Strong Erdős-Hajnal property in model theory

Artem Chernikov

UCLA

11th Panhellenic Logic Symposium Delphi, Greece, Jul 2017 Joint work with Sergei Starchenko.

Strong Erdős-Hajnal property

• Let U, V be infinite sets and $E \subseteq U \times V$ a bipartite graph.

Definition

We say that *E* satisfies the *Strong Erdős-Hajnal property*, or Strong EH, if there is $\delta \in \mathbb{R}_{>0}$ such that for any finite $A \subseteq U, B \subseteq V$ there are some $A_0 \subseteq A, B_0 \subseteq B$ with $|A_0| \ge \delta |A|, |B_0| \ge \delta |B|$ such that the pair (A_0, B_0) is *E-homogeneous*, i.e. either $(A_0 \times B_0) \subseteq E$ or $(A_0 \times B_0) \cap E = \emptyset$.

▶ We will be concerned with the case where \mathcal{M} is a first-order structure, $U = M^{d_1}, V = M^{d_2}$ and $E \subseteq M^{d_1} \times M^{d_2}$ is definable in \mathcal{M} .

Fact

[Ramsey + Erdős] With no assumptions on E, one can find a homogeneous pair of subsets of logarithmic size, and it is the best possible (up to a constant) in general.

Corollary. If E satisfies strong EH, then E is NIP.

Examples with strong EH

- ▶ [Alon, Pach, Pinchasi, Radoičić, Sharir] Let E ⊆ R^{d1} × R^{d2} be semialgebraic. Then E satisfies strong EH.
- ► [Basu] Let *E* be a closed, definable relation in an *o*-minimal expansion of a field. Then *E* satisfies strong EH.

Theorem

[C., Starchenko] Let E(x, y) be definable in a distal structure. Then E satisfies **definable** strong EH, i.e. there are some $\delta \in \mathbb{R}_{>0}$ and formulas $\psi_1(x, z), \psi_2(y, z)$ such that for any finite $A \subseteq M^{|x|}, B \subseteq M^{|y|}$ there is some $c \in M^{|z|}$ such that the pair $A_0 := \psi(A, c), B_0 := \psi_2(B, c)$ is E-homogeneous with $|A_0| \ge \delta |A|, |B_0| \ge \delta |B|.$

Moreover, if every binary relation definable in \mathcal{M} satisfies definable strong EH, then \mathcal{M} is distal.

- Examples of distal theories:
 - ▶ [Hrushovski, Pillay, Simon], [Simon] *o*-minimal theories, Q_p.
 - [Aschenbrenner, C.] transseries, (\approx) OAG's, some valued fields.
 - [Boxall, Kestner] T is distal $\iff T^{Sh}$ is distal.

Reducts of distal theories and strong EH

- ► We say that a structure *M* satisfies strong EH if every relation definable in *M* satisfies strong EH.
- If *M* satisfies strong EH, then any structure interpretable in *M* also satisfies strong EH.
- ► E.g., ACF₀ satisfies strong EH as (C, ×, +) is interpretable in a distal structure (R, ×, +).
- On the other hand, ACF_p doesn't!

ACF_p doesn't satisfy strong EH

Example

[C., Starchenko]

- Let $\mathcal{K} \models \mathsf{ACF}_p$.
- For a finite field 𝔽_q ⊆ 𝒢, where q is a power of p, let P_q be the set of all points in 𝔽²_q and let L_q be the set of all lines in 𝔽²_q.

• Note
$$|P_q| = |L_q| = q^2$$
.

- Let $I \subseteq P_q \times L_q$ be the incidence relation. One can check:
- Claim. For any fixed δ > 0, for all large enough q, if L₀ ⊆ L_q and P₀ ⊆ P_q with |P₀| ≥ δq² and |L₀| ≥ δq² then I (P₀, L₀) ≠ Ø.
- As every finite field of char p can be embedded into K, this shows that strong EH fails for the definable incidence relation I ⊆ K² × K².

Local distality

- The difference between char 0 and char p is well-known in incidence combinatorics, and being a reduct of a distal structure (more precisely, admitting a distal cell decomposition, see below) appears to be a model-theoretic explanation for it.
- Our initial proof of strong EH in distal structures had a global assumption on the theory and gave non-optimal bounds.
- Under a global assumption of distality of the theory, a shorter (but even less informative in terms of the bounds) proof can be given (Simon, Pillay's talks).
- More recently, [C., Galvin, Starchenko] isolates a notion of local distality and provides a method to obtain good bounds.

Distal cell decomposition

- Let $E \subseteq U \times V$ and $\Delta \subseteq U$ be given.
- ▶ For $b \in V$, let $E(U, b) := \{a \in U : (a, b) \in E\}$.
- For b ∈ V, we say that E (U, b) crosses Δ if E (U, b) ∩ Δ ≠ Ø and ¬E (U, b) ∩ Δ ≠ Ø.
- Δ is *E*-complete over $B \subseteq V$ if Δ is not crossed by any E(U, b) with $b \in B$.
- A family *F* of subsets of *U* is a *cell decomposition for E over B* if *U* ⊆ ∪ *F* and every Δ ∈ *F* is *E*-complete over *B*.
- A cell decomposition for E is an assignment T s.t. for each finite B ⊆ V, T(B) is a cell decomposition for E over B.
- A cell decomposition \mathcal{T} is *distal* if for some $k \in \mathbb{N}$ there is a relation $D \subseteq U \times V^k$ s.t. all finite $B \subseteq V$, $\mathcal{T}(B) = \{D(U; b_1, \dots, b_k) : b_1, \dots, b_k \in B \text{ and } D(U; b_1, \dots, b_k) \text{ is } E\text{-complete over } B\}.$
- ► A relation *E* is *distal* if it admits a distal cell decomposition.

Example

- 1. *E* is distal \implies *E* is NIP (the number of *E*-types over any finite set *B* is at most $|B|^{k}$)
- 2. Any relation definable in a reduct of a distal structure admits a distal cell decomposition (follows from the existence of strong honest definitions in distal theories [C., Simon]).

Theorem

[C., Galvin, Starchenko] Le \mathcal{M} be an o-minimal expansion of a field and let E(x, y) with |x| = 2 be definable. Then E(x, y) admits a distal cell decomposition \mathcal{T} with $|\mathcal{T}(S)| = O(|S|^2)$ for all finite sets S.

In higher dimensions, becomes much more difficult to obtain an optimal bound, even in the semialgebraic case.

Cutting

 So called cutting lemmas are a very important "divide and conquer" method for counting incidences in geometric combinatorics.

Theorem

[C., Galvin, Starchenko] (Distal cutting lemma) Assume $E(x, y) \subseteq M^{|x|} \times M^{|y|}$ admits a distal cell decomposition \mathcal{T} with $|\mathcal{T}(S)| = O(|S|^d)$ for all finite sets $S \subseteq M^{|y|}$. Then there is a constant c s.t. for any finite $S \subseteq M^{|y|}$ of size n and any real 1 < r < n, there is a covering X_1, \ldots, X_t of $M^{|x|}$ with $t \leq cr^d$ and each X_i crossed by at most $\frac{n}{r}$ of the sets $\{E(x, b) : b \in S\}$.

Applications of cuttings

- 1. Assume $E \subseteq U \times V$ satisfies the conclusion of the cutting lemma. Then it satisfies strong EH.
- (o-minimal generalization of the Szemeredi-Trotter theorem) Let M be an o-minimal expansion of a field and E (x, y) ⊆ M² × M² definable. Then for any k ∈ ω there is some c ∈ ℝ_{>0} satisfying the following: for any A, B ⊆ M², if E (A, B) is K_{k,k}-free, then |E (A, B)| ≤ cn^{4/3}. [Fox, Pach, Sheffer, Suk, Zahl] in the semialgebraic case, [Basu, Raz] under a stronger assumption.
- 3. An ε -version of the Elekes-Szabó theorem.
- 4. Etc.

1-based theories

- ACF_p is the only known example of an NIP theory not satisfying strong EH (as well as the only example without a distal expansion).
- Zilber's trichotomy principle: roughly, every strongly minimal set is either like an infinite set, or like a vector space, or interprets a field.

Definition

("like a vector space")

- A formula E (x, y) is weakly normal if ∃k ∈ N s.t. the intersection of any k pairwise distinct sets of the form E (M, b), b ∈ M^{|y|} is empty.
- 2. *T* is 1-based if every formula is a Boolean combination of weakly normal formulas.
- Note: this definition implies stability of *T*, and is equivalent to: for any small set *A*, *B*, *A* ⊥_{acl^{eq}(*A*)∩acl^{eq}(*B*)} *B*.

1-based theories satisfy strong EH

- Main examples: abelian groups, modules.
- In a sense, these are the only examples:
- ► [Hrushovski, Pillay] Let (G, ., ...) be a 1-based group. Then all definable subset of Gⁿ are Boolean combinations of cosets of Ø-definable subgroups of Gⁿ.

Theorem

[C., Starchenko] Every stable 1-based theory satisfies strong EH.

- Problem reduces to showing strong EH for weakly normal formulas (using that weakly normal formulas are closed under conjunctions).
- ► Via some manipulations and basic linear algebra, the incidence problem for a k-weakly normal formula reduces to an incidence problem for an affine hyperplanes arrangement in ℝ^k.
- \blacktriangleright Which is definable in $\mathbb R,$ hence has strong EH by distality.
- Somewhat curiously, we have to use RCF in a proof for a stable structure! (Again, typical in incidence combinatorics.)