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Abstracts

Model-theoretic Elekes-Szabó

Artem Chernikov

(joint work with Ya’acov Peterzil and Sergei Starchenko)

1. Introduction

Erdős and Szemerédi [1] observed the following sum-product phenomenon: there
is some c ∈ R>0 such that for any finite set A ⊆ R, max{|A+A|, |A ·A|} ≥ |A|1+c.
Later, Elekes and Rónyai [2] generalized this by showing that for any polynomial
f(x, y) we must have |f(A × A)| ≥ |A|1+c, unless f is either additive or mul-
tiplicative (i.e. of the form g(h(x) + i(y)) or g(h(x) · i(y)) for some univariate
polynomials g, h, i respectively). Elekes and Szabó [3] provide a conceptual gener-
alization, showing that for any irreducible polynomial F (x, y, z) depending on all
of its coordinates such that its set zero set has dimension 2, if F has a maximal
possible number of zeroes n

2 on finite n × n × n grids, then F is in a finite-to-
finite correspondence with the graph of multiplication of an algebraic group (in
the special case above, either the additive or the multiplicative group of the field).
Recently, several generalizations were obtained for relations of higher dimension
and arity that we review in the next section. Here we announce a generalization of
this result to hypergraphs of any arity and dimension definable in a large class of
stable structures which includes differentially closed fields and compact complex
manifolds, as well as for arbitrary o-minimal structures (to appear in [4]).

2. Elekes-Szabó principle

We fix a structure M, definable sets X1, . . . , Xs, and a definable relation Q ⊆
X̄ = X1 × . . . ×Xs. We write Ai ⊆n Xi if Ai ⊆ Xi with |Ai| ≤ n. By a grid on

X̄ we mean a set Ā ⊆ X̄ with Ā = A1 × . . . × As and Ai ⊆ Xi. By an n-grid on

X̄ we mean a grid Ā = A1 × . . .×As with Ai ⊆n Xi.

2.1. Fiber-algebraic relations. A relation Q ⊆ X̄ is fiber-algebraic if there is
some d ∈ N such that for any 1 ≤ i ≤ s we have

M |= ∀x1 . . . xi−1xi+1 . . . xs∃≤d
xi Q (x1, . . . , xs) .

For example, if Q ⊆ X1 ×X2 ×X3 is fiber-algebraic, then for any Ai ⊆n Xi we
have |Q ∩A1 ×A2 ×A3| = dn

2. Conversely, let Q ⊆ C3 be given by x1+x2−x3 =

0, and let A1 = A2 = A3 = {0, . . . , n− 1}. Then |Q ∩A1 ×A2 ×A3| = n(n+1)
2 =

Ω
!
n
2
"
. This indicates that the upper and lower bounds match for the graph of

addition in an abelian group (up to a constant) — and the Elekes-Szabó principle
suggests that in many situations this is the only possibility. Before making this
precise, we introduce some notation.
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2.2. Grids in general position. From now on we will assume thatM is equipped
with some notion of integer-valued dimension on definable sets, to be specified
later. A good example to keep in mind is Zariski dimension on constructible
subsets of M := (C,+,×) |= ACF0, the theory of algebraically closed fields of
characteristic 0.

Let X be an M-definable set and let F be a (uniformly) M-definable family
of subset of X. For l ∈ N we say that a set A ⊆ X is in (F , l)-general position if
|A ∩ F | ≤ l for every F ∈ F with dim(F ) < dim(X).

Let Xi, i = 1, . . . , s, be M-definable sets. Let F̄ = (F1, . . . ,Fs), where Fi is
a definable family of subsets of Xi. For l ∈ N we say that a grid Ā on X̄ is in
(F̄ , l)-general position if each Ai is in (Fi, l)-general position.

For example, if X is strongly minimal and F is any definable family of subsets
of X, then for any large enough l = l(F) ∈ N, every A ⊆ X is in (F , l)-general
position. On the other hand, let X = C2 and let Fd be the family of algebraic
curves of degree d. If l < d, then any set A ⊆ X is not in (Fd, l)-general position.

2.3. Generic correspondence with group multiplication. Let Q ⊆ X̄ be
a definable relation and (G, ·) a type-definable group in Meq which is connected
(i.e. G = G

0). We say that Q is in a generic correspondence with multiplication

in G if there exist elements g1, . . . , gs ∈ G(M), where M is a saturated elementary
extension of M, such that:

(1) g1 · . . . · gs = e;
(2) g1, . . . , gs−1 are independent generics in G over M, i.e. each gi doesn’t

belong to any definable set of dimension smaller than G definable over
M ∪ {g1, . . . , gi−1, gi+1, . . . , gs−1};

(3) For each i = 1, . . . , s there is a generic element ai ∈ Xi interalgebraic with
gi over M, such that |= Q(a1, . . . , as).

If Xi are irreducible, then (3) holds for all g1, . . . , gs ∈ G satisfying (1) and
(2), providing a generic finite-to-finite correspondence between Q and the graph
of (s− 1)-fold multiplication in G.

2.4. The Elekes-Szabó principle. Let X1, . . . , Xs be definable sets in M with
dim(Xi) = k and Xi irreducible (i.e. can’t be split into two disjoint definable sets
of full dimension). We say that they satisfy the Elekes-Szabó principle if for any
irreducible fiber-algebraic definable relation Q ⊆ X̄, one of the following holds:

(1) Q admits power saving: there exist some ε ∈ R>0 and some definable
families Fi on Xi such that: for any l ∈ N and any n-grid Ā ⊆ X̄ in
(F̄ , l)-general position, we have |Q ∩ Ā| = Ol(n

(s−1)−ε);
(2) Q is in a generic correspondence with multiplication in a type-definable

abelian group of dimension k.

Below are the previously known cases of the Elekes-Szabó principle:

• [3] M |= ACF0, s = 3, k arbitrary;
• [5] M |= ACF0, s = 4, k = 1;
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• [6] M |= ACF0, s and k arbitrary, recongized that the arising groups are
abelian (they work with a more relaxed notion of general position and
arbitrary codimension, however no bounds on ε);

• [7] M is any strongly minimal structure interpretable in a distal structure,
s = 3, k = 1.

Theorem 1. [4] The Elekes-Szabó principle holds in the following two cases:

(1) M is a stable structure interpretable in a distal structure, with respect to

p-dimension (see below).

(2) M is an o-minimal structure, with respect to the topological dimension

(in this case, on a type-definable generic subset of X̄, we get a definable

coordinate-wise bijection of Q with the graph of multiplication of G).

Here we only discuss the stable case (1). Examples of structures satisfying the
assumption of (1) are models of ACF0, DCF0,m (i.e. differentially closed fields with
m commuting derivations), CCM (the theory of compact complex manifolds). Our
method provides explicit bounds on ε for power saving in these cases.

3. Ingredients of the proof in the stable case

3.1. p-dimension. We choose a saturated elementary extension M of a stable

structure M. By a p-pair we mean a pair (X, pX), where X is an M-definable set
and pX ∈ S(M) is a complete stationary type on X. Assume we are given p-pairs
(Xi, pi) for 1 ≤ i ≤ s. We say that a definable Y ⊆ X1 × . . . × Xs is p-generic
if Y ∈ p1 ⊗ . . . ⊗ ps|M. Finally, we define the p-dimension via dimp(Y ) ≥ k if for
some projection π of X̄ onto k components, π(Y ) is p-generic. This p-dimension
enjoys definability and additivity properties crucial for our arguments that may
fail for Morley rank in general ω-stable theories such as DCF0. However, if X is
a definable subset of finite Morley rank k and degree one, taking pX to be the
unique type on X of Morley rank k, we have that k · dimp = MR, and Theorem
1(1) implies that the Elekes-Szabó principle holds with respect to Morley rank in
this case.

3.2. Distality and incidence bounds. Distal structures were introduced in [8],
and connections with combinatorics and generalized incidence bounds were estab-
lished in [9, 10, 11]. The key result for us is the following generalized “Szemerédi-
Trotter” theorem:

Theorem 2. [11, 4] If E ⊆ U×V is a binary relation definable in a distal structure

and E is Ks,2-free for some s ∈ N, then there is some δ > 0 such that: for all

A ⊆n U,B ⊆n V we have |E ∩A×B| = O(n
3
2−δ).

3.3. Recovering groups from abelian m-gons. Working in a stable theory,
an m-gon over A is a tuple a1, . . . , am such that any m − 1 of its elements are
independent over A, and any element in it is in the algebraic closure of the other
ones and A. We say that an m-gon is abelian if, after any permutation of its
elements, we have a1a2 |⌣aclA(a1a2)∩aclA(a3...am)

a3 . . . am.
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If (G, ·) is a type-definable abelian group, g1, . . . , gm−1 are independent generics
in G and gm := g1 · . . . · gm−1, then g1, . . . , gm is an abelian m-gon (associated to
G). Conversely,

Theorem 3. [4] Let a1, . . . , am be an abelian m-gon. Then there is a type-definable

(in Meq
) connected abelian group (G, ·) and an abelian m-gon g1, . . . , gm associated

to G, such that after a base change each gi is inter-algebraic with ai.

An analogous result was obtained independently by Hrushovski.

3.4. Distinction of cases in Theorem 1. We may assume dim(Q) = s−1, and
let ā = (a1, . . . , as) be a generic tuple in Q over M. As Q is fiber-algebraic, ā is
an s-gon over M.

Theorem 4. [4] One of the following is true:

(1) For u = (a1, a2) and v = (a3, . . . , as) we have u |⌣aclM (u)∩aclM (v)
v.

(2) Q, as a relation on U × V , for U = X1 ×X2 and V = X3 × . . .×Xs, is a

“pseudo plane”.

In case (2) the incidence bound from Theorem 2 can be applied inductively to
obtain power saving for Q. Thus we may assume that that for any permutation
of {1, . . . , s} we have

a1a2 |⌣aclM (a1a2)∩aclM (a3...as)
a3 . . . as,

i.e. the s-gon ā is abelian, and Theorem 3 can be applied to establish generic
correspondence with a type-definable abelian group.
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Preprint, arXiv:1801.09301 (2018).

[8] P. Simon, Distal and non-distal NIP theories, Annals of Pure and Applied Logic 164.3

(2013): 294-318.

[9] A. Chernikov, P. Simon, Externally definable sets and dependent pairs II, Transactions of

the American Mathematical Society 367.7 (2015): 5217-5235.

[10] A. Chernikov, S. Starchenko. Regularity lemma for distal structures, Journal of the European

Mathematical Society 20.10 (2018): 2437-2466.

[11] A. Chernikov, D. Galvin, S. Starchenko, Cutting lemma and Zarankiewicz’s problem in

distal structures, Preprint, arXiv:1612.00908 (2016).


