Idempotent Keisler measures (and convolution semigroups)

Artem Chernikov (joint with Kyle Gannon)

UCLA

"Model Theoretic Logics and their Frontiers", Alfréd Rényi Institute, Budapest, Hungary (via Zoom) Jan 14, 2022

Spaces of types

- Let T be a complete first-order theory in a language L, M ⊨ T a monster model (i.e. κ-saturated and κ-homogeneous for a sufficiently large cardinal κ), M ≤ M a small elementary submodel.
- For A ⊆ M and x an arbitrary tuple of variables, S_x(A) denotes the set of complete types over A.
- Let L_x(A) denote the set of all formulas φ(x) with parameters in A, up to logical equivalence — which we identify with the Boolean algebra of A-definable subsets of M_x; L_x := L_x(Ø).
- Then the types in $S_x(A)$ are the ultrafilter on $\mathcal{L}_x(A)$.
- By Stone duality, S_x(A) is a totally disconnected compact Hausdorff topological space with a basis of clopen sets of the form

$$\langle \varphi \rangle := \{ p \in S_x(A) : \varphi(x) \in p \}$$

for $\varphi(x) \in \mathcal{L}_x(A)$.

• We refer to types in $S_{x}(\mathbb{M})$ as global types.

Keisler measures

A Keisler measure µ in variables x over A ⊆ M is a finitely-additive probability measure on the Boolean algebra L_x(A) of A-definable subsets of M_x.

•
$$\mathfrak{M}_{x}(A)$$
 denotes the set of all Keisler measures in x over A.

- ► Then 𝔐_x(A) is a compact Hausdorff space with the topology induced from [0, 1]^{L_x(A)} (equipped with the product topology).
- A basis is given by the open sets

$$\bigcap_{i < n} \{ \mu \in \mathfrak{M}_{\mathsf{x}}(\mathsf{A}) : r_i < \mu(\varphi_i(\mathsf{x})) < \mathsf{s}_i \}$$

with $n \in \mathbb{N}$ and $\varphi_i \in \mathcal{L}_x(A), r_i, s_i \in [0, 1]$ for i < n.

- Identifying p with the Dirac measure δ_p, S_x(A) is a closed subset of M_x(A) (and the convex hull of S_x(A) is dense).
- Every μ ∈ M_x(A), viewed as a measure on the clopen subsets of S_x(A), extends uniquely to a regular (countably additive) probability measure on Borel subsets of S_x(A); and the topology above corresponds to the weak*-topology: μ_i → μ if ∫ fdμ_i → ∫ fdμ for every continuous f : S_x(A) → ℝ.

Some examples of Keisler measures

1. In arbitrary T, given $p_i \in S_x(A)$ and $r_i \in \mathbb{R}$ for $i \in \mathbb{N}$ with $\sum_{i \in \mathbb{N}} r_i = 1$, $\mu := \sum_{i \in \mathbb{N}} r_i \delta_{p_i} \in \mathfrak{M}_x(A)$. 2. Let $T = \mathsf{Th}(\mathbb{N}, =)$, |x| = 1. Then

 $S_x(\mathbb{M}) = \{ \operatorname{tp}(a/\mathbb{M}) : a \in \mathbb{M} \} \cup \{ p_\infty \},$

where p_{∞} is the unique non-realized type axiomatized by $\{x \neq a : a \in \mathbb{M}\}$. By QE, every formula is a Boolean combination of $\{x = a : a \in \mathbb{M}\}$, from which it follows that every $\mu \in \mathfrak{M}_{x}(\mathbb{M})$ is as in (1).

- 3. More generally, if T is ω -stable (e.g. strongly minimal, say ACF_p for p prime or 0) and x is finite, then every $\mu \in \mathfrak{M}_{x}(\mathbb{M})$ is a sum of types as in (1).
- Let T = Th(ℝ, <), λ be the Lebesgue measure on ℝ and |x| = 1. For φ(x) ∈ L_x(𝔅), define μ(φ) := λ (φ(𝔅) ∩ [0, 1]_ℝ) (this set is Borel by QE). Then μ is a Keisler measure, but not a sum of types as in (1).

Independent product of invariant types \otimes

► Hence ⊗ is associative, but not commutative (unless T is stable).

Convolution product * of invariant types

- ► Assume now that T expands a group, i.e. there exists a definable functions · such that for some/any M ⊨ T, (M_x, ·) is a group.
- ▶ In this case, given invariant $p, q \in S_x(\mathbb{M})$, we have an invariant type $p * q \in S_x(\mathbb{M})$ via

$$\varphi(x) \in p * q \iff \varphi(x \cdot y) \in p(x) \otimes q(y)$$

for every $\varphi(x) \in \mathcal{L}_x(\mathbb{M})$.

- ► Equivalently, p * q = tp(a · b/M) for some/any (a, b) ⊨ p ⊗ q in a larger monster model.
- Given *M* ≺ M, let *S*^{inv}_x(M, *M*) be the set of all Aut(M/*M*)-invariant global types, and *S*^{fs}_x(M, *M*) the set of global types finitely satisfiable in *M*. Then (*S*[†]_x(M, *M*), *) is a compact left-continuous semigroup.
- "Left continuous" means: the map $-*q: S_x^{\dagger}(\mathbb{M}, \mathcal{M}) \to S_x^{\dagger}(\mathbb{M}, \mathcal{M})$ is continuous for every fixed $q \in S_x^{\dagger}(\mathbb{M}, \mathcal{M})$.

Idempotent types

- A type $p \in S^{\dagger}_{x}(\mathbb{M}, \mathcal{M})$ is *idempotent* if p * p = p.
- E.g. let M be (Z, +, P_{n,α}), with (P_{n,α} : α < 2^{ℵ0}) naming all subsets of Zⁿ, for all n.

Then all types over \mathcal{M} are trivially definable, and idempotent types are precisely the idempotent ultrafilters in the sense of Galvin–Glazer's proof of Hindman's theorem (for every finite partition of \mathbb{Z} , some part contains all finite sums of elements of an infinite set), see e.g. [Andrews, Goldbring'18].

- In stable theories, idempotent types are known to arise from type-definable subgroups (group chunk theorem and its variants [Hrushovski, Newelski]).
- ► This is parallel to the following classical line of research:

Motivation: analogy with the classical (locally-)compact case

- Let G be a locally compact topological group.
- ► Then the space of regular Borel probability measures on *G* is equipped with the *convolution product*:

$$\mu * \nu(A) = \int_{y \in G} \int_{x \in G} \chi_A(x \cdot y) d\mu(x) d\nu(y)$$

for a Borel set $A \subseteq G$.

- If G is compact, then μ is idempotent if and only if the support of μ is a compact subgroup of G and μ restricted to it is the (bi-invariant) Haar measure [Kawada, Itô'40], [Wendel'54].
- Same characterization extends to locally compact abelian groups [Rudin'59, Cohen'60].
- Compact (semi-)topological semigroup the picture becomes more complicated [Glicksber'59, Pym'69, ...].

Independent product \otimes of definable Keisler measures

- We would like to find a parallel for Keisler measures, generalizing the situation for types. First, need to make sense of the convolution product.
- A Keisler measure µ ∈ 𝔐_x(𝔄) is Borel definable (over 𝓜 ≤ 𝔄) if:
 - for any φ(x, y) ∈ L_{xy} and b ∈ M_y, μ(φ(x, b)) depends only on tp(b/M) (in which case, given q ∈ S_y(M), we write μ(φ(x, q)) to
 - denote $\mu(\varphi(x, b))$ for some/any $b \models q$; 2. the map $q \in S_{v}(\mathcal{M}) \mapsto \mu(\varphi(x, q)) \in [0, 1]$ is Borel.
- Given μ ∈ 𝔐_x(𝔄), ν ∈ 𝔐_y(𝔄) with μ Borel definable over 𝓜, we can define μ ⊗ ν ∈ 𝔐_{xy}(𝔄) via

$$\mu\otimes
u(arphi(x,y)):=\int_{\mathcal{S}_{\mathcal{Y}}(\mathcal{M})}\mu(arphi(x,q))d
u|_{\mathcal{M}}(q).$$

The integral makes sense by (2), viewing v|_M as a regular Borel measure on S_y(M).

Convolution product * of definable Keisler measures

- ▶ We restrict to NIP groups to avoid some technicalities.
- If T is NIP, then every automorphism-invariant measure is Borel-definable, and ⊗ on invariant measures extends ⊗ on invariant types defined earlier.
- If now T expands a group, given invariant µ, ν ∈ 𝔐_x(𝔅), we get an invariant µ ∗ ν ∈ 𝔐_x(𝔅) via

$$\mu * \nu(\varphi(x)) := \mu_x \otimes \nu_y(\varphi(x \cdot y)).$$

- ► Again, restricting to types, we recover * defined earlier.
- We let 𝔐^{inv}_x (𝔄, 𝒜) be the set of global Aut(𝔄/𝒜)-invariant measures, and 𝔐^{fs}_x (𝔄, 𝒜) the set of global measures finitely satisfiable in 𝒜.

Theorem (C., Gannon'20)

In an NIP group, $\mathfrak{M}^{\dagger}_{x}\left(\mathbb{M},\mathcal{M}\right)$ is a compact left continuous semigroup.

Idempotent Keisler measures vs the classical locally compact case

 First of all, in general a definable group has no non-discrete topology.

• Given
$$\mu \in \mathfrak{M}_{\mathsf{x}}(\mathsf{A})$$
, its support is

$$\mathcal{S}(\mu) := \left\{ p \in \mathcal{S}_x(\mathcal{A}) : \varphi(x) \in p \implies \mu(\varphi(x)) > 0
ight\}.$$

It is a closed non-empty subset of $S_x(A)$.

As we mentioned, in a locally compact topological group, support of an idempotent measure is a closed subgroup — no longer true for idempotent Keisler measures (with respect to * on types), even if there is some nice topology present. Supports of idempotent Keisler measures: a theorem

Adapting Glicksberg, we show:

Theorem (C., Gannon'20)

(T NIP) Let $\mu \in \mathfrak{M}_{\times}(\mathbb{M})$ be an idempotent definable Keisler measure. Then $(S(\mu), *)$ is a compact, left continuous semigroup with no closed two-sided ideals.

▶ Where $I \subseteq S(\mu)$ is a left (right) ideal if: $q \in I \implies p * q \in I$ (resp., $q * p \in I$) for every $p \in S(\mu)$. Two-sided = both left and right.

Type-definable subgroups

- Instead of closed subgroups in the topological setting, we consider *type-definable* subgroups.
- Assume that M ⊨ T expands a group, and H is a type-definable subgroup of (M, ·) (i.e. the underlying set of H can be defined by a small partial type H(x) with parameters in M).
- Let H be type-definable and suppose that µ ∈ 𝔐_x(𝔄) is concentrated on H (i.e. p ∈ S(µ) ⇒ p(x) ⊢ H(x)) and is right H-invariant (i.e. for any φ(x) ∈ L_x(𝔄), a ∈ H, µ(φ(x)) = µ(φ(x ⋅ a))). Then µ is idempotent (and H is said to be definably amenable).
- By analogy with the classical case, we might expect all idempotent Keisler measures in model-theoretically tame groups to be of this form.

Idempotent measures in stable groups

Theorem (C., Gannon'20)

Let T be a stable theory expanding a group and $\mu \in \mathfrak{M}_{x}(\mathbb{M})$ a Keisler measure. TFAE:

- 1. μ is idempotent;
- 2. μ is the unique right/left-invariant measure on its stabilizer, i.e. the type-definable subgroup $St(\mu) = \{g \in \mathbb{M} : g \cdot \mu = \mu\}$.
- ► The following groups are stable: abelian, free, algebraic over C (e.g. GL_n(C), SL_n(C), abelian varieties).
- Ingredients: structure of the supports of definable idempotent measures in NIP; definability measures in stable theories; a variant of Hrushovski's group chunk theorem for partial types due to Newelski.
- Further results: an analog for generically stable measures in abelian NIP groups; for G⁰⁰-invariant measures; in general definably amenable NIP groups — the picture is more complicated.

Fact (Ellis)

Suppose (X, *) is a left-continuous compact semigroup. Then there exists a minimal (closed) left ideal I. Let $id(I) = \{u \in I : u^2 = u\}$ be the set of idempotents in I.

- 1. id(I) is non-empty.
- 2. For every $u \in id(I)$, u * I is a subgroup of I with identity u. Its isomorphism type doesn't depend on I or u, in view of which we refer to u * I as the ideal group.
- 3. $I = \bigcup \{u * I : u \in id(I)\}$, where the sets in the union are pairwise disjoint.

► The so-called "Ellis group conjecture" of Newelski, and Pillay:

Fact (C., Simon)

In a definably amenable NIP group \mathcal{G} , with $G \prec \mathcal{G}$, the ideal group of $(S_x^{fs}(\mathcal{G}, G), *)$ is isomorphic to $\mathcal{G}/\mathcal{G}^{00}$ (where \mathcal{G}^{00} is the smallest type-definable subgroup of bounded index).

- In particular, the ideal group is often non-trivial in this setting.
- The situation is quite different in the convolution semigroups of measures, due to the presence of the convex structure:

Theorem (C., Gannon)

Assume that \mathcal{G} is NIP, and let I be a minimal left ideal of $\mathfrak{M}^{\dagger}_{x}(\mathcal{G}, \mathcal{G})$.

- 1. I is a closed convex subset of $\mathfrak{M}^{\dagger}_{\mathsf{X}}(\mathcal{G}, \mathcal{G})$.
- 2. For any $\mu \in I$, $\pi_*(\mu) = h$, where h is the normalized Haar measure on $\mathcal{G}/\mathcal{G}^{00}$ and $\pi : \mathcal{G} \to \mathcal{G}/\mathcal{G}^{00}$ is the quotient map.
- 3. If $\mathcal{G}/\mathcal{G}^{00}$ is non-trivial, then I does not contain any types.
- 4. For any idempotent $u \in I$, we have $u * I \cong (e, \cdot)$. In other words, the ideal group is always trivial.
- 5. Every element of I is an idempotent, and $\mu * \nu = \mu$ for all $\mu, \nu \in I$.

Theorem (C., Gannon)

Assume that ${\cal G}$ is NIP and definably amenable.

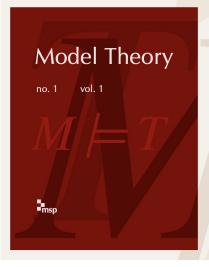
- 1. In $\mathfrak{M}_{x}^{fs}(\mathcal{G}, \mathcal{G})$, minimal left ideals are of the form $I = \{\nu\}$, where $\nu \in \mathfrak{M}_{x}^{fs}(\mathcal{G}, \mathcal{G})$ is a *G*-left-invariant measure.
- 2. In $\mathfrak{M}_x^{inv}(\mathcal{G}, G)$, there exists a unique minimal left (and in fact two-sided) ideal

 $I = \left\{ \mu \in \mathfrak{M}_{\mathsf{x}}^{\mathsf{inv}}(\mathcal{G}, \mathsf{G}) : \mu \text{ is } \mathcal{G} ext{-right-invariant}
ight\}.$

The set ex(I) of extreme points of I is closed (hence I is a Bauer simplex) and equal to $\{\mu_p : p \in S_x^{inv}(\mathcal{G}, G) \text{ is right } f\text{-generic}\}.$

- 3. If \mathcal{G} is fsg and $\mu \in \mathfrak{M}_{\times}(\mathcal{G})$ is the unique \mathcal{G} -left-invariant measure, then $I = \{\mu\}$ is the unique minimal left (in fact, two-sided) ideal in both $\mathfrak{M}_{\times}^{inv}(\mathcal{G}, \mathcal{G})$ and $\mathfrak{M}_{\times}^{fs}(\mathcal{G}, \mathcal{G})$.
- 4. If G is not definably amenable, then ex(I) is infinite.

Thank you!



from MSP, a new journal in pure and applied model theory and related areas

Mar<mark>tin Hils</mark> Rahim Moosa

Sylvy Anscombe Alessandro Berarducci Emmanuel Breuillard Artem Chernikov Charlotte Hardouin François Loeser Dugald Macpherson Alf Onshuus Chloé Perin

> msp.org/mt now welcoming submissions