TR is also

NSOP1.

Theorem (C., Towsner)
For every n ≥ 1, if T is n-dependent, then TR is also n-dependent.



Preservation of NIP: key point

I Ben Yaacov’s proof, using relative quantifier elimination in TR

and that composing NIP functions with continuous functions
[0, 1]k → [0, 1] preserves NIP, reduces to showing that
E[[ϕ(x̄)]] is NIP assuming ϕ is NIP, i.e. the average of a
“uniformly NIP” family of functions is NIP (the case n = 1 of
the theorem below).

I Ben Yaacov establishes this by developing elements of the
VC-theory for real valued functions (connected to some earlier
work of Talagrand and others).



A generalization to n-dependence

Theorem (C., Towsner)
For every k ∈ N≥1 and d̄ there exists some D̄ satisfying the
following.
Assume f :

∏
i∈[n+2] Vi → [0, 1] is a function and (Vn+2,F , µ) a

probability space, so that
I for any fixed x̄ ∈

∏
i∈[n+1] Vi , the function ω 7→ f (x̄ , ω) is

measurable;
I for any fixed ω ∈ Ω, the function fω : x̄ 7→ f (x̄ , ω) satisfies

VCn(fω) ≤ d̄ .
Then the “average” function f ′ :

∏
i∈[n+1] → [0, 1] defined by

f ′(x1, . . . , xk+1) :=

∫
ω∈Ω

f (x1, . . . , xk+1, ω)dµ

satisfies VCn(f ′) ≤ D̄.



Generalized indiscernibles, 1

I T is a theory in a language L, M |= T .
I Let I be an L′-structure. Then ā = (ai : i ∈ I ), with ai a tuple

in M, is I -indiscernible if for all i1, . . . , in and j1, . . . , jn from I :

qftpL′ (i1, . . . , in) = qftpL′ (j1, . . . , jn) =⇒
tpL (ai1 , . . . , ain/C ) = tpL (aj1 , . . . , ajn/C ) .

I Say that (bj : j ∈ I ) is based on (ai : i ∈ I ) if for any finite set
∆ of L-formulas and (j0, . . . , jn) from I there is some
(i1, . . . , in) from I s.t.

qftpL0 (j1, . . . , jn) = qftpL0 (i1, . . . , in) , and
tp∆ (bj1 , . . . , bjn) = tp∆ (ai1 , . . . , ain) .

I The usual indiscernible sequences correspond to the case when
I is a linear order.



Generalized indiscernibles, 2

I Let K be a class of finite L0-structures. For A,B ∈ K , let
(B
A

)
be the set of all A′ ⊆ B s.t. A′ ∼= A.

I K is Ramsey if for any A,B ∈ K and k ∈ ω there is some
C ∈ K s.t. for any coloring f :

(C
A

)
→ k , there is some

B ′ ∈
(C
B

)
s.t. f �

(B′

A

)
is constant.

I The usual Ramsey theorem: the class of finite linear orders is
Ramsey.

I [Scow] Let K be a Fraïssé class of finite structures, and let I
be its limit. If K is Ramsey, then for any ā indexed by I there
exists (in M) an I -indiscernible based on it.

I [Nesétril, Rödl], [Abramson, Harrington] For any k ∈ N≥1, the
class of all finite ordered (partite) k-hypergraphs is Ramsey
(let OHk denote its Fraïssé limit).



Step 1: a sufficiently indiscernible witness
I Assuming that the theorem fails, using some analytic

arguments and extracting an indiscernible, we can thus find
some r < s, q > t ∈ [0, 1] and an OHn+1-indiscernible ā in
some expansion of the language making the measure µ
definable so that

OHn+1 |= R(g1, . . . , gn+1) =⇒
µ({ω : f (ag1 , . . . , agn+1 , ω) < r}) ≥ q and
OHn+1 |= ¬R(g1, . . . , gn+1) =⇒

µ({ω : f (ag1 , . . . , agn+1 , ω) < s}) ≤ t.

I This indiscernibility guarantees certain “exchangeability” in the
probabilistic sense. Exchangeability theory: exchangeable
sequences [de Finetti] and arrays [Aldous-Hoover-Kallenberg]
of random variables can be presented “up to mixing” using i.i.d.
random variables (parallel to the hypergraph regularity lemma),
and we need a certain generalization to relational structures.



Exchangeable random structures
I Let L′ = {R ′1, . . . ,R ′k ′}, R ′i a relation symbol of arity r ′i . By a

random L′-structure we mean a (countable) collection of
random variables (

ξin̄ : i ∈ [k ′], n̄ ∈ Nr ′i

)
on some probability space (Ω,F , µ) with ξin̄ : Ω→ {0, 1}.

I Let now L = {R1, . . . ,Rk} be another relational language,
with Ri a relation symbol of arity ri , and letM = (N, . . .) be a
countable L-structure with domain N. We say that a random
L′-structure

(
ξin̄ : i ∈ [k ′], n̄ ∈ Nr ′i

)
isM-exchangeable if for

any two finite subsets A = {a1, . . . , a`},A′ = {a′1, . . . , a′`} ⊆ N

qftpL (a1, . . . , a`) = qftpL
(
a′1, . . . , a

′
`

)
=⇒(

ξin̄ : i ∈ [k ′], n̄ ∈ Ar ′i

)
=dist

(
ξin̄ : i ∈ [k ′], n̄ ∈ (A′)r

′
i

)
.



A higher amalgamation condition on the indexing structure

I Let K be a collection of finite structures in a relational
language L.

I For n ∈ N≥1, we say that K satisfies the n-disjoint
amalgamation property (n-DAP) if for every collection of
L-structures (Mi = (Mi , . . .) : i ∈ [n]) so that
I eachMi is isomorphic to some structure in K,
I Mi = [n] \ {i}, and
I Mi |[n]\{i,j} =Mj |[n]\{i,j} for all i 6= j ∈ [n],

there exists an L-structureM = (M, . . .) isomorphic to some
structure in K such that M = [n] andM|[n]\{i} =Mi for
every 1 ≤ i ≤ n.

I We say that an L-structureM satisfies n-DAP if the
collection of its finite induced substructures does.

I Ex.: the generic k-hypergraph Hk satisfies n-DAP for all n,
but (Q, <) fails 3-DAP.



Presentation for random relational structures
Fact (Crane, Towsner)
Let L′ = {R ′i : i ∈ [k ′]},L = {Ri : i ∈ [k]} be finite relational
languages with all R ′i of arity at most r ′, andM = (N, . . .) a
countable ultrahomogeneous L-structure that has n-DAP for all
n ≥ 1. Suppose that

(
ξin̄ : i ∈ [k ′], n̄ ∈ Nr ′i

)
is a random

L′-structure that isM-exchangeable, such that the relations R ′i are
symmetric with probability 1.
Then there exists a probability space (Ω′,F ′, µ′), {0, 1}-valued
Borel functions f1, . . . , fr ′ and a collection of Uniform[0, 1]
i.i.d. random variables (ζs : s ⊆ N, |s| ≤ r ′) on V ′ so that(

ξin̄ : i ∈ [k ′], n̄ ∈ Nr ′i

)
=dist(

fi

(
M|rng n̄, (ζs)s⊆rng n̄

)
: i ∈ [k ′], n̄ ∈ Nr ′i

)
,

where rng n̄ is the set of its distinct elements, and ⊆ denotes
“subsequence”.



Step 2: getting rid of the ordering

I Our counterexample is only guaranteed to be
OHn+1-exchangeable (and the ordering is unavoidable in the
Ramsey theorem for hypergraphs) — but the presentation
theorem requires n-DAP.

I We show that OHn-exchangeability implies
Hn-exchangeability, using that the theory of probability
algebras is stable!

I Implicit in [Ryll-Nardzewski], explicit in [Ben Yaacov], a more
general result by [Hrushovski] (proved using array de Finetti),
and [Tao] gives an elementary proof:

Fact
For any 0 ≤ p < q ≤ 1 there exists N satisfying: if (V ,F , µ) is a
probability space, and A1, . . . ,An,B1, . . . ,Bn ∈ F satisfy
µ(Ai ∩ Bj) ≥ q and µ(Aj ∩ Bi ) ≤ p for all 1 ≤ i < j ≤ n, then
n ≤ N.



Step 3: finding a common point

I Applying the exchangeable presentation to the counterexample
and working with independent random variables, we show that
for any finite set S ⊆ OHn+1, the following set has positive
measure: ⋂

ḡ∈R�S

{ω ∈ Ω : f (ag1 , . . . , agn+1 , ω) < r}∩

⋂
ḡ∈¬R�S

Ω \ {ω ∈ Ω : f (ag1 , . . . , agn+1 , ω) < s}.

I By saturation we then find ω ∈ Ω so that for all (n + 1)-tuples
ḡ in OHn+1 we have:
I ḡ ∈ R =⇒ f (ag1 , . . . , agn+1 , ω) < r ,
I ḡ /∈ R =⇒ f (ag1 , . . . , agn+1 , ω) ≥ s.

I This contradicts the assumption VCn(fω) <∞.



Thank you!
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