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Strong Erdős-Hajnal property
I Let U,V be infinite sets and E ⊆ U × V a bipartite graph.

Definition
We say that E satisfies the Strong Erdős-Hajnal property, or Strong
EH, if there is δ ∈ R>0 such that for any finite A ⊆ U,B ⊆ V
there are some A0 ⊆ A,B0 ⊆ B with |A0| ≥ δ |A| , |B0| ≥ δ |B|
such that the pair (A0,B0) is E -homogeneous, i.e. either
(A0 × B0) ⊆ E or (A0 × B0) ∩ E = ∅.

I We will be concerned with the case whereM is a first-order
structure, U = Md1 ,V = Md2 and E ⊆ Md1 ×Md2 is
definable inM.

Fact
[Ramsey + Erdős] With no assumptions on E , one can find a
homogeneous pair of subsets of logarithmic size, and it is the best
possible (up to a constant) in general.
Corollary. If E satisfies strong EH, then E is NIP.



Examples with strong EH
I [Alon, Pach, Pinchasi, Radoičić, Sharir] Let E ⊆ Rd1 × Rd2 be

semialgebraic. Then E satisfies strong EH.
I [Basu] Let E be a closed, definable relation in an o-minimal

expansion of a field. Then E satisfies strong EH.

Theorem
[C., Starchenko] Let E (x , y) be definable in a distal structure.
Then E satisfies definable strong EH, i.e. there are some δ ∈ R>0
and formulas ψ1 (x , z) , ψ2 (y , z) such that for any finite
A ⊆ M |x |,B ⊆ M |y | there is some c ∈ M |z| such that the pair
A0 := ψ (A, c) ,B0 := ψ2 (B, c) is E -homogeneous with
|A0| ≥ δ |A| , |B0| ≥ δ |B|.
Moreover, if every binary relation definable inM satisfies definable
strong EH, thenM is distal.

I Examples of distal theories:
I [Hrushovski, Pillay, Simon], [Simon] o-minimal theories, Qp.
I [Aschenbrenner, C.] transseries, (≈) OAG’s, some valued fields.
I [Boxall, Kestner] T is distal ⇐⇒ T Sh is distal.



Reducts of distal theories and strong EH

I We say that a structureM satisfies strong EH if every relation
definable inM satisfies strong EH.

I IfM satisfies strong EH, then any structure interpretable in
M also satisfies strong EH.

I E.g., ACF0 satisfies strong EH — as (C,×,+) is interpretable
in a distal structure (R,×,+).

I On the other hand, ACFp doesn’t!



ACFp doesn’t satisfy strong EH

Example
[C., Starchenko]

I Let K |= ACFp.
I For a finite field Fq ⊆ K, where q is a power of p, let Pq be the

set of all points in F2
q and let Lq be the set of all lines in F2

q.
I Note |Pq| = |Lq| = q2.
I Let I ⊆ Pq × Lq be the incidence relation. One can check:
I Claim. For any fixed δ > 0, for all large enough q, if L0 ⊆ Lq

and P0 ⊆ Pq with |P0| ≥ δq2 and |L0| ≥ δq2 then
I (P0, L0) 6= ∅.

I As every finite field of char p can be embedded into K, this
shows that strong EH fails for the definable incidence relation
I ⊆ K 2 × K 2.



Local distality

I The difference between char 0 and char p is well-known in
incidence combinatorics, and being a reduct of a distal
structure (more precisely, admitting a distal cell decomposition,
see below) appears to be a model-theoretic explanation for it.

I Our initial proof of strong EH in distal structures had a global
assumption on the theory and gave non-optimal bounds.

I Under a global assumption of distality of the theory, a shorter
(but even less informative in terms of the bounds) proof can
be given (Simon, Pillay’s talks).

I More recently, [C., Galvin, Starchenko] isolates a notion of
local distality and provides a method to obtain good bounds.



Distal cell decomposition

I Let E ⊆ U × V and ∆ ⊆ U be given.
I For b ∈ V , let E (U, b) := {a ∈ U : (a, b) ∈ E}.
I For b ∈ V , we say that E (U, b) crosses ∆ if E (U, b) ∩∆ 6= ∅

and ¬E (U, b) ∩∆ 6= ∅.
I ∆ is E -complete over B ⊆ V if ∆ is not crossed by any

E (U, b) with b ∈ B .
I A family F of subsets of U is a cell decomposition for E over

B if U ⊆
⋃
F and every ∆ ∈ F is E -complete over B .

I A cell decomposition for E is an assignment T s.t. for each
finite B ⊆ V , T (B) is a cell decomposition for E over B .

I A cell decomposition T is distal if for some k ∈ N there is a
relation D ⊆ U × V k s.t. all finite B ⊆ V ,
T (B) = {D (U; b1, . . . , bk) : b1, . . . , bk ∈
B and D (U; b1, . . . , bk) is E -complete over B}.

I A relation E is distal if it admits a distal cell decomposition.



Example

1. E is distal =⇒ E is NIP (the number of E -types over any
finite set B is at most |B|k)

2. Any relation definable in a reduct of a distal structure admits a
distal cell decomposition (follows from the existence of strong
honest definitions in distal theories [C., Simon]).

Theorem
[C., Galvin, Starchenko] LeM be an o-minimal expansion of a field
and let E (x , y) with |x | = 2 be definable. Then E (x , y) admits a
distal cell decomposition T with |T (S)| = O

(
|S |2

)
for all finite

sets S .

I In higher dimensions, becomes much more difficult to obtain
an optimal bound, even in the semialgebraic case.



Cutting

I So called cutting lemmas are a very important “divide and
conquer” method for counting incidences in geometric
combinatorics.

Theorem
[C., Galvin, Starchenko] (Distal cutting lemma) Assume
E (x , y) ⊆ M |x | ×M |y | admits a distal cell decomposition T with
|T (S)| = O

(
|S |d

)
for all finite sets S ⊆ M |y |. Then there is a

constant c s.t. for any finite S ⊆ M |y | of size n and any real
1 < r < n, there is a covering X1, . . . ,Xt of M |x | with t ≤ crd and
each Xi crossed by at most n

r of the sets {E (x , b) : b ∈ S}.



Applications of cuttings

1. Assume E ⊆ U × V satisfies the conclusion of the cutting
lemma. Then it satisfies strong EH.

2. (o-minimal generalization of the Szemeredi-Trotter theorem)
LetM be an o-minimal expansion of a field and
E (x , y) ⊆ M2 ×M2 definable. Then for any k ∈ ω there is
some c ∈ R>0 satisfying the following: for any A,B ⊆ M2, if
E (A,B) is Kk,k -free, then |E (A,B)| ≤ cn

4
3 .

[Fox, Pach, Sheffer, Suk, Zahl] in the semialgebraic case,
[Basu, Raz] under a stronger assumption.

3. An ε-version of the Elekes-Szabó theorem.
4. Etc.



1-based theories
I ACFp is the only known example of an NIP theory not

satisfying strong EH (as well as the only example without a
distal expansion).

I Zilber’s trichotomy principle: roughly, every strongly minimal
set is either like an infinite set, or like a vector space, or
interprets a field.

Definition
(“like a vector space”)
1. A formula E (x , y) is weakly normal if ∃k ∈ N s.t. the

intersection of any k pairwise distinct sets of the form
E (M, b) , b ∈ M |y | is empty.

2. T is 1-based if every formula is a Boolean combination of
weakly normal formulas.

I Note: this definition implies stability of T , and is equivalent
to: for any small set A,B , A |̂ acleq(A)∩acleq(B)

B .



1-based theories satisfy strong EH
I Main examples: abelian groups, modules.
I In a sense, these are the only examples:
I [Hrushovski, Pillay] Let (G , ·, . . .) be a 1-based group. Then

all definable subset of Gn are Boolean combinations of cosets
of ∅-definable subgroups of Gn.

Theorem
[C., Starchenko] Every stable 1-based theory satisfies strong EH.

I Problem reduces to showing strong EH for weakly normal
formulas (using that weakly normal formulas are closed under
conjunctions).

I Via some manipulations and basic linear algebra, the incidence
problem for a k-weakly normal formula reduces to an incidence
problem for an affine hyperplanes arrangement in Rk .

I Which is definable in R, hence has strong EH by distality.
I Somewhat curiously, we have to use RCF in a proof for a

stable structure! (Again, typical in incidence combinatorics.)
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