Incidence counting and trichotomy in o-minimal structures

Artem Chernikov
(joint with A. Basit, S. Starchenko, T. Tao and C.-M. Tran)

UCLA

Seminario flotante de Lógica Matemática - Bogotá (via Zoom)
Sep 16, 2020

Hypergraphs and Zarankiewicz's problem

- We fix $r \in \mathbb{N}_{\geq 2}$ and let $H=\left(V_{1}, \ldots, V_{r} ; E\right)$ be an r-partite and r-uniform hypergraph (or just r-hypergraph) with vertex sets V_{1}, \ldots, V_{r} with $\left|V_{i}\right|=n_{i}$, (hyper-) edge set $E \subseteq \prod_{i \in[r]} V_{i}$, and $n=\sum_{i=1}^{r} n_{i}$ is the total number of vertices.
- When $r=2$, we say "bipartite graph" instead of "2-hypergraph".
- For $k \in \mathbb{N}$, let $K_{k, \ldots, k}$ denote the complete r-hypergraph with each part of size k (i.e. $V_{i}=[k]$ and $E=\prod_{i \in[k]} V_{i}$).
- H is $K_{k, \ldots, k}$-free if it does note contain an isomorphic copy of $K_{k, \ldots, k}$.
- Zarankiewicz's problem: for fixed r, k, what is the maximal number of edges $|E|$ in a $K_{k, \ldots, k}$-free r-hypergraph H ? (As a functions of n_{1}, \ldots, n_{r}).

Number of edges in a $K_{k, \ldots, k}$ - free hypergraph

- The following fact is due to [Kővári, Sós, Turán'54] for $r=2$ and [Erdős'64] for general r.

Fact (The Basic Bound)
If H is a $K_{k, \ldots, k}$-free r-hypergraph then $|E|=O_{r, k}\left(n^{r-\frac{1}{k^{r-1}}}\right)$.

- " $=O_{r, k}(-)$ " means " $\leq c \cdot-$ " for some constant $c \in \mathbb{R}$ depending only on r and k.
- So the exponent is slightly better than the maximal possible r (we have n^{r} edges in $K_{n, \ldots, n}$). A probabilistic construction in [Erdős'64] shows that it cannot be substantially improved.

Families of hypergraphs induced by definable relations

- Let $\mathcal{M}=(M, \ldots)$ be a first-order structure in a language \mathcal{L}, and let $R \subseteq M_{x_{1}} \times \ldots \times M_{x_{r}}$ be a definable relation on the product of some sorts of \mathcal{M}.
- We let \mathcal{F}_{R} be the family of all finite r-hypergraphs induced by R, i.e. hypergraphs of the form

$$
H=\left(V_{1}, \ldots, V_{r} ; R \upharpoonright V_{1} \times \ldots \times V_{r}\right)
$$

for some finite $V_{i} \subseteq M_{x_{i}}, i \in[r]$.

- Question. What properties of the structure \mathcal{M} are reflected by the Zarankiewicz-style bounds for the families of hypergraphs \mathcal{F}_{R} with R definable in \mathcal{M} ?

Point-line incidences, char p

- Let $K \models \mathrm{ACF}_{p}$ be an algebraically closed field of positive characteristic.
- Let $R \subseteq K^{2} \times K^{2}$ be the (definable) incidence relation between points and lines in K^{2}, i.e.

$$
R\left(x_{1}, x_{2} ; y_{1}, y_{2}\right) \Longleftrightarrow x_{2}=y_{1} x_{1}+y_{2} .
$$

- Note that R is $K_{2,2}$-free (there is a unique line through any two distinct points).
- Let q be a power of p, then $\mathbb{F}_{q} \subseteq K$ and we take $V_{1}=V_{2}=\left(\mathbb{F}_{q}\right)^{2}$ (i.e. the set of all points and the set of all lines in $\left.\mathbb{F}_{q}^{2}\right), E=R \upharpoonright V_{1} \times V_{2}$. Then $H=\left(V_{1}, V_{2} ; E\right) \in \mathcal{F}_{R}$.
- We have $\left|V_{1}\right|=\left|V_{2}\right|=q^{2}$ and $|E|=q\left|V_{2}\right|=q^{3}$.
- Let $n:=q^{2}$, then $\left|V_{1}\right|=\left|V_{2}\right|=n$ and $|E| \geq n^{\frac{3}{2}}$ - matches the Basic Bound for $r=k=2$.

Points-lines incidences, char 0

- On the other hand, over the reals a bound strictly better than the Basic Bound holds $\left(\frac{4}{3}<\frac{3}{2}\right)$:

Fact (Szémeredi-Trotter '83)
Let $R \subseteq \mathbb{R}^{2} \times \mathbb{R}^{2}$ be the incidence relation between points and lines in \mathbb{R}^{2}. Then every $H \in \mathcal{F}_{R}$ satisfies $|E|=O\left(n^{\frac{4}{3}}\right)$.

- Known to be optimal up to a constant.
- In fact, the same holds in ACF_{0} :

Fact (Tóth '03)
Let $R \subseteq \mathbb{C}^{2} \times \mathbb{C}^{2}$ be the incidence relation between points and lines in \mathbb{C}^{2}. Then every $H \in \mathcal{F}_{R}$ satisfies $|E|=O\left(n^{\frac{4}{3}}\right)$.

- Reason: ACF_{0} is a reduct of a distal theory, while ACF_{p} is not.

Stronger bounds for hypergraphs definable in distal structures

- Generalizing a result of [Fox, Pach, Sheffer, Suk, Zahl'15] in the semialgebraic case, we have:

Fact (C., Galvin, Starchenko'16)
Let \mathcal{M} be a distal structure and $R \subseteq M_{x_{1}} \times M_{x_{2}}$ a definable relation. Then there exists some $\varepsilon=\varepsilon(R, k)>0$ such that every $K_{k, k}$-free bipartite graph $H \in \mathcal{F}_{R}$ satisfies $|E|=O_{R, k}\left(n^{t-\varepsilon}\right)$, where t is the exponent given by the Basic Bound.

- In fact, ε is given in terms of k and the size of the smallest distal cell decomposition for R.
- E.g. if $R \subseteq M^{2} \times M^{2}$ for an o-minimal \mathcal{M}, then $t-\varepsilon=\frac{4}{3}$ ([C., Galvin, Starchenko'16]; independently, [Basu, Raz'16]).
- Bounds for $R \subseteq M^{d_{1}} \times M^{d_{2}}$ with $\mathcal{M} \models$ RCF [Fox, Pach, Sheffer, Suk, Zahl'15]; \mathcal{M} is o-minimal [Anderson'20].

Connections to the trichotomy principle

- If \mathcal{M} is sufficiently tame model-theoretically (e.g. stable/geometric + distal expansion; or more concretely, ACF_{0} or o-minimal), the exponents in Zarankiewicz bounds appear to reflect the trichotomy principle, and detect presence of algebraic structures (groups, fields).
- Instances of this principle are well-known in combinatorics extremal configuration for various counting problems tend to possess algebraic structure.

Example: detecting groups and Elekes-Szabó theorem

Fact (Elekes-Szabó'12)

Let $\mathcal{M}=$ ACF $_{0}$ be saturated, X_{1}, X_{2}, X_{3} strongly minimal definable sets, $R \subseteq X_{1} \times X_{2} \times X_{3}$ has Morley rank 2 , and R is $K_{k, k}$-free under any partition of its variables into two groups. Then exactly one of the following holds.
(a) For some $\varepsilon>0,|E|=O\left(n^{2-\varepsilon}\right)$ for every $H \in \mathcal{F}_{R}$.
(b) there exists a definable group G of Morley rank and degree 1 , elements $g_{i} \in G, \alpha_{i} \in X_{i}$ with α_{i} and g_{i} inter-algebraic (over some set of parameters C) for $i \in[3], \bar{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is generic in R over C and $g_{1} \cdot g_{2} \cdot g_{3}=1$ in G.

- Some more recent generalizations:
- [Hrushovski'13];
- [Bays-Breuillard'18] for ACF_{0} and R of any arity;
- [C., Starchenko'18] for \mathcal{M} strongly minimal with a distal expansion, R of arity 3;
- [C., Peterzil, Starchenko'20] \mathcal{M} stable with distal expansion or o-minimal, R of any arity, codimension 1.
- Proofs combine "stronger than basic" Zarankiewicz bounds with variants of the group configuration theorem.
- In this talk - a new result showing that fields can be detected from the exponents, at least in o-minimal structures and working globally (i.e. working with all $\left\{\mathcal{F}_{R}: R\right.$ definable $\}$ simultaneously rather with a single \mathcal{F}_{R}).
- Main new ingredient - even stronger Zarankiewicz bounds in locally modular structures.

An abstract setting: coordinate-wise monotone functions and basic relations

- Let $V=\prod_{i \in[r]} V_{i}$ and $(S,<)$ a linearly ordered set. A function $f: V \rightarrow S$ is coordinate-wise monotone if
- for any $i \in[r]$,
- any $a=\left(a_{j}\right)_{j \in[r] \backslash\{i\}}, a^{\prime}=\left(a_{j}^{\prime}\right)_{j \in[r] \backslash\{i\}} \in \prod_{j \neq i} V_{j}$,
- and any $b, b^{\prime} \in V_{i}$
we have

$$
\begin{aligned}
f\left(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{r}\right) & \leq f\left(a_{1}, \ldots, a_{i-1}, b^{\prime}, a_{i+1}, \ldots, a_{r}\right) \\
& \Longleftrightarrow \\
f\left(a_{1}^{\prime}, \ldots, a_{i-1}^{\prime}, b, a_{i+1}^{\prime}, \ldots, a_{r}^{\prime}\right) & \leq f\left(a_{1}^{\prime}, \ldots, a_{i-1}^{\prime}, b^{\prime}, a_{i+1}^{\prime}, \ldots, a_{r}^{\prime}\right)
\end{aligned}
$$

- A subset $X \subseteq V$ is basic if there exists a linearly ordered set $(S,<)$, a coordinate-wise monotone function $f: V \rightarrow S$ and $\ell \in S$ such that $X=\{b \in V: f(b)<\ell\}$.
- A set $X \subseteq V$ has grid complexity $\leq s$ if X is an intersection of V with at most s basic subsets of V.

Example: semilinear relations of bounded complexity

- Let W be an ordered vector space over an ordered division ring R. A set $X \subseteq W^{d}$ is semilinear if X is a finite union of sets of the form
$\left\{\bar{x} \in W^{d}: f_{1}(\bar{x}) \leq 0, \ldots, f_{p}(\bar{x}) \leq 0, f_{p+1}(\bar{x})<0, \ldots, f_{q}(\bar{x})<0\right\}$, where $p \leq q \in \mathbb{N}$ and each $f_{i}: V^{d} \rightarrow V$ is a linear function

$$
f\left(x_{1}, \ldots, x_{d}\right)=\lambda_{1} x_{1}+\ldots+\lambda_{d} x_{d}+a
$$

for some $\lambda_{i} \in R$ and $a \in V$.

- Note that every linear function f is coordinate-wise monotone.
- Hence, if $d=d_{1}+\ldots+d_{r}, X \subseteq W^{d}=\prod_{i \in[r]} W^{d_{i}}$ is of grid complexity q.

Zarankiewicz bound for relations of bounded grid complexity

Theorem

For every integers $r \geq 2, s \geq 0, k \geq 2$ there are $\alpha=\alpha(r, s, k) \in \mathbb{R}$ and $\beta=\beta(r, s) \in \mathbb{N}$ such that: for any finite $K_{k, \ldots, k-}$-free r-hypergraph $H=\left(V_{1}, \ldots, V_{r} ; E\right)$ with $E \subseteq \prod_{i \in[r]} V_{i}$ of grid complexity $\leq s$ we have

$$
|E| \leq \alpha n^{r-1}(\log n)^{\beta} .
$$

Moreover, we can take $\beta(r, s):=s\left(2^{r-1}-1\right)$.

- In particular, $|E|=O_{r, s, k, \varepsilon}\left(n^{r-1+\varepsilon}\right)$ for any $\varepsilon>0$.
- Our proof is by double recursion on the grid complexity and the complexities of certain derived hypergraphs of smaller arity, coordinate-wise monotone maps into linear orders are used in the recursive step to pick the "middle point" splitting the vertices in a balanced way.

Corollary for semilinear hypergraphs

Corollary

For every $s, k \in \mathbb{N}$ there exist some $\alpha=\alpha(r, s, k) \in \mathbb{R}$ and $\beta(r, s):=s\left(2^{r-1}-1\right)$ satisfying the following.
Suppose that $r \geq 2, d=d_{1}+\ldots+d_{r} \in \mathbb{N}$ and $R \subseteq \mathbb{R}^{d_{1}} \times \ldots \times \mathbb{R}^{d_{r}}$ is semilinear and defined by $\leq s$ linear equalities and inequalities.
Then for every $K_{k, \ldots, k}$-free r-hypergraph $H \in \mathcal{F}_{R}$ we have

$$
|E| \leq \alpha n^{r-1}(\log n)^{\beta}
$$

An application to incidences with polytopes, 1

- Applying with $r=2$ we get the following:

Corollary

For every $s, k \in \mathbb{N}$ there exists some $\alpha=\alpha(s, k) \in \mathbb{R}$ satisfying the following.
Let $d \in \mathbb{N}$ and $H_{1}, \ldots, H_{q} \subseteq \mathbb{R}^{d}$ be finitely many (closed or open) half-spaces in \mathbb{R}^{d}. Let \mathcal{F} be the (infinite) family of all polytopes in \mathbb{R}^{d} cut out by arbitrary translates of H_{1}, \ldots, H_{q}.
For any set V_{1} of n_{1} points in \mathbb{R}^{d} and any set V_{2} of n_{2} polytopes in \mathcal{F}, if the incidence graph on $V_{1} \times V_{2}$ is $K_{k, k}$-free, then it contains at most $\alpha n(\log n)^{q}$ incidences.

An application to incidences with polytopes, 2

- In particular (much better than the general semialgebraic bound):

Corollary

For any set V_{1} of n_{1} points and any set V_{2} of n_{2} (solid) boxes with axis parallel sides in \mathbb{R}^{d}, if the incidence graph on $V_{1} \times V_{2}$ is $K_{k, k}-f r e e$, then it contains at most $O_{d, k}\left(n(\log n)^{2 d}\right)$ incidences.

- Independently, a similar bound for the intersection graphs of boxes [Tomon, Zakharov'20].

Dyadic rectangles and a lower bound

- Is the logarithmic factor necessary?
- We focus on the simplest case of incidences with rectangles with axis-parallel sides in \mathbb{R}^{2}. The previous corollary gives the bound $O_{d, k}\left(n(\log n)^{4}\right)$.
- A box is dyadic if it is the direct products of intervals of the form $\left[s 2^{t},(s+1) 2^{t}\right)$ for some integers s, t.
- Using a different argument, restricting to dyadic boxes we get a stronger upper bound $O\left(n \frac{\log n}{\log \log n}\right)$, and give a construction showing a matching lower bound (up to a constant).
- [Tomon, Zakharov'20] get the upper bound $O_{d, k}(n(\log n))$ in the $K_{2,2}$-free case, and use our lower bound construction to provide a counterexample to a conjecture of [Alon, Basavaraju, Chandran, Mathew, Rajendraprasad, 15] about the number of edges in a graph of bounded "separation dimension".

Problem

Does the power of $\log n$ have to grow with the dimension d?

Geometric weakly locally modular theories

- In our bounds, we can get rid of the logarithmic factor entirely restricting to the family of all finite r-hypergraphs induced by a given $K_{k, \ldots, k}$-free relation (as opposed to all $K_{k, \ldots, k}$-free r-hypergraphs induced by a given relation).
- Recall that a complete first-order theory T is geometric if, in any model $\mathcal{M} \models T$, the algebraic closure operator satisfies the Exchange Principle and the quantifier \exists^{∞} is eliminated.
- Hence, in a model of a geometric theory, acl defines a well-behaved notion of independence \downarrow.
- [Berenstein, Vassiliev] A geometric theory is weakly locally modular if for any small subsets $A, B \subseteq \mathbb{M} \models T$ there exists some small set $C \downarrow_{\emptyset} A B$ such that $A \downarrow_{\text {acl(AC) חacl(} B C)} B$.
- E.g. any o-minimal theory T is geometric, and T is weakly locally modular if and only if T is linear (i.e. any normal interpretable family of plane curves in T has dimension ≤ 1).

Bound for $K_{k, \ldots, k-\text {-free relations in geometric weakly locally }}$ modular structures

Theorem
Assume that T is a geometric, weakly locally modular theory, and $\mathcal{M} \models T$. Assume that $r \in \mathbb{N}_{\geq 2}$ and $R \subseteq M_{x_{1}} \times \ldots \times M_{x_{r}}$ is definable and $K_{k, \ldots, k}-$ free. Then for every $H \in \mathcal{F}_{R}$ we have

$$
|E|=O_{R}\left(n^{r-1}\right)
$$

Moreover, if T is distal, then can relax " $K_{k, \ldots, k}$-free" to "does not contain the direct product of r infinite sets".
A related observation was made by Evans in the binary case for certain stable theories.

Recovering a field in the o-minimal case

Fact (Peterzil, Starchenko' 98)

Let \mathcal{M} be an o-minimal saturated structure. TFAE:

1. \mathcal{M} is not weakly locally modular;
2. there exists a real closed field definable in \mathcal{M}.

- Combining this with the previous theorem, we thus get:

Corollary

Let \mathcal{M} be an o-minimal structure. TFAE:

1. \mathcal{M} is weakly locally modular;
2. for every definable $K_{k, \ldots, k}$-free r-ary relation R, every $H \in \mathcal{F}_{R}$ satisfies $|E|=O\left(n^{r-1}\right)$.
3. for every definable binary relation R, if all $H \in \mathcal{F}_{R}$ satisfy $|E|=O\left(n^{2-\varepsilon}\right)$ for some $\varepsilon>0$, then in fact $|E|=O(n)$;
4. no infinite field is definable in \mathcal{M}.
