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Hypergraphs and Zarankiewicz’s problem

◮ We fix r ∈ N≥2 and let H = (V1, . . . ,Vr ;E ) be an r -partite
and r -uniform hypergraph (or just r -hypergraph) with vertex
sets V1, . . . ,Vr with |Vi | = ni , (hyper-) edge set
E ⊆

!
i∈[r ] Vi , and n =

"r
i=1 ni is the total number of

vertices.
◮ When r = 2, we say “bipartite graph” instead of

“2-hypergraph”.
◮ For k ∈ N, let Kk,...,k denote the complete r -hypergraph with

each part of size k (i.e. Vi = [k] and E =
!

i∈[k] Vi ).
◮ H is Kk,...,k -free if it does note contain an isomorphic copy of

Kk,...,k .
◮ Zarankiewicz’s problem: for fixed r , k , what is the maximal

number of edges |E | in a Kk,...,k -free r -hypergraph H? (As a
functions of n1, . . . , nr ).



Number of edges in a Kk ,...,k-free hypergraph

◮ The following fact is due to [Kővári, Sós, Turán’54] for r = 2
and [Erdős’64] for general r .

Fact (The Basic Bound)
If H is a Kk,...,k -free r -hypergraph then |E | = Or ,k

#
nr−

1
kr−1

$
.

◮ “= Or ,k(−)” means “≤ c ·−” for some constant c ∈ R
depending only on r and k .

◮ So the exponent is slightly better than the maximal possible r
(we have nr edges in Kn,...,n). A probabilistic construction in
[Erdős’64] shows that it cannot be substantially improved.



Families of hypergraphs induced by definable relations

◮ Let M = (M, . . .) be a first-order structure in a language L,
and let R ⊆ Mx1 × . . .×Mxr be a definable relation on the
product of some sorts of M.

◮ We let FR be the family of all finite r -hypergraphs induced by
R , i.e. hypergraphs of the form

H = (V1, . . . ,Vr ;R ↾V1×...×Vr )

for some finite Vi ⊆ Mxi , i ∈ [r ].
◮ Question. What properties of the structure M are reflected

by the Zarankiewicz-style bounds for the families of
hypergraphs FR with R definable in M?



Point-line incidences, char p

◮ Let K |= ACFp be an algebraically closed field of positive
characteristic.

◮ Let R ⊆ K 2 × K 2 be the (definable) incidence relation
between points and lines in K 2, i.e.

R(x1, x2; y1, y2) ⇐⇒ x2 = y1x1 + y2.

◮ Note that R is K2,2-free (there is a unique line through any
two distinct points).

◮ Let q be a power of p, then Fq ⊆ K and we take
V1 = V2 = (Fq)

2 (i.e. the set of all points and the set of all
lines in F2

q), E = R ↾V1×V2 . Then H = (V1,V2;E ) ∈ FR .
◮ We have |V1| = |V2| = q2 and |E | = q |V2| = q3.

◮ Let n := q2, then |V1| = |V2| = n and |E | ≥ n
3
2 — matches

the Basic Bound for r = k = 2.



Points-lines incidences, char 0

◮ On the other hand, over the reals a bound strictly better than
the Basic Bound holds (4

3 < 3
2):

Fact (Szémeredi-Trotter ’83)
Let R ⊆ R2 ×R2 be the incidence relation between points and lines
in R2. Then every H ∈ FR satisfies |E | = O

#
n

4
3

$
.

◮ Known to be optimal up to a constant.
◮ In fact, the same holds in ACF0:

Fact (Tóth ’03)
Let R ⊆ C2 ×C2 be the incidence relation between points and lines
in C2. Then every H ∈ FR satisfies |E | = O

#
n

4
3

$
.

◮ Reason: ACF0 is a reduct of a distal theory, while ACFp is not.



Stronger bounds for hypergraphs definable in distal
structures

◮ Generalizing a result of [Fox, Pach, Sheffer, Suk, Zahl’15] in
the semialgebraic case, we have:

Fact (C., Galvin, Starchenko’16)
Let M be a distal structure and R ⊆ Mx1 ×Mx2 a definable
relation. Then there exists some ε = ε(R , k) > 0 such that every
Kk,k -free bipartite graph H ∈ FR satisfies |E | = OR,k(n

t−ε), where
t is the exponent given by the Basic Bound.

◮ In fact, ε is given in terms of k and the size of the smallest
distal cell decomposition for R .

◮ E.g. if R ⊆ M2 ×M2 for an o-minimal M, then t − ε = 4
3

([C., Galvin, Starchenko’16]; independently, [Basu, Raz’16]).
◮ Bounds for R ⊆ Md1 ×Md2 with M |= RCF [Fox, Pach,

Sheffer, Suk, Zahl’15]; M is o-minimal [Anderson’20].



Connections to the trichotomy principle

◮ If M is sufficiently tame model-theoretically
(e.g. stable/geometric + distal expansion; or more concretely,
ACF0 or o-minimal), the exponents in Zarankiewicz bounds
appear to reflect the trichotomy principle, and detect presence
of algebraic structures (groups, fields).

◮ Instances of this principle are well-known in combinatorics —
extremal configuration for various counting problems tend to
possess algebraic structure.



Example: detecting groups and Elekes-Szabó theorem

Fact (Elekes-Szabó’12)
Let M |= ACF0 be saturated, X1,X2,X3 strongly minimal definable
sets, R ⊆ X1 × X2 × X3 has Morley rank 2, and R is Kk,k -free
under any partition of its variables into two groups. Then exactly
one of the following holds.
(a) For some ε > 0, |E | = O(n2−ε) for every H ∈ FR .
(b) there exists a definable group G of Morley rank and degree 1,

elements gi ∈ G ,αi ∈ Xi with αi and gi inter-algebraic (over
some set of parameters C ) for i ∈ [3], ᾱ = (α1,α2,α3) is
generic in R over C and g1 · g2 · g3 = 1 in G .



◮ Some more recent generalizations:
◮ [Hrushovski’13];
◮ [Bays-Breuillard’18] for ACF0 and R of any arity;
◮ [C., Starchenko’18] for M strongly minimal with a distal

expansion, R of arity 3;
◮ [C., Peterzil, Starchenko’20] M stable with distal expansion or

o-minimal, R of any arity, codimension 1.

◮ Proofs combine “stronger than basic” Zarankiewicz bounds
with variants of the group configuration theorem.

◮ In this talk — a new result showing that fields can be detected
from the exponents, at least in o-minimal structures and
working globally (i.e. working with all {FR : R definable}
simultaneously rather with a single FR).

◮ Main new ingredient — even stronger Zarankiewicz bounds in
locally modular structures.



An abstract setting: coordinate-wise monotone functions
and basic relations

◮ Let V =
!

i∈[r ] Vi and (S , <) a linearly ordered set. A
function f : V → S is coordinate-wise monotone if
◮ for any i ∈ [r ],
◮ any a = (aj)j∈[r ]\{i}, a′ = (a′j)j∈[r ]\{i} ∈

!
j ∕=i Vj ,

◮ and any b, b′ ∈ Vi

we have

f (a1, . . . , ai−1, b, ai+1, . . . , ar ) ≤ f (a1, . . . , ai−1, b
′, ai+1, . . . , ar )

⇐⇒
f (a′1, . . . , a

′
i−1, b, a

′
i+1, . . . , a

′
r ) ≤ f (a′1, . . . , a

′
i−1, b

′, a′i+1, . . . , a
′
r ).

◮ A subset X ⊆ V is basic if there exists a linearly ordered set
(S , <), a coordinate-wise monotone function f : V → S and
ℓ ∈ S such that X = {b ∈ V : f (b) < ℓ}.

◮ A set X ⊆ V has grid complexity ≤ s if X is an intersection of
V with at most s basic subsets of V .



Example: semilinear relations of bounded complexity

◮ Let W be an ordered vector space over an ordered division ring
R . A set X ⊆ W d is semilinear if X is a finite union of sets of
the form
%
x̄ ∈ W d : f1 (x̄) ≤ 0, . . . , fp (x̄) ≤ 0, fp+1 (x̄) < 0, . . . , fq (x̄) < 0

&
,

where p ≤ q ∈ N and each fi : V
d → V is a linear function

f (x1, . . . , xd) = λ1x1 + . . .+ λdxd + a

for some λi ∈ R and a ∈ V .
◮ Note that every linear function f is coordinate-wise monotone.
◮ Hence, if d = d1 + . . .+ dr , X ⊆ W d =

!
i∈[r ]W

di is of grid
complexity q.



Zarankiewicz bound for relations of bounded grid complexity

Theorem
For every integers r ≥ 2, s ≥ 0, k ≥ 2 there are α = α(r , s, k) ∈ R
and β = β(r , s) ∈ N such that: for any finite Kk,...,k -free
r -hypergraph H = (V1, . . . ,Vr ;E ) with E ⊆

!
i∈[r ] Vi of grid

complexity ≤ s we have

|E | ≤ αnr−1 (log n)β .

Moreover, we can take β(r , s) := s(2r−1 − 1).

◮ In particular, |E | = Or ,s,k,ε(n
r−1+ε) for any ε > 0.

◮ Our proof is by double recursion on the grid complexity and
the complexities of certain derived hypergraphs of smaller arity,
coordinate-wise monotone maps into linear orders are used in
the recursive step to pick the “middle point” splitting the
vertices in a balanced way.



Corollary for semilinear hypergraphs

Corollary
For every s, k ∈ N there exist some α = α(r , s, k) ∈ R and
β(r , s) := s(2r−1 − 1) satisfying the following.
Suppose that r ≥ 2, d = d1 + . . .+ dr ∈ N and R ⊆ Rd1 × . . .×Rdr

is semilinear and defined by ≤ s linear equalities and inequalities.
Then for every Kk,...,k -free r -hypergraph H ∈ FR we have

|E | ≤ αnr−1 (log n)β .



An application to incidences with polytopes, 1

◮ Applying with r = 2 we get the following:

Corollary
For every s, k ∈ N there exists some α = α(s, k) ∈ R satisfying the
following.
Let d ∈ N and H1, . . . ,Hq ⊆ Rd be finitely many (closed or open)
half-spaces in Rd . Let F be the (infinite) family of all polytopes in
Rd cut out by arbitrary translates of H1, . . . ,Hq.
For any set V1 of n1 points in Rd and any set V2 of n2 polytopes in
F , if the incidence graph on V1 × V2 is Kk,k -free, then it contains
at most αn (log n)q incidences.



An application to incidences with polytopes, 2

◮ In particular (much better than the general semialgebraic
bound):

Corollary
For any set V1 of n1 points and any set V2 of n2 (solid) boxes with
axis parallel sides in Rd , if the incidence graph on V1 × V2 is
Kk,k -free, then it contains at most Od ,k

'
n(log n)2d

(
incidences.

◮ Independently, a similar bound for the intersection graphs of
boxes [Tomon, Zakharov’20].



Dyadic rectangles and a lower bound
◮ Is the logarithmic factor necessary?
◮ We focus on the simplest case of incidences with rectangles

with axis-parallel sides in R2. The previous corollary gives the
bound Od ,k

'
n(log n)4

(
.

◮ A box is dyadic if it is the direct products of intervals of the
form [s2t , (s + 1)2t) for some integers s, t.

◮ Using a different argument, restricting to dyadic boxes we get
a stronger upper bound O

#
n log n
log log n

$
, and give a construction

showing a matching lower bound (up to a constant).
◮ [Tomon, Zakharov’20] get the upper bound Od ,k (n(log n)) in

the K2,2-free case, and use our lower bound construction to
provide a counterexample to a conjecture of [Alon, Basavaraju,
Chandran, Mathew, Rajendraprasad, 15] about the number of
edges in a graph of bounded “separation dimension”.

Problem
Does the power of log n have to grow with the dimension d?



Geometric weakly locally modular theories

◮ In our bounds, we can get rid of the logarithmic factor entirely
restricting to the family of all finite r -hypergraphs induced by
a given Kk,...,k -free relation (as opposed to all Kk,...,k -free
r -hypergraphs induced by a given relation).

◮ Recall that a complete first-order theory T is geometric if, in
any model M |= T , the algebraic closure operator satisfies the
Exchange Principle and the quantifier ∃∞ is eliminated.

◮ Hence, in a model of a geometric theory, acl defines a
well-behaved notion of independence |⌣.

◮ [Berenstein, Vassiliev] A geometric theory is weakly locally
modular if for any small subsets A,B ⊆ M |= T there exists
some small set C |⌣∅ AB such that A |⌣acl(AC)∩acl(BC)

B .

◮ E.g. any o-minimal theory T is geometric, and T is weakly
locally modular if and only if T is linear (i.e. any normal
interpretable family of plane curves in T has dimension ≤ 1).



Bound for Kk ,...,k-free relations in geometric weakly locally
modular structures

Theorem
Assume that T is a geometric, weakly locally modular theory, and
M |= T . Assume that r ∈ N≥2 and R ⊆ Mx1 × . . .×Mxr is
definable and Kk,...,k -free. Then for every H ∈ FR we have

|E | = OR(n
r−1).

Moreover, if T is distal, then can relax “Kk,...,k -free” to “does not
contain the direct product of r infinite sets”.
A related observation was made by Evans in the binary case for
certain stable theories.



Recovering a field in the o-minimal case

Fact (Peterzil, Starchenko’98)
Let M be an o-minimal saturated structure. TFAE:

1. M is not weakly locally modular;
2. there exists a real closed field definable in M.

◮ Combining this with the previous theorem, we thus get:

Corollary
Let M be an o-minimal structure. TFAE:

1. M is weakly locally modular;
2. for every definable Kk,...,k -free r -ary relation R , every H ∈ FR

satisfies |E | = O(nr−1).
3. for every definable binary relation R , if all H ∈ FR satisfy

|E | = O(n2−ε) for some ε > 0, then in fact |E | = O(n);
4. no infinite field is definable in M.


