
Combinatorial properties of generically stable
measures

Artem Chernikov

UCLA

UIC Logic Seminar

Chicago, Apr 26, 2016



Joint work with Sergei Starchenko.



Szemerédi regularity lemma

Theorem
[E. Szemerédi, 1975] Every large enough graph can be partitioned
into boundedly many sets so that on almost all pairs of those sets
the edges are approximately uniformly distributed at random.



Szemerédi regularity lemma

Theorem
[E. Szemerédi, 1975] Given ε > 0, there exists K = K (ε) such that:
for any finite bipartite graph R ⊆ A× B , there exist partitions
A = A1 ∪ . . . ∪ Ak and B = B1 ∪ . . . ∪ Bk into non-empty sets, and
a set Σ ⊆ {1, . . . , k} × {1, . . . , k} of good pairs with the following
properties.
1. (Bounded size of the partition) k ≤ K .

2. (Few exceptions)
∣∣∣⋃(i ,j)∈Σ Ai × Bj

∣∣∣ ≥ (1− ε) |A| |B|.

3. (ε-regularity) For all (i , j) ∈ Σ, and all A′ ⊆ Ai ,B
′ ⊆ Bj ,∣∣∣∣R ∩ (A′ × B ′

)∣∣− dij
∣∣A′∣∣ ∣∣B ′∣∣∣∣ ≤ ε |A| |B| ,

where dij =
|R∩(Ai×Bj)|
|Ai×Bj | .



Szemerédi regularity lemma: bounds and applications

I Exist various versions for weaker and stronger partitions, for
hypergraphs, etc.

I Increasing the error a little one may assume that the sets in
the partition are of (approximately) equal size.

I Has many applications in extreme graph combinatorics,
additive number theory, computer science, etc.

I [T. Gowers, 1997] The size of the partition K (ε) grows as an
exponential tower 22... of height

(
1/ε

1
64

)
.

I For restricted families of graphs (e.g. coming from algebra,
geometry, etc.) one can obtain stronger regularity. Some
recent positive results fit nicely into the model-theoretic
classification picture.



Model-theoretic setting, 1
I LetM = (M,Ri , fi , ci ) denote a first-order structure with

some distinguished relations Ri ⊆ Mki , functions fi : Mki → M
and constants ci ∈ M.

I A (partitioned) first-order formula φ (x , y) is an expression of
the form ∀z1∃z2 . . . ∀z2n−1∃z2nψ (x , y , z̄), where ψ is a
Boolean combination of the (superpositions of) basic relations
and functions, and x , y are tuples of variables. Let L be the
collection of all formulas.

I Given b ∈ My , φ (x , b) is an instance of φ and defines a set
φ (M, b) = {a ∈ Mx :M |= φ (a, b)}.

I For every formula φ (x , y) ∈ L, we have a definable family
Fφ = {φ (M, b) : b ∈ My} of subsets of Mx .

I Let Def (Mx) ⊆ P (Mx) be the Boolean algebra of all definable
subsets.

I Let Defφ (Mx) ⊆ P (Mx) be the Boolean algebra of all subsets
defined by Boolean combinations of instances of φ.



Model-theoretic setting, 2

I M = (C,+,×, 0, 1). By quantifier elimination, definable
subsets of Mx are the constructible ones (i.e. Boolean
combinations of polynomial equalities).

I M = (R,+,×, <, 0, 1). By quantifier elimination, definable
subsets of Mx are the semialgebraic ones (Boolean
combinations of polynomial equalities and inequalities).

I M = (Qp,+,×, 0, 1). By Macintyre, eliminates quantifiers
after adding v (x) < v (y) and Pn (x) ⇐⇒ ∃z (x = zn) for
n ≥ 2.

I In C or R, given φ ∈ L, all sets in the definable family Fφ have
description complexity ≤ d = d (φ). And conversely, the
family of all (semi-)algebraic subsets of Mx of the description
complexity ≤ d is of the form Fφ for some φ ∈ L.



Model-theoretic setting, 3

I A Keisler measure µ is a finitely additive probability measure
on Def (Mx).

Example.
I Complete types over M correspond to zero-one Keisler

measures.
I Given a finite set A ⊆ Mx , taking µ (X ) = |X∩A|

|A| for every
X ∈ Def (Mx) defines a Keisler measure (“counting measure”).

I Let λn be the Lebesgue measure on the unit cube [0, 1]n in
Rn. By QE, if X ∈ Def (Rn) then X ∩ [0, 1]n is λn-measurable,
hence λn induces a Keisler measure.

I Let λ be the (normalized) Haar measure in Qp restricted to a
compact ball. Again, by QE all definable sets are λ-measurable
and λ induces a Keisler measure.



Shelah’s classification

I Motivated by Morley’s conjecture (counting the number of
uncountable models of first-order theories), Shelah has
introduced a number of “dividing lines” which can be expressed
as measuring the combinatorial complexity of the definable
families Fφ.

I Classification picture: see e.g.
http://www.forkinganddividing.com/.

I A lot of tools were developed for analyzing types in stable
theories (Shelah, Zilber, Hrushovski and many others).

I More recently, generalizing these tools to measures in NIP has
attracted a lot of attention.

http://www.forkinganddividing.com/


Generically stable measures

I We concentrate on generically stable Keisler measures, which
play a particularly important role in NIP theories (Keisler,
Shelah, Peterzil, Pillay, Hrushovski, Simon).

Definition. A Keisler measure µ on Mx is generically stable if for
every formula φ (x , y) ∈ L and ε > 0 there are some
a1, . . . , am ∈ Mx (possibly with repetitions) such that∣∣∣∣µ (φ (x , b))− |{i : ai ∈ φ (M, b)}|

m

∣∣∣∣ < ε

for every b ∈ My .
I In other words, the VC-theorem holds for µ.
I Counting, Lebesgue and Haar measures are all generically

stable.
I The type at +∞ in (R,+,×, <, 0, 1) is not generically stable.



Product measures, 1

I Assume we are given a definable relation E (x , y) ∈ Def (Mxy ).
I Let µ and ν be Keisler measures on Mx and My , respectively.
I Note that Def (Mxy ) 6= Def (Mx)× Def (My ), and E may not

be µ× ν-measurable.
I In general, there are many ways to extend the product measure
µ× ν to a measure ω on Def (Mxy ).

I For generically stable measures, we have a canonical choice.

Definition. Given generically stable measures µ, ν, on Mx ,My

respectively, we define a measure µ⊗ ν on Mxy by

µ⊗ ν (E (x , y)) =

ˆ
Mx

(ˆ
My

1E (x , y) dµy

)
dµx

I By generic stability, it is well-defined and µ⊗ ν = ν ⊗ µ.



Product measures, 2

I If µ is the counting measure on A, then µ⊗ µ is the counting
measure on A× A.

I If λ is the Lebesgue measure on [0, 1], then λ⊗ λ is the
Lebesgue measure on [0, 1]2.

I Etc.



Stable case, 1

Definition.
1. A formula φ (x , y) is k-stable if there are no (ai : i < k) in

Mx and (bi : i < k) in My such that

M |= φ (ai , bj) ⇐⇒ i ≤ j .

2. A formula is stable if it is k-stable for some k ∈ ω.
3. M is stable if all formulas are stable.

Examples of stable structures.
1. Abelian groups and modules,
2. (C,+,×, 0, 1),
3. [Sela] free groups (in the pure group language

(
·,−1 , 0

)
),

4. Planar graphs (in the language with a single binary relation).



Stable case, 2
I If M is stable, then all Keisler measures are generically stable

(follows from classical stability theory).

Theorem
[Malliaris, Shelah, 2014], [Malliaris, Pillay, 2016] Let M be stable.
For every definable E (x1, . . . , xn) there is some c = c (E ) such
that: for any ε > 0 and any Keisler measures µi on Mxi there are
partitions Mxi =

⋃
j<K Ai ,j satisfying

1. K ≤
(1
ε

)c .
2. for all (i1, . . . , in) ∈ {1, . . . ,K}n and definable

A′1 ⊆ A1,i1 , . . . ,A
′
n ⊆ An,in either dE (A′1, . . . ,A

′
n) < ε or

dE (A′1, . . . ,A
′
n) > 1− ε.

3. Each Ai ,j is defined by an instance of an E -formula depending
only on E and ε.

Here the density dE (A′1, . . . ,A
′
n) =

µ(E∩A′
1×...×A′

n)
µ(A′

1×...×A′
n)

, where
µ = µ1 ⊗ . . .⊗ µn.



Stable case, 3

I [Malliaris, Shelah] for finite counting measures, the polynomial
bound is explicit.

I [Malliaris, Pillay] for general measures, but polynomial bound
is not discussed.

I Can be combined, and generalized to hypergraphs.
I Only assumes local stability, so applies to the family of all

finite k-stable graphs (by taking an ultraproduct of
counterexamples).



Distal case, 1

I The class of distal theories was introduced and studied by
[Simon, 2011] in order to capture the class of “purely unstable”
NIP structures.

I The original definition is in terms of a certain property of
indiscernible sequences.

I [C., Simon, 2012] give a combinatorial characterization of
distality (our proof uses the (p, q)-theorem of
Alon-Kleitman-Matousek for families of finite VC-dimension):



Distal structures
I Theorem/Definition An NIP structure M is distal if and only if for

every definable family
{
φ (x , b) : b ∈ Md

}
of subsets of M there is a

definable family
{
ψ (x , c) : c ∈ Mkd

}
such that for every a ∈ M and

every finite set B ⊂ Md there is some c ∈ Bk such that a ∈ ψ (x , c) and
for every a′ ∈ ψ (x , c) we have a′ ∈ φ (x , b)⇔ a ∈ φ (x , b), for all b ∈ B.



Examples of distal structures

I All (weakly) o-minimal structures, e.g. M = (R,+,×, ex).
I Presburger arithmetic.
I Any p-minimal theory with Skolem functions is distal. E.g.

(Qp,+,×) for each prime p is distal (e.g. due to the p-adic
cell decomposition of Denef).

I The (valued differential) field of transseries.



Distal regularity lemma

Theorem
[C., Starchenko] Let M be distal. For every definable E (x1, . . . , xn)
there is some c = c (E ) such that: for any ε > 0 and any
generically stable Keisler measures µi on Mxi there are partitions
Mi =

⋃
j<K Ai ,j and a set Σ ⊆ {1, . . . ,K}n such that

1. K ≤
(1
ε

)c .
2. µ

(⋃
(i1,...,in)∈Σ A1,i1 × . . .× An,in

)
≥ 1− ε, where

µ = µ1 ⊗ . . .⊗ µn.
3. for all (i1, . . . , in) ∈ Σ, either (A1,i1 × . . .× An,in) ∩ E = ∅ or

A1,i1 × . . .× An,in ⊆ E .
4. Each Ai ,j is defined by an instance of a formula ψi (xi , z)

which only depends on E (and not on ε!).



Semialgebraic case

I Generalizes the very important semialgebraic case due to [Fox,
Gromov, Lafforgue, Naor, Pach, 2012] and [Fox, Pach, Suk,
2015].

I But also applies to graphs definable in the p-adics, with
respect to the Haar measure.

I Many questions about the optimality of the bounds remain, in
the o-minimal and the p-adic cases in particular.



General NIP case

Definition.
1. A formula φ (x , y) is NIP if the family Fφ has finite

VC-dimension.
2. M is NIP if all definable formulas are NIP.

I The class of NIP was introduced by Shelah around the same
time as VC theory was being developed.

I Attracted a lot of attention recently in model theory
(important algebraic examples such as ACVF, as well as
generalizing methods of stability).

I [Lovasz, Szegedy, 2010] prove a strong regularity lemma for
graphs (and graphons) of finite VC dimension.

I We give a model-theoretic version of this result, generalizing
the stable and the distal cases.



General NIP case, 2

Theorem
[C., Starchenko] Let M be NIP. For every definable E (x1, . . . , xn)
there is some c = c (E ) such that: for any ε > 0 and any
generically stable Keisler measures µi on Mxi there are partitions
Mi =

⋃
j<K Ai ,j and a set Σ ⊆ {1, . . . ,K}n such that:

1. K ≤
(1
ε

)c .
2. µ

(⋃
(i1,...,in)∈Σ A1,i1 × . . .× An,in

)
≥ 1− ε, where

µ = µ1 ⊗ . . .⊗ µn,
3. for all (i1, . . . , in) ∈ Σ and definable A′1 ⊆ A1,i1 , . . . ,A

′
n ⊆ An,in

either dE (A′1, . . . ,A
′
n) < ε or dE (A′1, . . . ,A

′
n) > 1− ε.

4. each Ai ,j is defined by an instance of an E -formula depending
only on E and ε.



General NIP case, 3

I The proof relies on the theory of integration for finitely
additive measures, and some basic theory of generically stable
measures, along with the efficient packing lemma from
Lovasz-Szegedy.

I This covers the case of finite graphs of finite VC-dimension:
I Let (Mi )i∈ω be a sequence of finite L-structures, let

M =
∏

Mi/U for U a non-principal ultrafilter. For an
L-definable subset X ⊆ M, let µ (X ) = limU

|Xi |
|Mi | be the

non-standard counting measure on M. By the VC-theorem for
finite counting measures, µ is generically stable. Then the
theorem applies to the ultraproduct of counterexamples.



Finding large homogeneous subsets

I These results are related to the question of finding a “large”
(approximately) homogeneous subset in a definable
(hyper-)graph.

I E.g. Erdős-Hajnal conjecture, Rödl’s theorem, etc.
I Stable case: everything holds. [Malliaris, Shelah], [C.,

Starchenko].
I In NIP — not so clear.



Rödl property

I Let M be a structure and letM be a class of Keisler
measures. Let E be a collection of definable (symmetric)
(hyper-)graphs in some powers of M.

I We will say that E satisfies the Rödl property with respect to
M if for every ε > 0 there is some δ > 0 such that for every
E ⊆ (Mn)k in E and every µ ∈M a Keisler measure on Mn,
there is some definable A ⊆ Mn, µ(A) > δ such that the
µ⊗ µ-density of E on A is either < ε or > 1− ε.

I Note: bipartite versions are always easier, and follow directly
from the corresponding regularity lemmas.



Rödl’s theorem
I [Rödl, rephrased] Let M be an ultraproduct of finite graphs

Mi = (Vi ,Ei ) with an NIP edge relation and L the language of
set theory. Let µ be the ultraproduct of counting measures.
Then {E} satisfies the Rödl property for {µ}.

I Question: can this be generalized to arbitrary generically stable
measures in NIP structures?

I [C., Starchenko] Yes (at least non-uniformly) for the Lebesgue
measure in o-minimal theories.

I No (at least not uniformly), for the Haar measure in the
p-adics.

I Example: E (x , y) holds if and only if v(x − y) is odd (i.e. if
the branches x and y split at an odd level). This is a
symmetric relation definable in the Macintyre’s language. The
density of E on a ball is always bounded away from 0 and 1,
and every definable set of positive measure contains a ball of
positive measure.


	Graph regularity and classification

