Incidence counting and trichotomy in o-minimal structures

Artem Chernikov (joint with A. Basit, S. Starchenko, T. Tao and C.-M. Tran)

UCLA

Seminario flotante de Lógica Matemática - Bogotá (via Zoom) Sep 16, 2020

Hypergraphs and Zarankiewicz's problem

- We fix r ∈ N≥2 and let H = (V₁,..., V_r; E) be an r-partite and r-uniform hypergraph (or just r-hypergraph) with vertex sets V₁,..., V_r with |V_i| = n_i, (hyper-) edge set E ⊆ ∏_{i∈[r]} V_i, and n = ∑^r_{i=1} n_i is the total number of vertices.
- When r = 2, we say "bipartite graph" instead of "2-hypergraph".
- ▶ For $k \in \mathbb{N}$, let $K_{k,...,k}$ denote the complete *r*-hypergraph with each part of size *k* (i.e. $V_i = [k]$ and $E = \prod_{i \in [k]} V_i$).
- H is K_{k,...,k}-free if it does note contain an isomorphic copy of K_{k,...,k}.
- Zarankiewicz's problem: for fixed r, k, what is the maximal number of edges |E| in a K_{k,...,k}-free r-hypergraph H? (As a functions of n₁,..., n_r).

Number of edges in a $K_{k,...,k}$ -free hypergraph

The following fact is due to [Kővári, Sós, Turán'54] for r = 2 and [Erdős'64] for general r.

Fact (The Basic Bound)

If H is a $K_{k,\ldots,k}$ -free r-hypergraph then $|E| = O_{r,k}\left(n^{r-\frac{1}{k^{r-1}}}\right)$.

- "= O_{r,k}(-)" means "≤ c · -" for some constant c ∈ ℝ depending only on r and k.
- So the exponent is slightly better than the maximal possible r (we have n^r edges in K_{n,...,n}). A probabilistic construction in [Erdős'64] shows that it cannot be substantially improved.

Families of hypergraphs induced by definable relations

- ▶ Let $\mathcal{M} = (M,...)$ be a first-order structure in a language \mathcal{L} , and let $R \subseteq M_{x_1} \times ... \times M_{x_r}$ be a definable relation on the product of some sorts of \mathcal{M} .
- ▶ We let *F_R* be the family of all finite *r*-hypergraphs induced by *R*, i.e. hypergraphs of the form

$$H = (V_1, \ldots, V_r; R \upharpoonright_{V_1 \times \ldots \times V_r})$$

for some finite $V_i \subseteq M_{x_i}, i \in [r]$.

Question. What properties of the structure *M* are reflected by the Zarankiewicz-style bounds for the families of hypergraphs *F_R* with *R* definable in *M*?

Point-line incidences, char p

- Let K |= ACF_p be an algebraically closed field of positive characteristic.
- Let R ⊆ K² × K² be the (definable) incidence relation between points and lines in K², i.e.

$$R(x_1, x_2; y_1, y_2) \iff x_2 = y_1 x_1 + y_2.$$

- Note that R is K_{2,2}-free (there is a unique line through any two distinct points).
- ▶ Let q be a power of p, then $\mathbb{F}_q \subseteq K$ and we take $V_1 = V_2 = (\mathbb{F}_q)^2$ (i.e. the set of all points and the set of all lines in \mathbb{F}_q^2), $E = R \upharpoonright_{V_1 \times V_2}$. Then $H = (V_1, V_2; E) \in \mathcal{F}_R$.
- We have $|V_1| = |V_2| = q^2$ and $|E| = q |V_2| = q^3$.

▶ Let
$$n := q^2$$
, then $|V_1| = |V_2| = n$ and $|E| \ge n^{\frac{3}{2}}$ — matches the Basic Bound for $r = k = 2$.

Points-lines incidences, char 0

► On the other hand, over the reals a bound strictly better than the Basic Bound holds (⁴/₃ < ³/₂):

Fact (Szémeredi-Trotter '83)

Let $R \subseteq \mathbb{R}^2 \times \mathbb{R}^2$ be the incidence relation between points and lines in \mathbb{R}^2 . Then every $H \in \mathcal{F}_R$ satisfies $|E| = O\left(n^{\frac{4}{3}}\right)$.

Known to be optimal up to a constant.

In fact, the same holds in ACF₀:

Fact (Tóth '03)

Let $R \subseteq \mathbb{C}^2 \times \mathbb{C}^2$ be the incidence relation between points and lines in \mathbb{C}^2 . Then every $H \in \mathcal{F}_R$ satisfies $|E| = O\left(n^{\frac{4}{3}}\right)$.

▶ Reason: ACF_0 is a reduct of a distal theory, while ACF_p is not.

Stronger bounds for hypergraphs definable in distal structures

Generalizing a result of [Fox, Pach, Sheffer, Suk, Zahl'15] in the semialgebraic case, we have:

Fact (C., Galvin, Starchenko'16)

Let \mathcal{M} be a distal structure and $R \subseteq M_{x_1} \times M_{x_2}$ a definable relation. Then there exists some $\varepsilon = \varepsilon(R, k) > 0$ such that every $K_{k,k}$ -free bipartite graph $H \in \mathcal{F}_R$ satisfies $|E| = O_{R,k}(n^{t-\varepsilon})$, where t is the exponent given by the Basic Bound.

- In fact, ε is given in terms of k and the size of the smallest distal cell decomposition for R.
- E.g. if R ⊆ M² × M² for an *o*-minimal M, then t − ε = ⁴/₃ ([C., Galvin, Starchenko'16]; independently, [Basu, Raz'16]).
- Bounds for R ⊆ M^d₁ × M^d₂ with M ⊨ RCF [Fox, Pach, Sheffer, Suk, Zahl'15]; M is o-minimal [Anderson'20].

Connections to the trichotomy principle

- If *M* is sufficiently tame model-theoretically (e.g. stable/geometric + distal expansion; or more concretely, ACF₀ or *o*-minimal), the exponents in Zarankiewicz bounds appear to reflect the trichotomy principle, and detect presence of algebraic structures (groups, fields).
- Instances of this principle are well-known in combinatorics extremal configuration for various counting problems tend to possess algebraic structure.

Example: detecting groups and Elekes-Szabó theorem

Fact (Elekes-Szabó'12)

Let $\mathcal{M} \models \mathsf{ACF}_0$ be saturated, X_1, X_2, X_3 strongly minimal definable sets, $R \subseteq X_1 \times X_2 \times X_3$ has Morley rank 2, and R is $K_{k,k}$ -free under any partition of its variables into two groups. Then exactly one of the following holds.

(a) For some $\varepsilon > 0$, $|E| = O(n^{2-\varepsilon})$ for every $H \in \mathcal{F}_R$.

(b) there exists a definable group G of Morley rank and degree 1, elements g_i ∈ G, α_i ∈ X_i with α_i and g_i inter-algebraic (over some set of parameters C) for i ∈ [3], ᾱ = (α₁, α₂, α₃) is generic in R over C and g₁ · g₂ · g₃ = 1 in G.

Some more recent generalizations:

- [Hrushovski'13];
- ▶ [Bays-Breuillard'18] for ACF₀ and *R* of any arity;
- [C., Starchenko'18] for *M* strongly minimal with a distal expansion, *R* of arity 3;
- [C., Peterzil, Starchenko'20] *M* stable with distal expansion or o-minimal, *R* of any arity, codimension 1.
- Proofs combine "stronger than basic" Zarankiewicz bounds with variants of the group configuration theorem.
- In this talk a new result showing that fields can be detected from the exponents, at least in *o*-minimal structures and working *globally* (i.e. working with all {*F_R* : *R* definable} simultaneously rather with a single *F_R*).
- Main new ingredient even stronger Zarankiewicz bounds in locally modular structures.

An abstract setting: coordinate-wise monotone functions and basic relations

• Let $V = \prod_{i \in [r]} V_i$ and (S, <) a linearly ordered set. A function $f: V \to S$ is *coordinate-wise monotone* if

▶ for any
$$i \in [r]$$
,
▶ any $a = (a_j)_{j \in [r] \setminus \{i\}}$, $a' = (a'_j)_{j \in [r] \setminus \{i\}} \in \prod_{j \neq i} V_j$,
▶ and any $b, b' \in V_i$

we have

$$f(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{r}) \leq f(a_{1}, \ldots, a_{i-1}, b', a_{i+1}, \ldots, a_{r})$$

$$\iff$$

$$f(a'_{1}, \ldots, a'_{i-1}, b, a'_{i+1}, \ldots, a'_{r}) \leq f(a'_{1}, \ldots, a'_{i-1}, b', a'_{i+1}, \ldots, a'_{r}).$$

- ▶ A subset $X \subseteq V$ is *basic* if there exists a linearly ordered set (S, <), a coordinate-wise monotone function $f: V \to S$ and $\ell \in S$ such that $X = \{b \in V : f(b) < \ell\}$.
- A set X ⊆ V has grid complexity ≤ s if X is an intersection of V with at most s basic subsets of V.

Example: semilinear relations of bounded complexity

Let W be an ordered vector space over an ordered division ring R. A set X ⊆ W^d is semilinear if X is a finite union of sets of the form

$$\left\{ ar{x} \in W^{d} : f_{1}\left(ar{x}
ight) \leq 0, \dots, f_{p}\left(ar{x}
ight) \leq 0, f_{p+1}\left(ar{x}
ight) < 0, \dots, f_{q}\left(ar{x}
ight) < 0
ight\}$$
,

where $p \leq q \in \mathbb{N}$ and each $f_i : V^d \to V$ is a *linear* function

$$f(x_1,\ldots,x_d) = \lambda_1 x_1 + \ldots + \lambda_d x_d + a$$

for some $\lambda_i \in R$ and $a \in V$.

- ▶ Note that every linear function *f* is coordinate-wise monotone.
- Hence, if $d = d_1 + \ldots + d_r$, $X \subseteq W^d = \prod_{i \in [r]} W^{d_i}$ is of grid complexity q.

Zarankiewicz bound for relations of bounded grid complexity

Theorem

For every integers $r \ge 2, s \ge 0, k \ge 2$ there are $\alpha = \alpha(r, s, k) \in \mathbb{R}$ and $\beta = \beta(r, s) \in \mathbb{N}$ such that: for any finite $K_{k,\dots,k}$ -free r-hypergraph $H = (V_1, \dots, V_r; E)$ with $E \subseteq \prod_{i \in [r]} V_i$ of grid complexity $\le s$ we have

$$|E| \leq \alpha n^{r-1} (\log n)^{\beta}$$
.

Moreover, we can take $\beta(r,s) := s(2^{r-1}-1)$.

- ▶ In particular, $|E| = O_{r,s,k,\varepsilon}(n^{r-1+\varepsilon})$ for any $\varepsilon > 0$.
- Our proof is by double recursion on the grid complexity and the complexities of certain derived hypergraphs of smaller arity, coordinate-wise monotone maps into linear orders are used in the recursive step to pick the "middle point" splitting the vertices in a balanced way.

Corollary for semilinear hypergraphs

Corollary

For every $s, k \in \mathbb{N}$ there exist some $\alpha = \alpha(r, s, k) \in \mathbb{R}$ and $\beta(r, s) := s(2^{r-1} - 1)$ satisfying the following. Suppose that $r \ge 2, d = d_1 + \ldots + d_r \in \mathbb{N}$ and $R \subseteq \mathbb{R}^{d_1} \times \ldots \times \mathbb{R}^{d_r}$ is semilinear and defined by $\le s$ linear equalities and inequalities. Then for every $K_{k,\ldots,k}$ -free r-hypergraph $H \in \mathcal{F}_R$ we have

 $|E| \leq \alpha n^{r-1} \left(\log n\right)^{\beta}.$

An application to incidences with polytopes, 1

• Applying with r = 2 we get the following:

Corollary

For every $s, k \in \mathbb{N}$ there exists some $\alpha = \alpha(s, k) \in \mathbb{R}$ satisfying the following.

Let $d \in \mathbb{N}$ and $H_1, \ldots, H_q \subseteq \mathbb{R}^d$ be finitely many (closed or open) half-spaces in \mathbb{R}^d . Let \mathcal{F} be the (infinite) family of all polytopes in \mathbb{R}^d cut out by arbitrary translates of H_1, \ldots, H_q . For any set V_1 of n_1 points in \mathbb{R}^d and any set V_2 of n_2 polytopes in

 \mathcal{F} , if the incidence graph on $V_1 \times V_2$ is $K_{k,k}$ -free, then it contains at most $\alpha n (\log n)^q$ incidences.

An application to incidences with polytopes, 2

In particular (much better than the general semialgebraic bound):

Corollary

For any set V_1 of n_1 points and any set V_2 of n_2 (solid) boxes with axis parallel sides in \mathbb{R}^d , if the incidence graph on $V_1 \times V_2$ is $K_{k,k}$ -free, then it contains at most $O_{d,k}$ $(n(\log n)^{2d})$ incidences.

 Independently, a similar bound for the intersection graphs of boxes [Tomon, Zakharov'20].

Dyadic rectangles and a lower bound

- Is the logarithmic factor necessary?
- We focus on the simplest case of incidences with rectangles with axis-parallel sides in ℝ². The previous corollary gives the bound O_{d,k} (n(log n)⁴).
- A box is *dyadic* if it is the direct products of intervals of the form [s2^t, (s + 1)2^t) for some integers s, t.
- ▶ Using a different argument, restricting to dyadic boxes we get a stronger upper bound $O\left(n\frac{\log n}{\log \log n}\right)$, and give a construction showing a matching lower bound (up to a constant).
- [Tomon, Zakharov'20] get the upper bound O_{d,k} (n(log n)) in the K_{2,2}-free case, and use our lower bound construction to provide a counterexample to a conjecture of [Alon, Basavaraju, Chandran, Mathew, Rajendraprasad, 15] about the number of edges in a graph of bounded "separation dimension".

Problem

Does the power of log n have to grow with the dimension d?

Geometric weakly locally modular theories

- In our bounds, we can get rid of the logarithmic factor entirely restricting to the family of all finite *r*-hypergraphs induced by a given K_{k,...,k}-free relation (as opposed to all K_{k,...,k}-free *r*-hypergraphs induced by a given relation).
- Recall that a complete first-order theory T is geometric if, in any model M ⊨ T, the algebraic closure operator satisfies the Exchange Principle and the quantifier ∃[∞] is eliminated.
- Hence, in a model of a geometric theory, acl defines a well-behaved notion of independence _____.
- ▶ [Berenstein, Vassiliev] A geometric theory is *weakly locally* modular if for any small subsets $A, B \subseteq \mathbb{M} \models T$ there exists some small set $C \downarrow_{\emptyset} AB$ such that $A \downarrow_{\operatorname{acl}(AC) \cap \operatorname{acl}(BC)} B$.
- ► E.g. any *o*-minimal theory *T* is geometric, and *T* is weakly locally modular if and only if *T* is linear (i.e. any normal interpretable family of plane curves in *T* has dimension ≤ 1).

Bound for $K_{k,...,k}$ -free relations in geometric weakly locally modular structures

Theorem

Assume that T is a geometric, weakly locally modular theory, and $\mathcal{M} \models T$. Assume that $r \in \mathbb{N}_{\geq 2}$ and $R \subseteq M_{x_1} \times \ldots \times M_{x_r}$ is definable and $K_{k,\ldots,k}$ -free. Then for every $H \in \mathcal{F}_R$ we have

$$|E|=O_R(n^{r-1}).$$

Moreover, if T is distal, then can relax " $K_{k,...,k}$ -free" to "does not contain the direct product of r infinite sets".

A related observation was made by Evans in the binary case for certain stable theories.

Recovering a field in the o-minimal case

Fact (Peterzil, Starchenko'98)

Let \mathcal{M} be an o-minimal saturated structure. TFAE:

- 1. \mathcal{M} is not weakly locally modular;
- 2. there exists a real closed field definable in \mathcal{M} .
- Combining this with the previous theorem, we thus get:

Corollary

Let \mathcal{M} be an o-minimal structure. TFAE:

- 1. \mathcal{M} is weakly locally modular;
- 2. for every definable $K_{k,...,k}$ -free r-ary relation R, every $H \in \mathcal{F}_R$ satisfies $|E| = O(n^{r-1})$.
- 3. for every definable binary relation R, if all $H \in \mathcal{F}_R$ satisfy $|E| = O(n^{2-\varepsilon})$ for some $\varepsilon > 0$, then in fact |E| = O(n);
- 4. no infinite field is definable in \mathcal{M} .