Model theory and hypergraph regularity

Artem Chernikov

UCLA

AMS Special Session on Recent Advances in Regularity Lemmas Baltimore, US, Jen 15, 2019

Model theory and combinatorics

- Infinitary combinatorics is one of the essential ingredients of the classification program in model theory.
- A well investigated theme: close connection of the combinatorial properties of a family of finite structures with the model theory of its infinite limit (smoothly approximable structures, homogeneous structures, etc.).
- More recent trend: applications of (generalized) stability-theoretic techniques for extremal combinatorics of "tame" finite structures.
- Parallel developments in combinatorics, surprisingly well aligned with the model-theoretic approach and dividing lines in Shelah's classification.
- We survey some of these results (group-theoretic regularity lemmas, again closely intertwined with the study of definable groups in model theory, will be discussed in the other talks).

Szemerédi's regularity lemma, standard version

- By a graph G = (V, E) we mean a set G with a symmetric subset E ⊆ V². For A, B ⊆ V we denote by E(A, B) the set of edges between A and B.
- [Szemerédi regularity lemma] Let G = (V, E) be a finite graph and $\varepsilon > 0$. There is a partition $V = V_1 \cup \cdots \cup V_M$ into disjoint sets for some $M < M(\varepsilon)$, where the constant $M(\varepsilon)$ depends on ε only, real numbers $\delta_{ij}, i, j \in [M]$, and an exceptional set of pairs $\Sigma \subseteq [M] \times [M]$ such that

$$\sum_{(i,j)\in\Sigma} |V_i| |V_j| \le \varepsilon |V|^2$$

and for each $(i,j) \in [M] \times [M] \setminus \Sigma$ we have

$$||E(A,B)| - \delta_{ij}|A||B|| < \varepsilon |V_i||V_j|$$

for all $A \subseteq V_i$, $B \subseteq V_j$.

 Regularity lemma can naturally be viewed as a more general measure theoretic statement. Context: ultraproducts of finite graphs with Loeb measure

- For each i ∈ N, let G_i = (V_i, E_i) be a graph with |V_i| finite and lim_{i→∞} |V_i| = ∞.
- \blacktriangleright Given a non-principal ultrafilter ${\mathcal U}$ on ${\mathbb N},$ the ultraproduct

$$(V, E) = \prod_{i \in \mathbb{N}} (V_i, E_i)$$

is a graph on the set V of size continuum.

- Given k ∈ N and an internal set X ⊆ V^k (i.e. X = ∏_U X_i for some X_i ⊆ V^k_i), we define µ^k(X) := lim_U |X_i|/|V_i|^k. Then:
 - μ^k is a finitely additive probability measure on the Boolean algebra of internal subsets of V^k,
 - extends uniquely to a countably additive measure on the σ -algebra \mathcal{B}_k generated by the internals subsets of V^k (using saturation).
- ► Then (V, B_k, µ^k) is a graded probability space, in the sense of Keisler (satisfies Fubini, etc.).
- ► Many other examples, with V = M some first-orders structure and B_k the definable subsets of M^k.

Szemerédi's regularity lemma as a measure-theoretic statement: Elek-Szegedy, Tao, Towsner, ...

- Via orthogonal projection in L² onto the subspace of B₁ × B₁ ⊊ B₂-measurable functions (conditional expectation) we have:
- [Regularity lemma] Given a graded probability space (V, B_k, μ^k), E ∈ B₂ and ε > 0, there is a decomposition of the form

$$1_{E} = \mathit{f}_{\mathsf{str}} + \mathit{f}_{\mathsf{qr}} + \mathit{f}_{\mathsf{err}},$$

where:

► $f_{\text{str}} = \sum_{i \leq n} d_i 1_{A_i}(x) 1_{B_i}(y)$ for some $M = M(\varepsilon) \in \mathbb{N}$, $A_i, B_i \in \mathcal{B}_1$ and $d_i \in [0, 1]$ (so f_{str} is $\mathcal{B}_1 \times \mathcal{B}_1$ -simple),

•
$$f_{\text{err}}: V^2 \rightarrow [-1, 1] \text{ and } \int_{V^2} |f_{\text{err}}|^2 d\mu^2 < \varepsilon$$
,

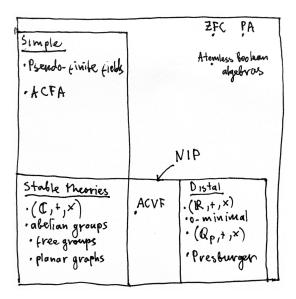
- f_{qr} is quasi-random: for any $A, B \in \mathcal{B}_1$ we have $\int_{V^2} 1_A(x) 1_B(y) f_{qr}(x, y) d\mu^2 = 0.$
- Hypergraph regularity lemma: via a sequence of conditional expectations on nested algebras.

Better regularity lemmas for tame structures

Some features for general graphs:

- [Gowers] M(ε) grows as an exponential tower of 2's of height polynomial in ¹/_ε.
- Bad pairs are unavoidable in general (half-graphs).
- Quasi-randomness (f_{qr}) is unavoidable in general.
- Turns our that these issues are closely connected to certain properties of first-order theories from Shelah's classification (we'll try to present them in the most "finitary" way possible).

Classification



VC-dimension and NIP

- Given E ⊆ V² and x ∈ V, let E_x = {y ∈ V : (x, y) ∈ E} be the x-fiber of E.
- A graph $E \subseteq V^2$ has *VC-dimension* $\geq d$ if there are some $y_1, \ldots, y_d \in V$ such that, for every $S \subseteq \{y_1, \ldots, y_d\}$ there is $x \in V$ so that $E_x \cap \{y_1, \ldots, y_d\} = S$.
- **Example.** If E_i is a random graph on V_i and $(V, E) = \prod_{\mathcal{U}} (V_i, E_i)$, then VC $(E) = \infty$.
- ► Example. If E is definable in an NIP theory (e.g. E is semialgebraic, definable in Q_p, ACVF, etc.), then VC (E) < ∞.</p>
- ▶ [Sauer-Shelah] If VC (E) ≤ d, then for any $Y \subseteq V$, |Y| = n we have $|\{S \subseteq Y : \exists x \in V, S = Y \cap E_x\}| = O(n^d)$.

Regularity lemma for graphs of finite VC-dimension

- ► [Lovasz, Szegedy] Let $(V, \mathcal{B}_k, \mu^k)$ be given by an ultraproduct of finite graphs. If $E \in \mathcal{B}_2$ and VC $(E) = d < \infty$, then:
 - ► for any $\varepsilon > 0$, there is some $E' \in \mathcal{B}_1 \times \mathcal{B}_1$ such that $\mu^2 (E\Delta E') < \varepsilon$,
 - ▶ the number of rectangles in E' is bounded by a polynomial in $\frac{1}{\varepsilon}$ of degree $O(d^2)$.
- So the quasi-random term disappears from the decomposition, and density on each regular pair is 0 or 1.
- Proof sketch:
 - ▶ given $\varepsilon > 0$, by the *VC-theorem* can find $x_1, \ldots, x_n \in V$ such that: for every $y, y' \in V$, $\mu(E_y \Delta E_{y'}) > \varepsilon \implies x_i \in E_y \Delta E_{y'}$ for some *i*;
 - ► for each $S \subseteq \{x_1, ..., x_n\}$, let $B_S := \left\{ y \in V : \bigwedge_{i \leq n} (x_i, y) \in E \leftrightarrow x_i \in S \right\};$
 - then $\forall y_1, y_2 \in B_S$, $\mu(E_{y_1}\Delta E_{y_2}) < \varepsilon$;
 - ▶ for each *S*, pick some $b_S \in B_S$, and let $E' := \bigcup E_{b_S} \times B_S \in \mathcal{B}_1 \times \mathcal{B}_1$.
 - Then $\mu(E\Delta E') < \varepsilon$.
 - ▶ The number of different sets B_S is polynomial by Sauer-Shelah.

For hypergraphs and other measures

- We say that E ⊆ V^k satisfies VC (E) < ∞ if viewing E as a binary relation on V × V^{k-1}, for any permutation of the variables, has finite VC-dimension.
- [C., Starchenko] Let $(V, \mathcal{B}_k, \mu^k)$ be a graded probability space, $E \in \mathcal{B}_k$ with μ a *finitely approximable* measure and μ^k given by its free product, and VC $(E) \leq d$. Then for any $\varepsilon > 0$ there is some $E' \in B_1 \times \ldots \times B_1$ such that $\mu^k (E\Delta E') < \varepsilon$ and the number of rectangles needed to define E' is a poly in $1/\varepsilon$ of degree $4(k-1)d^2$.
- ► Examples of fap measures on definable subsets, apart from the ultraproduct of finite ones: Lebesgue measure on [0, 1] in ℝⁿ; the Haar measure in Q_p normalized on a compact ball.
- Fox, Pach, Suk] improved bound to O(d).

Stable regularity lemma

- Turns out that half-graphs is the only reason for irregular pairs.
- ▶ A relation $E \subseteq V \times V$ is *d*-stable if there are no $a_i, b_i \in V$, i = 1, ..., d, such that $(a_i, b_j) \in E \iff i \leq j$.
- A relation E ⊆ V^k is d-stable if it is d-stable viewed as a binary relation V × V^{k-1} for every partition of the variables.
- ▶ [Malliaris, Shelah] Regularity lemma for finite *k*-stable graphs.
- [Malliaris, Pillay] A new proof for graphs and arbitrary Keisler measures. However, their argument doesn't give a polynomial bound on the number of pieces.
- Elaborating on these results, we have:

Stable regularity lemma

Theorem [C., Starchenko] Let $(V, \mathcal{B}_k, \mu^k)$ be a graded probability space, and let $E \in \mathcal{B}_k$ be d-stable. Then there is some c = c(d) such that: for any $\varepsilon > 0$ there are partitions $\mathcal{P}_i \subseteq \mathcal{B}_1, i = 1, \dots, k$ with $\mathcal{P}_i = \{A_{1,i}, \ldots, A_{M,i}\}$ satisfying 1. $M < (\frac{1}{2})^{c}$; 2. for all $(i_1, \ldots, i_k) \in \{1, \ldots, M\}^k$ and $A'_1 \subseteq A_{1,i_1}, \ldots, A'_k \subseteq A_{k,i_k}$ from \mathcal{B}_1 we have either $d_F(A'_1,\ldots,A'_k) < \varepsilon$ or $d_F(A'_1,\ldots,A'_k) > 1-\varepsilon$.

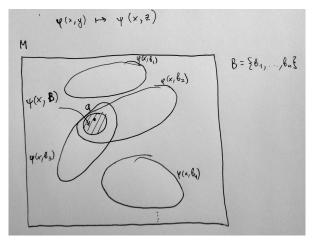
- So, there are no irregular tuples!
- Independently, Ackerman-Freer-Patel proved a variant of this for finite hypergraphs (and more generally, structures in finite relational languages).

Distal case, 1

- The class of *distal theories* was introduced by [Simon, 2011] in order to capture the class of "purely unstable" NIP structures.
- The original definition is in terms of a certain property of indiscernible sequences.
- [C., Simon, 2012] give a combinatorial characterization of distality:

Distal structures

▶ **Theorem/Definition** A structure *M* is *distal* if and only if for every definable family $\{\phi(x, b) : b \in M^d\}$ of subsets of *M* there is a definable family $\{\psi(x, c) : c \in M^{kd}\}$ such that for every $a \in M$ and every finite set $B \subset M^d$ there is some $c \in B^k$ such that $a \in \psi(x, c)$ and for every $a' \in \psi(x, c)$ we have $a' \in \phi(x, b) \Leftrightarrow a \in \phi(x, b)$, for all $b \in B$.



Examples of distal structures

- ▶ All (weakly) *o*-minimal structures, e.g. $M = (\mathbb{R}, +, \times, e^x)$.
- Presburger arithmetic.
- Any *p*-minimal theory with Skolem functions is distal. E.g. (ℚ_p, +, ×) for each prime *p* is distal (e.g. due to the *p*-adic cell decomposition of Denef).
- The differential field of transseries.

Distal regularity lemma

Theorem

[C., Starchenko] Let $(V, \mathcal{B}_k, \mu^k)$ be a graded probability space with \mathcal{B}_k given by the definable sets in a distal structure M. For every definable $E(x_1, \ldots, x_k)$ there is some c = c(E) such that: for any $\varepsilon > 0$ and any finitely approximable measure μ there are partitions $V = \bigcup_{j < K} A_{i,j}$ with sets from \mathcal{B}_1 and a set $\Sigma \subseteq \{1, \ldots, M\}^k$ such that

- 1. $M \leq \left(\frac{1}{\varepsilon}\right)^{c}$; 2. $\mu^{k} \left(\bigcup_{(i_{1},...,i_{k})\in\Sigma} A_{1,i_{1}} \times \ldots \times A_{k,i_{k}}\right) \geq 1 - \varepsilon$; 3. for all $(i_{1},...,i_{k}) \in \Sigma$, either $(A_{1,i_{1}} \times \ldots \times A_{k,i_{k}}) \cap E = \emptyset$ or $A_{1,i_{1}} \times \ldots \times A_{k,i_{k}} \subseteq E$.
 - We can formulate this for general graded probability spaces, but this would require some additional definitions.
 - Without the definability of the partition clause passes to reducts, so is satisfied by many stable graphs.

Semialgebraic case

- This generalizes the very important semialgebraic case due to [Fox, Gromov, Lafforgue, Naor, Pach, 2012] and [Fox, Pach, Suk, 2015].
- But also applies e.g. to graphs definable in the *p*-adics, with respect to the Haar measure.
- Many questions about the optimality of the bounds remain, in the o-minimal and the p-adic cases in particular.

2-dependence

- In the hypergraph regularity lemma, we would like to characterize the arity at which the quasi-random components of the decomposition become trivial.
- The following generalization of VC-dimension is implicit in Shelah's definition of 2-dependent theories.
- ► $E \subseteq V^3$ has VC_2 -dimension $\geq d$ if there is a rectangle $y_1, \ldots, y_d, z_1, \ldots, z_d \in V$ such that: for every $S \subseteq \{y_1, \ldots, y_d\} \times \{z_1, \ldots, z_d\}$ there is some $x \in V$ so that $E_x \cap (\{y_1, \ldots, y_d\} \times \{z_1, \ldots, z_d\}) = S.$
- **Example:** if *E* is an ultraproduct of random finite 3-hypergraphs, then $VC_2(E) = \infty$.
- Example. Let F, G, H ⊆ V² be ultraproducts of random finite graphs and let E consist of those (x, y, z) for which the odd number of pairs (x, y), (x, z), (y, z) belongs to F, G, H, respectively. Then VC₂(E) < ∞.</p>
- ► Example. For any relation E (x, y, z) definable in a smoothly approximable structure, VC₂ (E) < ∞.</p>

Towards a regularity lemma

- An analogue of Sauer-Shelah lemma:
- [C., Palacin, Takeuchi] If VC₂(E) ≤ d then ∃ε(d) > 0 such that for any Y, Z ⊆ V, |Y| = |Z| = n we have |{S ⊆ Y × Z : ∃x ∈ V, S = (Y × Z) ∩ E_x}| ≤ 2^{n^{2-ε}} (close to optimal).
- A generalization of the VC-theorem? Not so clear what it should mean...

Regularity for k-dependent hypergraphs

 \blacktriangleright Let $\mathcal{B}_{3,2}\subseteq \mathcal{B}_3$ be the algebra generated by "cylindrical" sets of the form

$$\left\{(x,y,z)\in V^3:(x,y)\in A\wedge(x,z)\in B\wedge(y,z)\in C
ight\}$$

for some $A, B, C \in \mathcal{B}_2$. Again, $\mathcal{B}_{3,2} \subsetneq \mathcal{B}_3$.

Theorem

[C., Towsner] Let $(V, \mathcal{B}_k, \mu^k)$ be a graded probability space given by an ultraproduct of finite sets. If $E \in \mathcal{B}_3$ has finite VC_2 -dimension, then for any $\varepsilon > 0$ there is some $E' \in \mathcal{B}_{3,2}$ such that $\mu^3(E\Delta E') < \varepsilon$.

▶ More generally, we have: for any n > k and any E ∈ B_n with finite VC_k-dimension (under any partition of the variables into k + 1 groups), E belongs to B_{n,k}.