MODEL THEORY AND COMBINATORICS: CHAPTER 2 (DRAFT)

ARTEM CHERNIKOV

Last update: October 3, 2017

Contents

1. Ultrafilters, ultraproducts and ultralimits 2
1.1. Filters and ultrafilters 2
1.2. Ultralimits 2
1.3. Some model-theoretic notation 3
1.4. Ultraproducts of first-order structures 3
1.5. References 6
2. Graph regularity and measures on ultraproducts 6
2.1. Szemerédi's regularity lemma 6
2.2. Finitely additive measures $\quad 7$
2.3. Obtaining countable additivity $\quad 9$
$\begin{array}{lll}2.4 . & \text { Integration for charges (signed f.a. measures) } 10\end{array}$
2.5. Measure-theoretic regularity 11
2.6. References 13
3. Hypergraph removal 13
3.1. Removal lemmas 13
3.2. Measure-theoretic hypergraph removal 14
3.3. Szemerédi's theorem on arithmetic progressions 21
3.4. References 22
4. Regularity lemma for hypergraphs of finite VC-dimension 22
4.1. Bounds in the regularity lemma 22
4.2. VC-dimension 23
4.3. The VC-theorem, ε-approximations and ε-nets 25
4.4. Canonical products of finitely approximable measures 27
4.5. Measure-theoretic regularity for hypergraphs of finite VC-dimension 30
4.6. References 34
5. Regularity lemma for stable hypergraphs 34

References 38

$6 . ~ T a m e ~ h y p e r g r a p h ~ r e m o v a l ~$	38
6.1.	38

6.1. Graph removal in stable/NIP 38

References 38

1. Ultrafilters, ultraproducts and ultralimits

1.1. Filters and ultrafilters. Let I be a set, and let $\mathcal{P}(I)$ denote the set of all subsets of I. Given a subset $S \subseteq I$, we denote by $\neg S$ the complement of S in I, i.e. $\neg S:=I \backslash S$.
Definition 1.1. A filter on I is a collection \mathcal{F} of subsets of I such that:
(1) $I \in \mathcal{F}, \emptyset \notin \mathcal{F}$,
(2) $A, B \in \mathcal{F} \Longrightarrow A \cap B \in \mathcal{F}$,
(3) $A \in \mathcal{F}$ and $A \subseteq B \subseteq I \Longrightarrow B \in \mathcal{F}$.

It follows from the definition that $I \in \mathcal{F}$ and that the intersection of finitely many sets in \mathcal{F} is also in \mathcal{F}. Intuitively, one can think of a filter as a collection of "large" subsets of I.
Example 1.2. (1) Assume that I is an infinite set. Then $\mathcal{F}=\{\neg S: S \subseteq I$ finite $\}$ is the Fréchet filter on I.
(2) Fix a non-empty set $A \subseteq I$. Then $\mathcal{F}=\{S \subseteq I: A \subseteq S\}$ is the principal filter generated by A.

Definition 1.3. We say that a filter \mathcal{U} on I is an ultrafilter if for every set $S \subseteq I$, either $S \in \mathcal{U}$ or $\neg S \in \mathcal{U}$.
Fact 1.4. For any filter \mathcal{F} on I there is an ultrafilter \mathcal{U} on I with $\mathcal{F} \subseteq \mathcal{U}$.
This fact is equivalent (modulo ZFC) to a weak form of the axiom of choice called the Boolean prime ideal theorem.

Remark 1.5. (1) Ultrafilters are precisely the maximal filters (under inclusion).
(2) Assume that \mathcal{U} is an ultrafilter on $I, S \in \mathcal{U}$ and $S=S_{1} \cup \ldots \cup S_{n}$. Then $S_{i} \in \mathcal{U}$ for at least one $1 \leq i \leq n$.
(3) Note that if $a \in I$, then the principal filter generated by $\{a\}$ is an ultrafilter.
(4) An ultrafilter \mathcal{U} on I is non-principal if and only if it extends the Fréchet filter on I. In particular, every infinite set admits a non-principal ultrafilter on it.
(5) In fact, for any infinite set I there are $2^{2^{|I|}}$ different non-principal ultrafilters on it.
(6) For any infinite set $S \subseteq \mathbb{N}$, there is an ultrafilter \mathcal{U} on \mathbb{N} with $S \in \mathcal{U}$.

Non-principal ultrafilters provide a tool for finding a "generic" object associated to an infinite collection of objects. We will need two instances of this idea.
1.2. Ultralimits. Let (X, d) be a metric space, and let \mathcal{U} be a non-principal ultrafilter on \mathbb{N}.

Definition 1.6. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of points in X. The point $x \in X$ is called the ultralimit of x_{n} (relatively to \mathcal{U}), denoted $x=\lim _{\mathcal{U}} x_{n}$, if for every $\varepsilon>0$ we have $\left\{n \in \mathbb{N}: d\left(x_{n}, x\right) \leq \varepsilon\right\} \in \mathcal{U}$.
Remark 1.7. (1) If an ultralimit of a sequence of points exists, then it is unique.
(2) If $x=\lim _{n \rightarrow \infty} x_{n}$ in the usual sense of metric limits, then $x=\lim _{\mathcal{U}} x_{n}$ (uses that \mathcal{U} is non-principal).
Fact 1.8. If (X, d) is compact and \mathcal{U} is a non-principal ultrafilter on \mathbb{N}, then any sequence of points in X has an ultralimit relatively to \mathcal{U}.

Corollary 1.9. Any bounded sequence $\left(x_{n}: n \in \mathbb{N}\right)$ of real numbers has a welldefined ultralimit in \mathbb{R} relatively to any non-principal ultrafilter on \mathcal{U} (as closed intervals are compact).

Of course, this limit depends on the ultrafilter. For example, let $x_{n}=0$ if n is even and $x_{n}=1$ if n is odd. Then $\lim _{\mathcal{U}} x_{n}=0$ for any ultrafilter \mathcal{U} on \mathbb{N} containing the set of even numbers, and $\lim _{\mathcal{U}} x_{n}=1$ for any ultrafilter on \mathbb{N} containing the set of odd numbers.

1.3. Some model-theoretic notation.

Definition 1.10. A (first-order) structure

$$
\mathcal{M}=\left(M, R_{1}, R_{2}, \ldots, f_{1}, f_{2}, \ldots, c_{1}, c_{2}, \ldots\right)
$$

consists of an underlying set M, together with some distinguished relations R_{i} (subsets of $M^{n_{i}}, n_{i} \in \mathbb{N}$), functions $f_{i}: M^{n_{i}} \rightarrow M$, and constants c_{i} (distinguished elements of M). We refer to the collection of all these relations, function symbols and constants as the signature of \mathcal{M}, or the language of \mathcal{M}.

Example 1.11. A group can be naturally viewed as a structure $\left(G, \cdot,{ }^{-1}, 1\right)$, as well as a ring $(R,+, \cdot, 0,1)$, an ordered set $(X,<)$, a graph (X, E), etc.

Definition 1.12. A formula is an expression of the form

$$
\psi\left(y_{1}, \ldots, y_{m}\right)=\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n} \phi\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right)
$$

where ϕ is given by a boolean combination of (superpositions of) the basic relations and functions (and y_{1}, \ldots, y_{n} are the free variables of ψ).

We denote the set of all formulas by \mathcal{L}. We also consider formulas with parameters, i.e. expressions of the form $\psi(\bar{y}, \bar{b})$ with $\psi \in \mathcal{L}$ and \bar{b} a tuple of elements in M. Given a set of parameters $B \subseteq M$, we let $\mathcal{L}(B)=\left\{\psi(\bar{y}, \bar{b}): \psi \in L, \bar{b} \in B^{|\bar{b}|}\right\}$. If $\psi(\bar{y}) \in \mathcal{L}(B)$ is satisfied by a tuple \bar{a} of elements of M, we denote it as $\mathcal{M} \models \psi(\bar{a})$ or $a \models \psi(\bar{y})$, and we call \bar{a} a solution of ψ. If $\Psi(\bar{y})$ is a set of formulas, we write $a \models \Psi(\bar{y})$ to denote that $a \models \psi(\bar{y})$ for all $\psi \in \Psi$. Given a set $A \subseteq M^{|x|}$, we denote by $\psi(A)$ the set $\left\{a \in A^{|x|}: \mathcal{M} \models \psi(A)\right\}$ of all solutions of ψ in A. We say that $X \subseteq M^{n}$ is an A-definable set if there is some $\psi(\bar{x}) \in \mathcal{L}(A)$ such that $X=\psi\left(M^{n}\right)$. If ψ has no free variables, then it is called a sentence, and it is either true or false in \mathcal{M}. By the theory of \mathcal{M}, or $\operatorname{Th}(\mathcal{M})$, we mean the collection of all sentences that are true in M.
1.4. Ultraproducts of first-order structures. Let \mathcal{L} be a language and I an infinite set. Suppose that \mathcal{M}_{i} is an \mathcal{L}-structure for each $i \in I$. Let \mathcal{U} be an ultrafilter on I. We define a new structure $\mathcal{M}=\prod \mathcal{M}_{i} / \mathcal{U}$, which we call the ultraproduct of the \mathcal{M}_{i} modulo \mathcal{U}.

- Define a relation \sim on $X:=\prod_{i \in I} M_{i}$ by: given $a=(a(i): i \in I), b=(b(i): i \in I)$ in $X, a \sim b$ if and only if $\{i \in I: a(i)=b(i)\} \in \mathcal{U}$.
- \sim is an equivalence relation on X (using that \mathcal{U} is an ultrafilter), and given a in X, we denote its \sim-equivalence class by $[a]$.
- The universe of \mathcal{M} will be $M=X / \sim$, i.e. the set of the equivalence classes relatively to \sim.
- If c is a constant symbol of \mathcal{L}, let $c^{\mathcal{M}}:=\left[\left(c^{\mathcal{M}_{i}}: i \in I\right)\right]$.

MODEL THEORY AND COMBINATORICS: CHAPTER 2 (DRAFT)

- If $f\left(x_{1}, \ldots, x_{n}\right)$ is a function symbol in \mathcal{L} and $\left[a_{1}\right], \ldots,\left[a_{n}\right] \in M$, we define $f^{\mathcal{M}}\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right):=\left[f^{\mathcal{M}_{i}}\left(a_{1}(i), \ldots, a_{n}(i)\right)\right]$.
- If $R\left(x_{1}, \ldots, x_{n}\right)$ is a relation symbol in \mathcal{L}, we define $R^{\mathcal{M}}$ on M^{n} by saying that $R^{\mathcal{M}}\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right)$ holds in \mathcal{M} if and only if

$$
\left\{i \in I: \mathcal{M}_{i} \models R\left(a_{1}(i), \ldots, a_{n}(i)\right)\right\} \in \mathcal{U}
$$

Exercise 1.13. Check that this is well-defined using the properties of ultrafilters.
Fact 1.14. (Łoś theorem) Let $\phi\left(x_{1}, \ldots, x_{n}\right)$ be an \mathcal{L}-formula, and let $\mathcal{M}=\prod_{i \in I} \mathcal{M}_{i} / \mathcal{U}$. Then for any $\left[a_{1}\right], \ldots,\left[a_{n}\right] \in \mathcal{M}$,

$$
\mathcal{M} \models \phi\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right) \Longleftrightarrow\left\{i \in I: \mathcal{M}_{i} \models \phi\left(a_{1}(i), \ldots, a_{n}(i)\right)\right\} \in \mathcal{U}
$$

Hence one can think of \mathcal{M} as a "limit" of the structures $\mathcal{M}_{i}, i \in I$: a formula holds in \mathcal{M} if it holds in \mathcal{M}_{i} for some/any large set of $i \in I$ (relatively to \mathcal{U}).

Corollary 1.15. For each set of sentences T in \mathcal{L}, every ultraproduct of models of T is a model of T.
Corollary 1.16. (Compactness theorem of first-order logic) If T is a set of sentences (of arbitrary cardinality) such that every finite subset $T_{0} \subseteq T$ is consistent, then T is consistent. (Exercise)

Example 1.17. Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N}. Let $\mathcal{M}_{i}=(\{0,1, \ldots, i-1\},<)$ be a finite linear order on i elements. Let $\mathcal{M}:=\prod_{i \in \mathbb{N}} \mathcal{M}_{i} / \mathcal{U}$, and let $T:=\operatorname{Th}(\mathcal{M})$. For any $i \in \mathbb{N}, \mathcal{M}_{i}$ has the first and the last elements, and is a discrete linear order (i.e. every element has immediate successor and predecessor) of size $\geq i$. Each of these properties can be expressed by a first-order sentence. Hence, by Łoś theorem, \mathcal{M} is an infinite discrete linear order with endpoints (these properties axiomatize a complete first-order theory, hence determine T). In fact, $\mathcal{M} \cong \mathbb{N}+\sum_{j \in L} \mathbb{Z}+\mathbb{N}^{*}$, where L is a dense linear order without endpoints and \mathbb{N}^{*}. What is the cardinality of \mathcal{M} ? We will find out soon.

Definition 1.18. Let \mathcal{M} be an \mathcal{L}-structure.
(1) Let A be a set of parameters in M. By a partial type $\Phi(x)$ over A (where x is an ordered tuple of variables) we mean a collection of \mathcal{L}-formulas of the form $\phi(x)$ with parameters from A such that every finite subcollection has a common solution in \mathcal{M}.
(2) By a complete type over A we mean a partial type such that for every formula $\phi(x) \in \mathcal{L}(A)$, either $\phi(x)$ or $\neg \phi(x)$ is in it. For $b \in \mathcal{M}$, we denote by $\operatorname{tp}(b / A)$ the complete type of b over A, i.e.

$$
\operatorname{tp}(b / A)=\{\phi(x): b \models \phi(x), \phi(x) \in \mathcal{L}(A)\}
$$

(3) We say that a (partial) type $\Phi(x)$ is realized in \mathcal{M} if there is some $b \in \mathcal{M}$ satisfying simultaneously all of the formulas in Φ.

Example 1.19. Let $\mathcal{M}=(\mathbb{R},+, \times, 0,1)$ be the field of real numbers. The partial type $\Phi(x)=\{x<n: n \in \mathbb{N}\}$ over \emptyset is not realized in \mathbb{R} (where $n=\underbrace{1+\ldots+1}$).

$$
n \text { times }
$$

Definition 1.20. Let κ be a cardinal. A structure \mathcal{M} is κ-saturated if every partial type over a set of parameters of size $<\kappa$ is realized in \mathcal{M}.

Consider again $\Phi(x)$ from the previous example. It shows that \mathbb{R} is not $\aleph_{0}{ }^{-}$ saturated. Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N}, and let $\mathbb{R}^{*}:=\mathbb{R}^{I} / \mathcal{U}$. Then $\Phi(x)$ is also a partial type over \emptyset in \mathbb{R}^{*}, and $[(n: n \in \mathbb{N})]$ is an element of \mathbb{R}^{*} realizing $\Phi(x)$ (using Łoś theorem). More generally:

Proposition 1.21. Let \mathcal{L} be a countable language, $\left(\mathcal{M}_{i}: i \in \mathbb{N}\right)$ a sequence of \mathcal{L} structures and \mathcal{U} a non-principal ultrafilter on \mathbb{N}. Then the ultraproduct $\mathcal{M}=$ $\prod_{i \in \mathbb{N}} \mathcal{M}_{i} / \mathcal{U}$ is \aleph_{1}-saturated (i.e. every partial type over a countable set of parameters is realized in $\mathcal{M})$.

Proof. Let $\Phi(x)$ be a partial type over a countable set of parameters $A \subseteq M$. As \mathcal{L} is countable, $\Phi(x)$ can be enumerated as $\left\{\phi_{n}\left(x,\left[a_{n}\right]\right): n \in \mathbb{N}\right\}, \phi_{n}\left(x,\left[a_{n}\right]\right) \in$ $\mathcal{L}(\mathcal{M})$. Let $X_{0}=\mathbb{N}$ and for $1 \leq n \in \mathbb{N}$ let

$$
X_{n}=\left\{i \in \mathbb{N}: \mathcal{M}_{i} \models \exists x \phi_{1}\left(x, a_{1}(i)\right) \wedge \ldots \wedge \phi_{n}\left(x, a_{n}(i)\right)\right\} \cap[n, \infty)
$$

As $\Phi(x)$ is a partial type, every finite set of formulas from Φ is realized in \mathcal{M}. In particular, $\mathcal{M} \models \exists x \phi_{1}\left(x,\left[a_{1}\right]\right) \wedge \ldots \wedge \phi_{n}\left(x,\left[a_{n}\right]\right)$ for all $n \in \mathbb{N}$. As \mathcal{U} is non-principal, by Łoś theorem it follows that $X_{n} \in \mathcal{U}$ for all $n \in \mathbb{N}$. Moreover, $\bigcap_{n \in \mathbb{N}} X_{n}=\emptyset$ and $X_{n} \supseteq X_{n+1}$. Hence for every $i \in \mathbb{N}$ there is a greatest $n(i) \in \mathbb{N}$ such that $i \in X_{n(i)}$.

We define a sequence $b=(b(i): i \in \mathbb{N})$ as follows. If $n(i)=0$ let $b(i)$ be an arbitrary element in \mathcal{M}_{i}. If $n(i)>0$, let $b(i)$ be some element in \mathcal{M}_{i} realizing $\phi_{1}\left(x, a_{1}(i)\right) \wedge \ldots \wedge \phi_{n(i)}\left(x, a_{n(i)}(i)\right)$.

Now fix any $n>0$. Then for any $i \in X_{n}$ we have $n \leq n(i)$, hence $\mathcal{M}_{i} \models$ $\phi_{n}\left(b(i), a_{n}(i)\right)$. As $X_{n} \in \mathcal{U}$, it follows that $\mathcal{M} \models \phi_{n}\left([b],\left[a_{n}\right]\right)$. As this holds for any n, $[b]$ realizes $\Phi(x)$ in \mathcal{M}.

Note that every infinite κ-saturated structure \mathcal{M} has size at least $\kappa($ if $|\mathcal{M}|<\kappa$, then $\{x \neq a: a \in M\}$ is a partial type over a set of size $<\kappa$ which cannot be realized in \mathcal{M}). If follows from Proposition 1.21 that any ultraproduct relatively to a non-principal ultrafilter in \mathbb{N} is either finite or of size at least \aleph_{1}. In fact, more is true.

Proposition 1.22. Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N}. Then any ultraproduct $\mathcal{M}=\prod_{i \in \mathbb{N}} \mathcal{M}_{i} / \mathcal{U}$ is either finite or of cardinality $\geq 2^{\aleph_{0}}$.

Proof. Assume that \mathcal{M} is infinite.
Claim 1. There is a family \mathcal{F} of functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that:
(1) $|\mathcal{F}|=2^{\aleph_{0}}$,
(2) $f(n)<2^{n}$ for any $f \in \mathcal{F}$ and $n \in \mathbb{N}$,
(3) if $f \neq g$ are in \mathcal{F}, then $\{n: f(n)=g(n)\}$ is finite.

Proof of Claim 1. For each $A \subseteq \mathbb{N}$, let $f_{A}: \mathbb{N} \rightarrow \mathbb{N}$ be given by $f_{A}(n)=$ $\sum_{k<n} \mathbf{1}_{A}(k) 2^{k}$, where $\mathbf{1}_{A}$ is the indicator function of A, i.e. $\mathbf{1}_{A}(k)=1$ if $k \in A$, and $\mathbf{1}_{A}(k)=0$ otherwise. Then $\mathcal{F}=\left\{f_{A}: A \subseteq \mathbb{N}\right\}$ is as needed.

Claim 2. There is a set $S \in \mathcal{U}$ and a partition $S=\bigcup_{n \in \mathbb{N}} A_{n}$ such that:
(1) $A_{n} \notin \mathcal{U}$ for all $n \in \mathbb{N}$,
(2) if $i \in A_{n}$, then $\left|\mathcal{M}_{i}\right| \geq 2^{n}$.

Proof of Claim 2. Let $S_{0}=\left\{i \in \mathbb{N}: \mathcal{M}_{i}\right.$ is finite $\}, S_{1}=\left\{i \in \mathbb{N}: \mathcal{M}_{i}\right.$ is infinite $\}$. As $\mathbb{N}=S_{0} \cup S_{1}$, we have $S_{t} \in \mathcal{U}$ for some $t \in\{0,1\}$.

If $S_{0} \in \mathcal{U}$, we let $S:=S_{0}$ and let $A_{n}=\left\{i \in S: 2^{n} \leq\left|\mathcal{M}_{i}\right|<2^{n+1}\right\}$. The sets A_{n} clearly partition \mathbb{N}. Assume that $A_{n} \in \mathcal{U}$ for some n. As having at most 2^{n+1} elements is a property of a structure expressible by a first-order sentence, it would follow by Łoś theorem that $|\mathcal{M}| \leq 2^{n+1}$ - contrary to the assumption. Hence $A_{n} \notin \mathcal{U}$ for all $n \in \mathbb{N}$.

If $S_{1} \in \mathcal{U}$, say $S_{1}=\left\{a_{i}: i \in \mathbb{N}\right\}$, we can just take $S=S_{1}$ and $A_{n}=\left\{a_{n}\right\}$.
Now for each $i \in A_{n}$, by Claim 2 let $\left\{a_{i, j}: j<2^{n}\right\}$ be some 2^{n} distinct elements of \mathcal{M}_{i}. For $f \in \mathcal{F}$ as in Claim 1, define $c_{f} \in \prod_{i \in \mathbb{N}} \mathcal{M}_{i}$ by $c_{f}(i):=a_{i, f(n)}$, where n is such that $i \in A_{n}$, when $i \in S$, and let $c_{f}(i)$ be an arbitrary element in \mathcal{M}_{i} if $i \notin S$.

Note that if $f \neq g$ are in \mathcal{F}, then

$$
S^{\prime}:=\left\{i \in S: c_{f}(i)=c_{g}(i)\right\}=\bigcup\left\{A_{n}: n \in \mathbb{N}, f(n)=g(n)\right\}
$$

is a finite union of the sets $A_{n} \notin \mathcal{U}$, hence $S^{\prime} \notin \mathcal{U}$. But then

$$
S \backslash S^{\prime}=\left\{i \in S: c_{f}(i) \neq c_{g}(i)\right\} \in \mathcal{U}
$$

which implies that $\left[c_{f}\right] \neq\left[c_{g}\right]$. Hence $\left\{\left[c_{f}\right]: f \in \mathcal{F}\right\}$ is a subset of \mathcal{M} of size $2^{\aleph_{0}}$, so $|\mathcal{M}| \geq 2^{\aleph_{0}}$.

Corollary 1.23. Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N}, and assume that $\mathcal{M}_{i}, i \in$ \mathbb{N} is a countable \mathcal{L}-structure. Then any ultraproduct $\mathcal{M}=\prod_{i \in \mathbb{N}} \mathcal{M}_{i} / \mathcal{U}$ is either finite or of size $2^{\aleph_{0}}$.
Proof. Obviously $\left|\prod_{i \in \mathbb{N}} \mathcal{M}_{i} / \mathcal{U}\right| \leq\left|\prod_{i \in \mathbb{N}} \mathcal{M}_{i}\right| \leq\left|\mathbb{N}^{\mathbb{N}}\right|=2^{\aleph_{0}}$, and $|\mathcal{M}| \geq 2^{\aleph_{0}}$ by Proposition 1.22

Example 1.24. Returning to Example 1.17, we now know that $\prod_{i \in \mathbb{N}}(\{0,1, \ldots, i-1\},<) / \mathcal{U}$ is a linear order of the form $\mathbb{N}+\sum_{j \in L} \mathbb{Z}+\mathbb{N}^{*}$, where L is a dense \aleph_{1}-saturated linear order of cardinality $2^{\aleph_{0}}$.

Exercise 1.25. For $i \in \mathbb{N}$ let \mathcal{M}_{i} be a graph (undirected, without self-loops) which is a cycle on i vertices (i.e. $\mathcal{M}_{i}=(\{0,1, \ldots, i-1\}, E)$ and the edges are $\{j, j+1\}$ for all $j=0, \ldots, i-2$ and $\{i-1,0\})$. Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N}. Determine $\prod_{i \in \mathbb{N}} \mathcal{M}_{i} / \mathcal{U}$ (up to isomorphism).
1.5. References. See e.g. [10] for a brief survey of further properties of the ultraproduct construction and references for the results in this section.

2. Graph regularity and measures on ultraproducts

2.1. Szemerédi's regularity lemma. Szemerédi's regularity lemma is a fundamental result in graph combinatorics with numerous applications in extremal combinatorics, additive number theory, computer science and other areas (see e.g. [11] for a survey). It has many versions and strengthenings, we begin by considering its simplest form.

Roughly speaking, the lemma asserts that every sufficiently large graph can be partitioned into a small number of sets, so that on almost all pairs of those sets the edges are approximately uniformly distributed at random.

More precisely, by a graph $G=(V, E)$ we mean a set G with a symmetric subset $E \subseteq V^{2}$. For $A, B \subseteq V$ we denote by $E(A, B)$ the set of edges between A and B
and by $d_{E}(A, B)=\frac{|E(A, B)|}{|A||B|}$ the density of the edges between A and B. For $n \in \mathbb{N}$, we denote $[n]=\{1,2, \ldots, n\}$.

Theorem 2.1. (Szemerédi's regularity lemma) Let $\varepsilon>0$ be arbitrary. Then there is some $K=K(\varepsilon) \in \mathbb{N}$ such that for every finite graph $G=(V, E)$ with $|V| \geq K$ there is a partition $V=V_{1} \sqcup \cdots \sqcup V_{K}$ into disjoint sets, real numbers $\delta_{i j}, i, j \in[K]$, and an exceptional set of pairs $\Sigma \subseteq[K] \times[K]$ such that

$$
\sum_{(i, j) \in \Sigma}\left|V_{i}\right|\left|V_{j}\right| \leq \varepsilon|V|^{2}
$$

and for each $(i, j) \in[K] \times[K] \backslash \Sigma$ we have

$$
\left||E(A, B)|-\delta_{i j}\right| A||B||<\varepsilon\left|V_{i}\right|\left|V_{j}\right|
$$

for all $A \subseteq V_{i}, B \subseteq V_{j}$. We call a pair of sets $\left(V_{i}, V_{j}\right)$ with $(i, j) \in[K] \times[K] \backslash \Sigma$ an ε-regular pair.
Exercise 2.2. (1) We can take $\delta_{i j}=d_{E}\left(V_{i}, V_{j}\right)=\frac{\left|E\left(V_{i}, V_{j}\right)\right|}{\left|V_{i}\right|\left|V_{j}\right|}$ - the edge density between V_{i} and V_{j} (at the price of possibly doubling the error).
(2) The regularity condition can be rephrased as: $\left|d_{E}(A, B)-d_{E}\left(V_{i}, V_{j}\right)\right|<\varepsilon$ for all $A \subseteq V_{i}, B \subseteq V_{j}$ with $|A| \geq \varepsilon\left|V_{i}\right|,|B| \geq \varepsilon\left|V_{j}\right|$.
(3) Moreover, one can assume that all parts are of almost equal size, i.e. $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$ for all $i, j \in[K]$. In this case, we say that the partition $V=V_{1} \sqcup \ldots \sqcup V_{K}$ is an equipartition.

Remark 2.3. Note that any sufficiently large graph has some ε-regular partition, e.g. into parts each of which consists of a single vertex. The crucial point of the theorem is that the size of the partition is bounded only in terms of ε, and independently of the size of G.
Remark 2.4. Regularity lemma doesn't say anything about what happens on the "diagonal" in V^{2}. Namely, given an ε-regular partition V_{1}, \ldots, V_{K} of V, it is possible that all of the pairs on the diagonal $\left(V_{i}, V_{i}\right), 1 \leq i \leq K$ are exceptional simultaneously. Namely, if Σ is the collection of all bad pairs, we have that $\sum_{(i, j) \in \Sigma}\left|V_{i}\right|\left|V_{j}\right|<\varepsilon|V|^{2}$. On the other hand, if let's say ($V_{i}: 1 \leq i \leq K$) is an equipartition, we have $\sum_{1 \leq i \leq K}\left|V_{i}\right|^{2} \leq K \frac{|V|^{2}}{K^{2}} \leq \frac{1}{K}|V|^{2}$, which can be smaller than $\varepsilon|V|^{2}$ when K is sufficiently large.

Exercise 2.5. A half-graph on n vertices is $G=(V, E)$ with $V=[n]=\{1,2, \ldots, n\}$ such that $E=\left\{(i, j) \in[n]^{2}: i<j\right\}$. Using half-graphs, show that in Theorem 2.1 one cannot assume in addition that $\Sigma=\emptyset$.

Next we are going to prove Theorem 2.1. Assume that the theorem is false. This means that for some $\varepsilon>0$ we have a sequence of finite graphs $\mathcal{G}_{i}=\left(V_{i}, E_{i}\right), i \in \mathbb{N}$, such that there is no ε-regular partition of V_{i} into at most i parts (in particular $\left|V_{i}\right| \rightarrow \infty$ by Remark 2.3 . Let $\mathcal{G}:=\prod_{i \in \mathbb{N}} \mathcal{G}_{i} / \mathcal{U}$, with \mathcal{U} a non-principal ultrafilter on \mathbb{N}. We will see that regularity follows from basic measure theory applied to the "limit" of the counting measures on the V_{i} 's.
2.2. Finitely additive measures. Let X be a set, and let \mathcal{B} be a Boolean algebra of subsets of X, i.e. $\mathcal{B} \subseteq \mathcal{P}(X)$ is such that $\emptyset \in \mathcal{B}, X \in \mathcal{B}$ and if $A, B \in \mathcal{B}$ then $A \cap B \in \mathcal{B}$ and $\neg A \in \mathcal{B}$. Note that this also implies $A \cup B \in \mathcal{B}$.

Definition 2.6. A function $\mu: \mathcal{B} \rightarrow \mathbb{R}_{\geq 0}$ is a finitely additive measure, or f.a. measure, if for every $A, B \in \mathcal{B}$ such that $A \cap B=\emptyset$ we have $\mu(A \cup B)=\mu(A)+$ $\mu(B)$.

Remark 2.7. This implies:
(1) For any disjoint $A_{1}, \ldots, A_{n} \in \mathcal{B}, \mu\left(A_{1} \cup \ldots \cup A_{n}\right)=\mu\left(A_{1}\right)+\ldots+\mu\left(A_{n}\right)$.
(2) If $A, B \in \mathcal{B}, A \subseteq B$, then $\mu(A) \leq \mu(B)$.
(3) $\mu(\emptyset)=0$.
(4) For any $A, B \in \mathcal{B}, \mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)$.

Definition 2.8. A finitely additive probability measure, or f.a.p. measure, on \mathcal{B} is f.a. measure on \mathcal{B} such that moreover $\mu(X)=1$.

Example 2.9. (1) Let X be a finite set. The counting measure μ on $\mathcal{P}(X)$ is defined by $\mu(Y)=\frac{|Y|}{|X|}$ for all $Y \subseteq X$. Then μ is a f.a.p. measure on $\mathcal{P}(X)$.
(2) Let \mathcal{U} be an ultrafilter on a set X. It may be naturally identified with a f.a.p. measure on the Boolean algebra $\mathcal{P}(X)$ taking values in $\{0,1\}$. Namely, for $Y \subseteq X$, we define $\mu_{\mathcal{U}}(Y)=1$ if $Y \in \mathcal{U}$, and $\mu_{\mathcal{U}}(Y)=0$ if $Y \notin \mathcal{U}$. It is easy to check that $\mu_{\mathcal{U}}$ is a f.a.p. measure on \mathcal{P}. Conversely, for every f.a.p. measure μ on $\mathcal{P}(X)$ with values in $\{0,1\}$, the set $\{Y \subseteq X: \mu(Y)=1\}$ is an ultrafilter.

We saw that one can extend ultrafilters using the axiom of choice. The same applies to general f.a.p. measures.

Fact 2.10. (see e.g. 12]) Let X be a set and $\mathcal{B} \subseteq \mathcal{B}^{\prime} \subseteq \mathcal{P}(X)$ be Boolean algebras. Let μ be a f.a.p. measure on \mathcal{B}. Then there is a f.a.p. measure μ^{\prime} on \mathcal{B}^{\prime} extending μ. Moreover, for any $S \in \mathcal{B}^{\prime}$ we can choose μ^{\prime} with $\mu^{\prime}(S)=r$ for any r satisfying

$$
\sup \{\mu(A): A \in \mathcal{B}, A \subseteq S\} \leq r \leq \inf \{\mu(B): B \in \mathcal{B}, S \subseteq B\}
$$

Another example is given by the limit f.a.p. measure on an ultraproduct of structures each of which is equipped with a f.a.p. measure.

Definition 2.11. Assume we have a fixed sequence of sets $V_{i}, i \in \mathbb{N}$. For each i, let \mathcal{B}_{i} be a Boolean algebra of subsets of V_{i}. Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N}, and let $V:=\prod_{i \in \mathbb{N}} V_{i} / \mathcal{U}$.
(1) We call a set $A \subseteq V$ internal relatively to the \mathcal{B}_{i} 's if $A=\prod_{i \in \mathbb{N}} A_{i} / \mathcal{U}$ for some $A_{i} \in \mathcal{B}_{i}$ (i.e. $\left.[a] \in X \Longleftrightarrow\left\{i \in \mathbb{N}: a(i) \in A_{i}\right\} \in \mathcal{U}\right)$.
(2) We say simply that A is internal if it is internal relatively to the Boolean algebras $\mathcal{P}\left(V_{i}\right), i \in \mathbb{N}$.
(3) Let \mathcal{B} be the collection of all subsets of V internal relatively to the \mathcal{B} ''s. It is a Boolean algebra of subsets of V (e.g. by Łos theorem).

Exercise 2.12. Recall the definition of ultralimit from Definition 1.6. Let (X, d) and $\left(Y, d^{\prime}\right)$ be metric spaces, and assume that $f: X \rightarrow Y$ is continuous. Then for any sequence $\left(a_{i}\right)_{i \in \mathbb{N}}$ from X and any non-principal ultrafilter \mathcal{U} on \mathbb{N}, we have

$$
\lim _{\mathcal{U}} a_{i}=a \Longrightarrow \lim _{\mathcal{U}} f\left(a_{i}\right)=f(a) .
$$

Definition 2.13. In the context of Definition 2.11, assume also that μ_{i} is an f.a.p. measure on \mathcal{B}_{i}, for all $i \in \mathbb{N}$. For any set $A \in \mathcal{B}$, say $A=\prod_{i \in \mathbb{N}} A_{i} / \mathcal{U}$, define
$\mu(A)=\lim _{\mathcal{U}} \mu_{i}\left(A_{i}\right)$ (ultralimit exists as μ_{i} take values in $\left.[0,1]\right)$. Then $\mu(X)$ is a f.a.p. measure on \mathcal{B}.
(Exercise: check that this is well-defined, i.e. doesn't depend on the choice of the A_{i} 's as above).
Proof. Note that if $a_{i}, b_{i} \in[0,1]$, then $\lim _{\mathcal{U}}\left(a_{i}+b_{i}\right)=\lim _{\mathcal{U}} a_{i}+\lim _{\mathcal{U}} b_{i}$ (by Exercise 2.12 applied to $X=[0,1]^{2}$ and $\left.Y=[0,2]\right)$.

Let now $A=\prod_{i \in \mathbb{N}} A_{i} / \mathcal{U}, B=\prod_{i \in \mathbb{N}} B_{i} / \mathcal{U}$ in \mathcal{B} be disjoint. Then there is some $S \in \mathcal{U}$ such that $A_{i} \cap B_{i}=\emptyset$ for all $i \in S$. Then for all $i \in S$, we have $\mu_{i}\left(A_{i} \cup B_{i}\right)=\mu_{i}\left(A_{i}\right)+\mu_{i}\left(B_{i}\right)$. Note that $A \cup B=\prod_{i \in \mathbb{N}}\left(A_{i} \cup B_{i}\right) / \mathcal{U}$, hence $\mu(A \cup B)=\lim _{\mathcal{U}} \mu_{i}\left(A_{i} \cup B_{i}\right)=\lim _{\mathcal{U}}\left(\mu_{i}\left(A_{i}\right)+\mu_{i}\left(B_{i}\right)\right)=\lim _{\mathcal{U}} \mu_{i}\left(A_{i}\right)+$ $\lim _{\mathcal{U}} \mu_{i}\left(B_{i}\right)=\mu(A)+\mu(B)$, as wanted.
2.3. Obtaining countable additivity. We would like to apply some basic theory of integration. Normally it is developed in the context of countably additive measures, rather than f.a.p. measures. We will in fact use the theory of integration for f.a.p. measures (see e.g. [15]), but first we point out how countable additivity can be obtained for free in our setting (the so-called Loeb measure construction).

Definition 2.14. Let X be a set. We say that $\mathcal{E} \subseteq \mathcal{P}(X)$ is a σ-algebra on X if $\emptyset \in \mathcal{E}, A \in \mathcal{E} \Longrightarrow \neg A \in \mathcal{E}$, and $A_{i} \in \mathcal{E}$ for all $i \in \mathbb{N} \Longrightarrow A=\bigcup_{i \in \mathbb{N}} A_{i} \in \mathcal{E}$.

This implies: $X \in \mathcal{E}$ and \mathcal{E} is closed under countable intersections. For any $\mathcal{F} \subseteq \mathcal{P}(X)$, there exists a unique smallest (under inclusion) σ-algebra $\sigma \mathcal{F}$ on X with $\mathcal{F} \subseteq \sigma \mathcal{F}$. We call $\sigma \mathcal{F}$ the σ-algebra generated by \mathcal{F}.

Fact 2.15. (Carathéodory's extension theorem) Let \mathcal{B} be a Boolean algebra on a set X, and assume that μ is a σ-additive measure defined on \mathcal{B}. Then μ extends to the σ-algebra $\sigma \mathcal{B}$ generated by \mathcal{B}. Furthermore, if μ is σ-finite (e.g. a probability measure), then this extension is unique.

Proposition 2.16. Let \mathcal{M} be an \aleph_{1}-saturated structure, and let \mathcal{B} be a Boolean algebra of definable subsets of M^{n} (with parameters). Let μ be an f.a.p. measure on \mathcal{B}. Then it extends in a unique way to a countably additive probability measure μ^{\prime} on the σ-algebra $\sigma \mathcal{B}$ generated by \mathcal{B}.

Proof. In view of the Carathéodory's theorem, it is enough to check that μ is already σ-additive on \mathcal{B}. So assume that $X \in \mathcal{B}$ is a definable set, and assume $X=\bigsqcup_{i \in \mathbb{N}} X_{i}$ with $X_{i} \in \mathcal{B}$ definable. We want to show that $\mu(X)=\sum_{i \in \mathbb{N}} \mu\left(X_{i}\right)$. Assume that $X \supsetneq \bigcup_{i<n} X_{i}$ for all $n \in \mathbb{N}$. But then every finite subset of $\{X\} \cup\left\{\neg X_{i}: i \in \mathbb{N}\right\}$ has a non-empty intersection, so by saturation of \mathcal{M} we must have that $X \cap \bigcap_{i \in \mathbb{N}} \neg X_{i} \neq \emptyset$ - contradicting the assumption. It follows that $X=\bigsqcup_{i<n} X_{i}$ for some $n \in \mathbb{N}$, and $X_{i}=\emptyset$ for $i \geq n$. The conclusion follows from the finite additivity of μ.

Corollary 2.17. Let $\mathcal{M}_{i}, i \in \mathbb{N}$ be \mathcal{L}-structures in a countable language \mathcal{L}, and let \mathcal{U} be a non-principal ultrafilter on \mathbb{N}. Let $n \in \mathbb{N}$ be fixed, and let \mathcal{B}_{i} be the Boolean algebra of all \mathcal{L}-definable subsets of M_{i}^{n}. Let μ_{i} be an f.a.p. measure on \mathcal{B}_{i}, and let μ be the ultralimit measure on \mathcal{B} - the Boolean algebra of all \mathcal{L}-definable subsets of M^{n}. Then μ has a unique extension to a σ-additive measure on the σ-algebra $\sigma \mathcal{B}$.

Proof. Combine Proposition 2.16 and \aleph_{1}-saturation of the ultraproduct \mathcal{M}.

Exercise 2.18. Let V_{i} be a sequence of finite sets, and let $V:=\prod_{i \in \mathbb{N}} V_{i} / \mathcal{U}$. Let \mathcal{B} be the Boolean algebra of all internal subsets of V (See Definition 2.11.(2)). Let μ_{i} be the counting measure on $\mathcal{P}\left(V_{i}\right)$ Show that the ultralimit of the μ_{i} 's extends to a σ-additive measure on $\sigma \mathcal{B}$.

2.4. Integration for charges (signed f.a. measures).

Definition 2.19. Let \mathcal{B} be a Boolean algebra on a set V. A f.a. charge (or a signed f.a. measure) μ on \mathcal{B} is a f.a. bounded function $\mu: \mathcal{B} \rightarrow \mathbb{R}$.

Hence a f.a. measure is a f.a. charge taking only positive values. The set of all f.a. charges on \mathcal{B} forms a vector space over \mathbb{R}.

Definition 2.20. Let $\mathcal{B}_{U}, \mathcal{B}_{V}$ be Boolean algebras on the sets U, V, respectively.
(1) Let $\mathcal{B}_{U} \times \mathcal{B}_{V}:=\left\{A \times B: A \in \mathcal{B}_{U}, B \in \mathcal{B}_{V}\right\} \subseteq \mathcal{P}(U \times V)$, and let $\mathcal{B}_{U} \otimes$ $\mathcal{B}_{V} \subseteq \mathcal{P}(U \times V)$ denote the Boolean algebra generated by $\mathcal{B}_{U} \times \mathcal{B}_{V}$.
Note: $X \subseteq \mathcal{B}_{U} \otimes \mathcal{B}_{V}$ iff X can be written as a finite (disjoint) union of sets from $\mathcal{B}_{U} \times \mathcal{B}_{V}$.
(2) Let μ_{U}, μ_{V} be f.a. charges on $\mathcal{B}_{U}, \mathcal{B}_{V}$, respectively. Then there is a unique f.a. charge μ on $\mathcal{B}_{U} \otimes \mathcal{B}_{V}$ with $\mu(A \times B)=\mu_{U}(A) \mu_{V}(B)$ for all $A \in$ $\mathcal{B}_{U}, B \in \mathcal{B}_{V}$ (uniqueness follows from finite additivity). We will denote this μ by $\mu_{U} \times \mu_{V}$, the product measure on $\mathcal{B}_{U} \otimes \mathcal{B}_{V}$.
Note: if both μ_{U}, μ_{V} are f.a. (f.a.p.) measures then μ is f.a. (f.a.p.) measure.
Definition 2.21. For an f.a. charge μ, define $\mu^{+}, \mu^{-},|\mu|: \mathcal{B} \rightarrow \mathbb{R}$ by

$$
\begin{gathered}
\mu^{+}(X):=\sup \{\mu(Y): Y \subseteq X, Y \in \mathcal{B}\} \\
\mu^{-}(X)=-\inf \{\mu(Y): Y \subseteq X, Y \in \mathcal{B}\} \\
|\mu|(X):=\mu^{+}(X)+\mu^{-}(X)
\end{gathered}
$$

for all $X \in \mathcal{B}$.
Fact 2.22. [15, Theorems 2.2.1 and 2.2.2]
(1) All of $\mu^{+}, \mu^{-},|\mu|$ are f.a. measures on \mathcal{B}, and $\mu=\mu^{+}-\mu^{-}$and $|\mu|=$ $\mu^{+}+\mu^{-}$.
(2) Let μ be an f.a. charge on \mathcal{B}. Then for every $X \in \mathcal{B}$ we have

$$
|\mu|(X)=\sup \sum_{Y \in \mathcal{Q}}|\mu(Y)|
$$

where sup is taken over all finite partitions Q of X with $\mathcal{Q} \subseteq \mathcal{B}$.
Definition 2.23. For a f.a. charge μ on $\mathcal{B} \subseteq \mathcal{P}(V)$, define $\|\mu\|=|\mu|(V)$.
Exercise 2.24. [15, Theorems 2.2 .1 and 2.2.2] $\|\cdot\|$ is a norm on the vector space of f.a. charges on \mathcal{B}.

We will use basic theory of integration relatively to f.a. charges.
Fix a set V and a Boolean algebra $\mathcal{B} \subseteq \mathcal{P}(V)$. For a set $X \subseteq V, \mathbf{1}_{X}$ is the indicator function, i.e. $\mathbf{1}_{X}(a)=1$ if $a \in X$ and $\mathbf{1}_{X}(a)=0$ if $a \notin X$.
Definition 2.25. A function $f: V \rightarrow \mathbb{R}$ is \mathcal{B}-simple (or just simple if there is no ambiguity) if

$$
f=\sum_{i=1}^{n} r_{i} \mathbf{1}_{A_{i}}
$$

for some $r_{1}, \ldots, r_{n} \in \mathbb{R}$ and $A_{1}, \ldots, A_{n} \in \mathcal{B}$.
One may always choose disjoint A_{1}, \ldots, A_{n} as above. The set of all \mathcal{B}-simple functions forms an \mathbb{R}-algebra.
Definition 2.26. For a f.a. charge μ on \mathcal{B} and a simple function $f=\sum_{i=1}^{n} r_{i} \mathbf{1}_{A_{i}}$ we define

$$
\int_{\Omega} f d \mu:=\sum_{i=1}^{n} r_{i} \mu\left(A_{i}\right)
$$

(Exercise: this definition doesn't depend on the specific representation of f as a simple function.)

If $A \subseteq V, A \in \mathcal{B}$, then we also define

$$
\int_{A} f d \mu:=\int_{V} \mathbf{1}_{A} f d \mu=\sum_{i=1}^{n} r_{i} \mu\left(A \cap X_{i}\right) .
$$

Note: for any $A \in \mathcal{B}, \mu(A)=\int_{V} \mathbf{1}_{A} d \mu$.
Definition 2.27. Let f be a \mathcal{B}-simple function. Then the function $\mathcal{B} \rightarrow \mathbb{R}$ defined by $A \mapsto \int_{A} f d \mu$ is a f.a. charge on \mathcal{B}. We will denote it by $f d \mu$.

We will need a version of the Radon-Nikodym theorem for f.a. measures. As before, \mathcal{B} is a Boolean algebra on V.

Definition 2.28. Let μ, ν be f.a. charges on \mathcal{B}. We say that ν is absolutely continuous with respect to μ, and write $\nu \ll \mu$ if for every $\varepsilon>0$ there is $\delta>0$ such that $|\mu|(X)<\delta$ implies $|\nu|(X)<\varepsilon$ for every $X \in \mathcal{B}$.
Theorem 2.29. (Radon-Nikodym for f.a. measures, see [3], or [15, Theorem 6.3.4]) Let μ, ν be f.a. charges on \mathcal{B} with $\nu \ll \mu$. Then for every $\varepsilon>0$ there is a simple function f_{ε} with $\left\|\nu-f_{\varepsilon} d \mu\right\|<\varepsilon$.

For f.a. charges μ, ν on \mathcal{B}, write $\mu \leq \nu$ if $\mu(X) \leq \nu(X)$ for all $X \in \mathcal{B}$.
Corollary 2.30. Let μ be a f.a.p. measure on \mathcal{B} and ν a f.a. measure on \mathcal{B} with $\nu \leq \mu$. Then for every ε there is a simple function f_{ε} such that $\left\|\nu-f_{\varepsilon} d \mu\right\|<\varepsilon$.

Remark 2.31. Assuming σ-additivity, one finds a $\sigma \mathcal{B}$-measurable function f such that $\nu(A)=\int_{A} f d \mu$ for all $A \in \sigma \mathcal{B}$ (and this function f can be approximated by simple functions). Moreover, such function f is unique (up to differences on sets of measure zero) and is called the Radon-Nikodym derivative.
2.5. Measure-theoretic regularity. We are ready to prove a measure-theoretic (bipartite) form of regularity.
Theorem 2.32. Let $\mathcal{B}_{U}, \mathcal{B}_{V}$ be Boolean algebras on U, V, resp. Let μ_{U}, μ_{V} be f.a.p. measures on $\mathcal{B}_{U}, \mathcal{B}_{V}$, resp. Let \mathcal{B} be an arbitrary Boolean algebra on $U \times V$ extending $\mathcal{B}_{U} \otimes \mathcal{B}_{V}$, and μ a f.a.p. measure on \mathcal{B} extending $\mu_{U} \times \mu_{V}$.

Assume that $E \in \mathcal{B}$. Then for any $\varepsilon>0$ there are:
(1) a partition $U=U_{1} \sqcup \ldots \sqcup U_{m}$ with $U_{i} \in \mathcal{B}_{U}$,
(2) a partition $V=V_{1} \sqcup \ldots \sqcup V_{n}$ with $V_{i} \in \mathcal{B}_{V}$,
(3) real numbers $\delta_{i j} \in[0,1]$, for $1 \leq i \leq m, 1 \leq j \leq n$,
(4) an exceptional set of pairs $\Sigma \subseteq[n] \times[m]$
such that
(1) $\sum_{(i, j) \in \Sigma} \mu_{U}\left(U_{i}\right) \mu_{V}\left(V_{j}\right)<\varepsilon$,
(2) for every $(i, j) \notin \Sigma$, for any $A \in \mathcal{B}_{U}, B \in \mathcal{B}_{V}$ with $A \subseteq U_{i}, B \subseteq V_{j}$ we have

$$
\left|\mu(E \cap(A \times B))-\delta_{i j} \mu_{U}(A) \mu_{V}(B)\right|<\varepsilon \mu_{U}\left(U_{i}\right) \mu_{V}\left(V_{j}\right)
$$

Proof. Let $\mathcal{B}_{U V}:=\mathcal{B}_{U} \otimes \mathcal{B}_{V}$ and $\mu_{U V}:=\mu_{U} \times \mu_{V}-$ a f.a.p. measure on $\mathcal{B}_{U V}$.
Let $\nu_{E}: \mathcal{B}_{U V} \rightarrow[0,1]$ be defined as $\nu_{E}(X):=\mu(E \cap X)$ for all $X \in \mathcal{B}_{U V}$. Then ν_{E} is a f.a. measure on $\Sigma_{U V}$ with $\nu_{E} \leq \mu_{U V}$.

By Radon-Nikodym (Corollary 2.30) there is a $\mathcal{B}_{U V}$-simple function f such that $\left\|\nu_{E}-f d \mu_{U V}\right\|<\varepsilon^{2}$.

As f is simple, there are some partitions $U=U_{1} \sqcup \ldots \sqcup U_{m}$ with $U_{i} \in \mathcal{B}_{U}$ and $V=$ $V_{1} \sqcup \ldots \sqcup V_{n}$ with $V_{i} \in \mathcal{B}_{V}$, and $\delta_{i j} \in[0,1]$ such that $f=\sum_{(i, j) \in[m] \times[n]} \delta_{i j} \mathbf{1}_{U_{i} \times V_{j}}$.

Let Σ be the set of all $(i, j) \in[m] \times[n]$ such that

$$
\left|\nu_{E}-f d \mu_{U V}\right|\left(U_{i} \times V_{j}\right) \geq \varepsilon \mu_{U V}\left(U_{i} \times V_{j}\right)
$$

Since $\left|\nu_{E}-f d \mu_{U V}\right|$ is a f.a. measure on $\mathcal{B}_{U V}$,

$$
\varepsilon^{2}>\left|\nu_{E}-f d \mu_{U V}\right|(U \times V) \geq \sum_{(i, j) \in \Sigma} \varepsilon \mu_{U V}\left(U_{i} \times V_{j}\right)=\varepsilon \sum_{(i, j) \in \Sigma} \mu_{U V}\left(U_{i} \times V_{j}\right)
$$

Hence $\sum_{(i, j) \in \Sigma} \mu_{U V}\left(U_{i} \times V_{j}\right)<\varepsilon$, and conclusion (1) is satisfied.
Let's show (2). Assume $(i, j) \notin \Sigma$, hence

$$
\left|\nu_{E}-f d \mu_{U V}\right|\left(U_{i} \times V_{j}\right)<\varepsilon \mu_{U}\left(U_{i}\right) \mu_{V}\left(V_{j}\right)
$$

Let $A \in \mathcal{B}_{U}, B \in \mathcal{B}_{V}$ with $A \subseteq U_{i}, B \subseteq V_{j}$ be arbitrary. Then: $\left|\mu(E \cap(A \times B))-\delta_{i j} \mu_{U V}(A \times B)\right|=\left|\nu_{E}(A \times B)-f d \mu_{U V}(A \times B)\right| \leq\left|\nu_{E}-f d \mu_{U V}\right|(A \times B)$.

Since $\left|\nu_{E}-f d \mu_{U V}\right|$ is a f.a. measure and $A \times B \subseteq U_{i} \times V_{j}$, we have $\left|\nu_{E}-f d \mu_{U V}\right|(A \times B) \leq$ $\left|\nu_{E}-f d \mu_{U V}\right|\left(U_{i} \times V_{j}\right)$ - as wanted.

Exercise 2.33. Give a variant of this proof using σ-additive measures and a standard version of the Radon-Nikodym theorem. (Hint: define a first-order structure \mathcal{M} with two sort U, V in which all elements of $\mathcal{B}_{U}, \mathcal{B}_{V}$ and \mathcal{B} are named by a predicate. Every structure has an \aleph_{1}-saturated elementary extension - without loss of generality can work in it).
Corollary 2.34. Szemerédi's regularity lemma for finite graphs, i.e. Theorem 2.1, holds.

Proof. Assume it doesn't hold. This means that for some fixed $\varepsilon>0$ we have a sequence of finite graphs $\mathcal{G}_{i}=\left(V_{i}, E_{i}\right), i \in \mathbb{N}$, such that there is no ε-regular partition of V_{i} into at most i parts (in particular $\left|V_{i}\right| \rightarrow \infty$ by Remark 2.3). Let $\mathcal{G}:=\prod_{i \in \mathbb{N}} \mathcal{G}_{i} / \mathcal{U}$, with \mathcal{U} a non-principal ultrafilter on \mathbb{N}, write $\mathcal{G}=(V, E)$.

Let $\mathcal{B}_{i}=\mathcal{P}\left(V_{i}\right)$, and let \mathcal{B} be the Boolean algebra of all internal subsets of V.
Let $\mathcal{B}_{i}^{\prime}=\mathcal{P}\left(V^{2}\right)$, and let \mathcal{B}^{\prime} be the Boolean algebra of all internal subsets of V^{2}.
Finally, let μ_{i} be the counting measure on V_{i}, let μ_{i}^{\prime} be the counting measure on V_{i}^{2}. Then $\mu=\lim _{\mathcal{U}} \mu_{i}$ is an f.a.p. measure on $\mathcal{B}, \mu^{\prime}=\lim _{\mathcal{U}} \mu_{i}^{\prime}$ is an f.a.p. measure on $\mathcal{B}^{\prime}, \mathcal{B}^{\prime} \supseteq \mathcal{B} \otimes \mathcal{B}$, and μ^{\prime} is extending $\mu \times \mu$. Moreover, $E \in \mathcal{B}^{\prime}$.

Applying Theorem 2.32, we obtain an $\frac{\varepsilon}{2}$-regular (relatively to μ) finite partition of V into internal subsets. But then on a \mathcal{U}-large set of indices $i \in \mathbb{N}$ this gives an ε-regular partition of V_{i} into the same fixed number of pieces - contradicting the choice of the sequence \mathcal{G}_{i}.

Exercise 2.35. Using the same ultraproduct argument, demonstrate that in Theorem 2.32 a bound on the size of the partition n, m can be chosen depending only on ε (so uniformly over all Boolean algebras and all measures).
2.6. References. ${ }^{* * *}$ TBA. The use of the finitely additive Radon-Nikodym arose from my work with Sergei Starchenko.

3. Hypergraph removal

3.1. Removal lemmas. We first consider the more standard triangle removal for graphs.

Fact 3.1. (Triangle removal lemma, Ruzsa and Szemerédi) For every $\varepsilon>0$ there is $\delta>0$ satisfying the following. If G is a finite graph on n vertices with at most δn^{3} triangles, then it may be made triangle-free by removing at most εn^{2} edges.

Proof. We will deduce it from the regularity lemma (Theorem 2.1).
Let $G=(V, E)$ with $|V|=n$. Let $V=V_{1} \sqcup \ldots \sqcup V_{K}$ be an $\frac{\varepsilon}{4}$-regular partition of the vertices of G, where $K=K(\varepsilon)$, i.e.

- $\sum_{(i, j) \in \Sigma}\left|V_{i}\right|\left|V_{j}\right| \leq \frac{\varepsilon}{4} n^{2}$,
- $\left|d_{E}(A, B)-d_{E}\left(V_{i}, V_{j}\right)\right|<\frac{\varepsilon}{4}$ for all $A \subseteq V_{i}, B \subseteq V_{j}$ with $|A| \geq \frac{\varepsilon}{4}\left|V_{i}\right|,|B| \geq$ $\frac{\varepsilon}{4}\left|V_{j}\right|$ (see Exercise 2.2).
We remove an edge $x y$ from G if:
(1) $(x, y) \in V_{i} \times V_{j}$, where $\left(V_{i}, V_{j}\right)$ is not an $\frac{\varepsilon}{4}$-regular pair,
(2) $(x, y) \in V_{i} \times V_{j}$, where $d_{E}\left(V_{i}, V_{j}\right)<\frac{\varepsilon}{2}$,
(3) $x \in V_{i}$, where $\left|V_{i}\right| \leq \frac{\varepsilon}{4 K} n$.

The number of the edges removed in (1) is at most $\sum_{(i, j) \in \Sigma}\left|V_{i}\right|\left|V_{j}\right| \leq \frac{\varepsilon}{4} n^{2}$, in (2) - clearly at most $\frac{\varepsilon}{2} n^{2}$, and (3) - at most $K n \frac{\varepsilon}{4 K} n=\frac{\varepsilon}{4} n^{2}$. Overall, we have removed at most εn^{2} edges.

Suppose that some triangle remains in the graph, say $x y z$, where $x \in V_{i}, y \in V_{j}$ and $z \in V_{k}$. Then the pairs $\left(V_{i}, V_{j}\right),\left(V_{j}, V_{k}\right)$ and $\left(V_{k}, V_{i}\right)$ are all $\frac{\varepsilon}{4}$-regular with density at least $\frac{\varepsilon}{2}$, and $\left|V_{i}\right|,\left|V_{j}\right|,\left|V_{k}\right| \geq \frac{\varepsilon}{4 K} n$.

Lemma. Let X, Y, Z be subsets of V such that $(X, Y),(Y, Z),(Z, X)$ are ε regular with $d(X, Y)=\alpha, d(Y, Z)=\beta, d(Z, X)=\gamma$. Then, provided $\alpha, \beta, \gamma \geq 2 \varepsilon$, the number of triangles $x y z$ with $x \in X, y \in Y, z \in Z$ is at least

$$
(1-2 \varepsilon)(\alpha-\varepsilon)(\beta-\varepsilon)(\gamma-\varepsilon)|X||Y||Z|
$$

Proof of the lemma. For every $x \in X$, let $d_{Y}(x)$ and $d_{Z}(x)$ be the number of neighbors of x in Y and Z, resp.

Let $X^{\prime}:=\left\{x \in X: d_{Y}(x)<(\alpha-\varepsilon)|Y|\right\}$. Then $\left|X^{\prime}\right| \leq \varepsilon|X|$ (if not then $X^{\prime} \subseteq X$ is of size at least $\varepsilon|X|$ and such that $d_{E}\left(X^{\prime}, Y\right)<\alpha-\varepsilon-$ contradicting regularity).

Let $X^{\prime \prime}:=\left\{x: d_{Z}(x)<(\gamma-\varepsilon)|Z|\right\}$. Similarly, $\left|X^{\prime \prime}\right| \leq \varepsilon|X|$.
If $d_{Y}(x)>(\alpha-\varepsilon)|Y|$ and $d_{Z}(x)>(\gamma-\varepsilon)|Z|$, using that the pair (Y, Z) is ε-regular with density β, the number of edges between $N(x) \cap Y$ and $N(x) \cap Z$ is at least $(\alpha-\varepsilon)(\beta-\varepsilon)(\gamma-\varepsilon)|Y||Z|$ (hence there are at least as many triangles containing x).

Summing over all $x \in X \backslash\left(X^{\prime} \cup X^{\prime \prime}\right)$ gives the result.

Applying the lemma to our situation, the number of triangles in G is at least $\left(1-\frac{\varepsilon}{2}\right)\left(\frac{\varepsilon}{4}\right)^{3}\left(\frac{\varepsilon}{4 K}\right)^{3} n^{3}$. Taking $\delta=\left(1-\frac{\varepsilon}{2}\right)\left(\frac{\varepsilon}{4}\right)^{3}\left(\frac{\varepsilon}{4 K}\right)^{3}>0$ gives a contradiction.

More recently, this was generalized to hypergraphs.
Definition 3.2. A k-uniform hypergraph G on a set of vertices V is any subset $G \subseteq\binom{V}{d}$ of $\binom{V}{d}$.
Theorem 3.3. (Hypergraph removal lemma, [Gowers] and [Nagle, Rödl, Schacht and Skokan]) For each $k \in \mathbb{N}, \varepsilon>0$ and a finite k-uniform hypergraph (W, F) there is some $\delta>0$ such that: whenever (V, E) is a k-uniform hypergraph containing at most $\delta|V|^{|W|}$ copies of (W, F), it is possible to remove at most $\varepsilon|V|^{k}$ edges from it to obtain a hypergraph with no copies of (W, F) at all.

Again, we will convert it into a more general measure-theoretic statement.
3.2. Measure-theoretic hypergraph removal. We introduce some notation.

Fix some sets V_{1}, \ldots, V_{n}. For every $I \subseteq[n]$, let $V_{I}=\prod_{i \in I} V_{i}$. We will write a_{I}, b_{I}, c_{I}, etc. for elements in V_{I}. Given $a_{I} \in V_{I}$ and $J \subseteq I$, we will write $a_{J} \in V_{J}$ for the subtuple of a_{I} given by restricting to the coordinates in J. For any $J \subseteq I \subseteq[n]$, $E \subseteq V_{I}$ and $b \in V_{J}$, we write $E_{b}:=\left\{a \in V_{I \backslash J}:(a, b) \in E\right\} \subseteq V_{I \backslash J}$.

Definition 3.4. For every $I \subseteq[n]$, let \mathcal{B}_{I} be a Boolean algebra of subsets of V_{I}, such that:
(1) for any $I, J \subseteq[n]$ with $I \cap J=\emptyset$, we have $\mathcal{B}_{I} \otimes \mathcal{B}_{J} \subseteq \mathcal{B}_{I \cup J}$,
(2) for any $I, J \subseteq[n]$ with $I \cap J=\emptyset, b \in V_{J}$ and $E \in \mathcal{B}_{I \cup J}$, the fiber $E_{b}=$ $\left\{a \in V_{I}:(a, b) \in E\right\}$ is in \mathcal{B}_{I}.
Then we call ($\left.\mathcal{B}_{I}: I \subseteq[n]\right)$ a compatible system of b.a.'s on $\left(V_{i}: i \in[n]\right)$.
Example 3.5. (1) Fix a first-order structure \mathcal{M}. Fix $n \in \mathbb{N}$, and for each $I \subseteq[n]$ let \mathcal{B}_{I} be the b.a. of all definable subsets of $M^{|I|}$. Then $\left(\mathcal{B}_{I}: I \subseteq[n]\right)$ is a compatible system of b.a.'s on $V_{1}=\ldots=V_{n}=M$.
(2) Let $W=\prod_{i \in \mathbb{N}} W_{i} / \mathcal{U}$, fix n and for $I \subseteq[n]$ let \mathcal{B}_{I} be the b.a. of all internal subsets of $W^{|I|}$. Then $\left(\mathcal{B}_{I}: I \subseteq[n]\right)$ is a compatible system of b.a.'s on $V_{1}=\ldots=V_{n}=W$.

Definition 3.6. (in a compatible system of b.a.'s)
(1) For $J \subseteq I \subseteq[n]$, let $\mathcal{B}_{I, J}$ be the b.a. on V_{I} generated by the sets of the form $\left\{a_{I} \in V_{I}: a_{J} \in E\right\}$ for all $E \in \mathcal{B}_{J}$.
(2) If $\mathcal{J} \subseteq \mathcal{P}(I)$, let $\mathcal{B}_{I, \mathcal{J}}$ be the Boolean algebra generated by $\bigcup_{J \in \mathcal{J}} \mathcal{B}_{I, J}$. When $k \leq|I|$, let $\mathcal{B}_{I, k}:=\mathcal{B}_{I,\{J \subseteq I:|J|=k\}}$.
(3) We write $<I$ for the set of all proper subsets of I, so e.g. $\mathcal{B}_{I,<I}=$ $\mathcal{B}_{I,\{J \subseteq I: J \subseteq I\}}$.
(4) Given $\mathcal{I}, \mathcal{J} \subseteq[n]$, let $\mathcal{I} \wedge \mathcal{J}:=\{K: \exists I \in \mathcal{I}, J \in \mathcal{J}$ s.t. $K \subseteq I \cap J\}$.
(5) We add a superscript \mathcal{B}^{σ} to denote the σ-algebra generated by the b.a. \mathcal{B}.

Definition 3.7. Let ($\mathcal{B}_{I}: I \subseteq[n]$) be a compatible system of b.a.'s on $\left(V_{i}: i \in[n]\right)$. For each $I \subseteq[n]$, let μ_{I} be a probability measure on \mathcal{B}_{I}^{σ}. Assume moreover that for any $J \subseteq I \subseteq[n]$ we have:
(1) μ_{I} extends the product measure $\mu_{J} \times \mu_{I \backslash J}$,
(2) For each \mathcal{B}_{I}^{σ}-measurable function $f: V_{I} \rightarrow \mathbb{R}$, the function $b \mapsto \int_{V_{I \backslash J}} f\left(x_{I \backslash J}, b\right) d \mu_{I \backslash J}$ from V_{J} to \mathbb{R} is \mathcal{B}_{J}^{σ}-measurable,
(3) (Fubini) For each \mathcal{B}_{I}^{σ}-measurable function $f: V_{I} \rightarrow \mathbb{R}$ and $J \subseteq I$, we have

$$
\int_{V_{I}} f d \mu_{I}=\int_{V_{J}}\left(\int_{V_{I \backslash J}} f\left(x_{I \backslash J}, b_{J}\right) d \mu_{I \backslash J}\right) d \mu_{J}\left(b_{J}\right) .
$$

Then we call $\left(\mu_{I}, \mathcal{B}_{I}: I \subseteq[n]\right)$ a compatible system of measures on $\left(V_{i}: i \in[n]\right)$.
Remark 3.8. (1) Note that applying (3) to $I \backslash J$ instead of J, the order of integration in (3) doesn't matter.
(2) In particular we have: for any $E \in \mathcal{B}_{I}^{\sigma}$, we have $\mu_{I}(E)=\int_{V_{J}} \mu_{I \backslash J}\left(E_{x}\right) d \mu_{J}(x)=$ $\int_{V_{I \backslash J}} \mu_{I}\left(E_{y}\right) d \mu_{I \backslash J}(y)$.

Problem 3.9. Can we recover full (2) and (3) from assuming it only for the indicator functions? I.e., assuming

- For each $E \in \mathcal{B}_{I}$ and $b \in V_{J}$, the function $b \mapsto \mu_{I \backslash J}\left(E_{b}\right)$ from V_{J} to \mathbb{R} is \mathcal{B}_{J}-measurable,
- For any $E \in \mathcal{B}_{I}$, we have $\mu_{I}(E)=\int_{V_{J}} \mu_{I \backslash J}\left(E_{x}\right) d \mu_{J}(x)=\int_{V_{I \backslash J}} \mu_{I}\left(E_{y}\right) d \mu_{I \backslash J}(y)$.

Example 3.10. (1) Let V_{1}, \ldots, V_{n} be finite sets, fix n. For each $I \subseteq[n]$, let $\mathcal{B}_{I}:=\mathcal{P}\left(V_{I}\right)$ and let μ_{I} be the counting measure on $\mathcal{P}\left(V_{I}\right)$ (i.e. $\mu_{I}(X)=$ $\frac{|X|}{\left|V_{I}\right|}$ for all $\left.X \subseteq V_{I}\right)$. Note that $\mathcal{B}_{I}=\mathcal{B}_{I}^{\sigma}$. Then $\left(\mu_{I}, \mathcal{B}_{I}: I \subseteq[n]\right)$ is a compatible system of measures.
(2) In the context of Example 3.5 (2), let $\mu_{I}=\lim _{\mathcal{U}} \mu_{i}^{|I|}$, where μ_{i}^{k} is the counting measure on V_{i}^{k} for all $k \in \mathbb{N}$.
Then $\left(\mu_{I}, \mathcal{B}_{I}: I \subseteq[n]\right)$ is a compatible system of measures (Exercise! Note that it is obviously satisfied by the counting measures on finite sets, and verify that it transfers to the ultralimit).

Remark 3.11. If $E \in \mathcal{B}_{[n], I}^{\sigma}$ then $\mu_{[n]}(E)=\mu_{I}\left(\pi_{I}(E)\right)$, where $\pi_{I}(E) \subseteq V_{I}$ is the projection of E onto V_{I}. Indeed, as $E \in \mathcal{B}_{[n], I}^{\sigma}, E=\pi_{I}(E) \times V_{[n] \backslash I}$, hence by compatibility $\mu_{[n]}(E)=\mu_{I}\left(\pi_{I}(E)\right) \mu_{[n] \backslash I}\left(V_{[n] \backslash I}\right)=\mu_{I}\left(\pi_{I}(E)\right)$.
Theorem 3.12. (Hypergraph removal lemma, measure-theoretic version)
Let $\left(\mu_{I}, \mathcal{B}_{I}: I \subseteq[n]\right)$ be a compatible system of measures on $\left(V_{i}: i \in[n]\right)$. Let $\mathcal{I} \subseteq$ $\binom{[n]}{k}$ and $A_{I} \in \mathcal{B}_{[n], I}$ for all $I \in \mathcal{I}$.

Suppose there is $\delta>0$ such that for any $B_{I} \in \mathcal{B}_{[n], I}(M)$ with $\mu_{[n]}\left(A_{I} \backslash B_{I}\right)<\delta$ for all $I \in \mathcal{I}, \bigcap_{I \in \mathcal{I}} B_{I} \neq \emptyset$. Then $\mu_{[n]}\left(\bigcap_{I \in \mathcal{I}} A_{I}\right)>0$.
Proof. By induction on k.
Base step $k=1$. If the assumption holds, then necessarily $\mu_{[n]}\left(A_{I}\right)>0$ for all $I \in \mathcal{I}$ (assume that $\mu_{[n]}\left(A_{I_{0}}\right)=0$ for some $I_{0} \in \mathcal{I}$; taking $B_{I_{0}}=\emptyset$ and $B_{I}=A_{I}$ for all $I \in \mathcal{I} \backslash\left\{I_{0}\right\}$, we would have $\mu_{[n]}\left(A_{I} \backslash B_{I}\right)=0$ for all $I \in \mathcal{I}$, yet $\bigcap_{I \in \mathcal{I}} B_{I}=\emptyset-$ so no $\delta>0$ as required could be chosen). Hence

$$
\mu_{[n]}\left(\bigcap_{I \in \mathcal{I}} A_{I}\right)=\prod_{I \in \mathcal{I}} \mu_{[n]}\left(A_{I}\right)>0
$$

Induction step. So we assume that $k>1$ and that whenever $B_{I} \in \mathcal{B}_{[n], I}$ with $\mu_{[n]}\left(A_{I} \backslash B_{I}\right)<\delta$ for all $I \in \mathcal{I}$, then $\bigcap_{I \in \mathcal{I}} B_{I} \neq \emptyset$.

We prove it in a series of claims.
We saw in the regularity lemma, that the indicator function of a graph can be well-approximated by a simple function on the product Boolean algebra. Similarly, the indicator function of a hypergraph can be "approximated" by a simple function on the Boolean algebra generated by all of the smaller product Boolean algebras - as the following two claims will show.

Fact. Let $(\Omega, \mathcal{B}, \mu)$ be a probability space, and let \mathcal{A} be a σ-subalgebra of \mathcal{B}. Given a \mathcal{B}-measurable function $f: \Omega \rightarrow \mathbb{R}_{\geq 0}$, there is a unique (up to differences on sets of measure zero) \mathcal{A}-measurable function $g: \Omega \rightarrow \mathbb{R}_{\geq 0}$ with the property that $\int_{X} f d \mu=\int_{X} g d \mu$ for every $X \in \mathcal{A}$. Such a g is denoted $\mathbb{E}(f \mid \mathcal{A})$, the conditional expectation of f relatively to \mathcal{A}. (This is a corollary of the Radon-Nikodym theorem).

Claim 1. For any $I_{0} \in \mathcal{I}$,

$$
\int_{\bigcap_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} A_{I}} \mathbf{1}_{A_{I_{0}}}=\int_{\bigcap_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} A_{I}} \mathbb{E}\left(\mathbf{1}_{A_{I_{0}}} \mid \mathcal{B}_{[n],<I_{0}}^{\sigma}\right) d \mu_{[n]}
$$

Proof.
Let $f: V_{[n]} \rightarrow \mathbb{R}$ be the function defined by

$$
f:=\left(\mathbf{1}_{A_{I_{0}}}-\mathbb{E}\left(\mathbf{1}_{A_{I_{0}}} \mid \mathcal{B}_{[n],<I_{0}}^{\sigma}\right)\right) \prod_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} \mathbf{1}_{A_{I}}
$$

Note that f is $\mathcal{B}_{[n]}$-measurable. By Definition 3.7 3), the function $a \mapsto \int_{V_{I_{0}}} f\left(x_{I_{0}}, a\right) d \mu_{I_{0}}$ from $V_{[n] \backslash I_{0}}$ to \mathbb{R} is $\mathcal{B}_{[n] \backslash I_{0}}$-measurable and

$$
\int_{V_{[n]}} f\left(x_{[n]}\right) d \mu_{[n]}=\int_{V_{[n] \backslash I_{0}}}\left(\int_{V_{I_{0}}} f\left(x_{I_{0}}, a\right) d \mu_{I_{0}}\right) d \mu_{[n] \backslash I_{0}}(a) .
$$

Hence it is sufficient to show that $\int_{V_{I_{0}}} f\left(x_{I_{0}}, a\right) d \mu_{I_{0}}=0$ for all $a \in V_{[n] \backslash I_{0}}$.
Fix some $a \in V_{[n] \backslash I_{0}}$. We want to exploit the fact that the sets involved don't depend on the coordinates outside of I_{0}. For each $I \in \mathcal{I}_{0}$ we have:

- $A_{I}=A_{I}^{\prime} \times V_{[n] \backslash I}$ for some $A_{I}^{\prime} \in \mathcal{B}_{I}^{\sigma}$,
- $\mathbf{1}_{A_{I_{0}}}\left(x_{I_{0}}, a\right)=\mathbf{1}_{A_{I_{0}}^{\prime}}\left(x_{I_{0}}\right)$,
- For any $I \in \mathcal{I} \backslash\left\{I_{0}\right\}$, as $\left|I_{0}\right|=|I|=k$, we have $I \cap I_{0} \subsetneq I_{0}, I$. So
$\mathbf{1}_{A_{I}}\left(x_{I_{0}}, a\right)=\mathbf{1}_{A_{I}^{\prime}}\left(x_{I \cap I_{0}}, a_{I \backslash I_{0}}\right)$ - it is $\mathcal{B}_{I_{0}, I_{0} \cap I^{\prime}}^{\sigma}$-measurable by compatibility.
- Hence $\prod_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} \mathbf{1}_{A_{I}}\left(x_{I_{0}}, a\right)$ is $\mathcal{B}_{I_{0},<I_{0}}$-measurable, and

$$
C^{\prime}:=\left\{c \in V_{I_{0}}: \prod_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} \mathbf{1}_{A_{I}}\left(x_{I_{0}}, a\right)>0\right\} \in \mathcal{B}_{I_{0},<I_{0}}^{\sigma}
$$

- Let $h^{\prime}\left(x_{I_{0}}\right):=\mathbb{E}\left(\mathbf{1}_{A_{I_{0}}^{\prime}}\left(x_{I_{0}}\right) \mid \mathcal{B}_{I_{0},<I_{0}}^{\sigma}\right)$. We claim that $h\left(x_{[n]}\right):=h^{\prime}\left(x_{I_{0}}\right)$ gives $\mathbb{E}\left(\mathbf{1}_{A_{I_{0}}}\left(x_{[n]}\right) \mid \mathcal{B}_{[n],<I_{0}}^{\sigma}\right)$.
To see this, take any $D \in \mathcal{B}_{[n],<I_{0}}^{\sigma}$. W.m.a. $D=D^{\prime} \times V_{[n] \backslash I_{0}}$ for some

$$
\begin{aligned}
& D^{\prime} \in \mathcal{B}_{I_{0},<I_{0}}^{\sigma} \text {. Then, using compatibility, } \\
& \int_{D} h\left(x_{[n]}\right) d \mu_{[n]}=\int_{V_{[n] \backslash I_{0}}}\left(\int_{D^{\prime}} h\left(x_{I_{0}}, x_{[n] \backslash I_{0}}\right) d \mu_{I_{0}}\right) d \mu_{[n] \backslash I_{0}}\left(x_{[n] \backslash I_{0}}\right)= \\
& \int_{V_{[n] \backslash I_{0}}}\left(\int_{D^{\prime}} h^{\prime}\left(x_{I_{0}}\right) d \mu_{I_{0}}\right) d \mu_{[n] \backslash I_{0}}=\int_{V_{[n] \backslash I_{0}}}\left(\int_{D^{\prime}} \mathbf{1}_{A_{I_{0}}^{\prime}}\left(x_{I_{0}}\right) d \mu_{I_{0}}\right) d \mu_{[n] \backslash I_{0}}= \\
& =\int_{V_{\left[n \backslash \backslash I_{0}\right.}}\left(\int_{D^{\prime}} \mathbf{1}_{A_{I_{0}}}\left(x_{I_{0}}, x_{[n] \backslash I}\right) d \mu_{I_{0}}\right) d \mu_{[n] \backslash I_{0}}=\int_{D} \mathbf{1}_{A_{I_{0}}}\left(x_{[n]}\right) d \mu_{[n]} .
\end{aligned}
$$

$$
\text { Hence, } \mathbb{E}\left(\mathbf{1}_{A_{I_{0}}^{\prime}} \mid \mathcal{B}_{I_{0},<I_{0}}^{\sigma}\right)\left(x_{I_{0}}\right)=\mathbb{E}\left(\mathbf{1}_{A_{I_{0}}} \mid \mathcal{B}_{[n],<I_{0}}^{\sigma}\right)\left(x_{I_{0}}, a\right) .
$$

Combining these observations we have

$$
\int_{V_{I_{0}}} f\left(x_{I_{0}}, a\right) d \mu_{I_{0}}=\int_{C^{\prime}}\left(\mathbf{1}_{A_{I_{0}}^{\prime}}\left(x_{I_{0}}\right)-\mathbb{E}\left(\mathbf{1}_{A_{I_{0}}^{\prime}} \mid \mathcal{B}_{I_{0},<I_{0}}^{\sigma}\right)\left(x_{I_{0}}\right)\right) d \mu_{I_{0}}=0 .
$$

Claim 2. For any $I_{0} \in \mathcal{I}$, there is some $A_{I_{0}}^{\prime} \in \mathcal{B}_{[n],<I_{0}}^{\sigma}$ such that:

- If $B_{I} \in \mathcal{B}_{[n], I}$ for all $I \in \mathcal{I}$ satisfy $\mu_{[n]}\left(A_{I} \backslash B_{I}\right)<\delta$ for each $I \neq I_{0}$ and $\mu_{[n]}\left(A_{I_{0}}^{\prime} \backslash B_{I_{0}}\right)<\delta$, then $\bigcap_{I \in \mathcal{I}} B_{I} \neq \emptyset$,
- If $\mu_{[n]}\left(A_{I_{0}}^{\prime} \cap \bigcap_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} A_{I}\right)>0$ then $\mu_{[n]}\left(\bigcap_{I \in \mathcal{I}} A_{I}\right)>0$.

Proof. Define $A_{I_{0}}^{\prime}:=\left\{x_{[n]} \in V_{[n]}: \mathbb{E}\left(\mathbf{1}_{A_{I_{0}}} \mid \mathcal{B}_{[n],<I_{0}}^{\sigma}\right)\left(x_{[n]}\right)>0\right\}$. Note that $A_{I_{0}}^{\prime} \in$ $\mathcal{B}_{[n],<I_{0}}^{\sigma}\left(\right.$ as $\mathbb{E}\left(\mathbf{1}_{A_{I_{0}}} \mid \mathcal{B}_{[n],<I_{0}}^{\sigma}\right)$ is $\mathcal{B}_{[n],<I_{0}}^{\sigma}$-measurable).

If $\mu_{[n]}\left(A_{I_{0}}^{\prime} \cap \bigcap_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} A_{I}\right)>0$ then

$$
\int_{\bigcap_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} A_{I}} \mathbb{E}\left(\mathbf{1}_{A_{I_{0}}} \mid \mathcal{B}_{[n],<I_{0}}^{\sigma}\right) d \mu_{[n]}>0,
$$

and using Claim 1 this implies

$$
\mu_{[n]}\left(\bigcap_{I \in \mathcal{I}} A_{I}\right)=\int_{\bigcap_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} A_{I}} \mathbf{1}_{A_{I_{0}}} d \mu_{[n]}=\int_{\bigcap_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} A_{I}} \mathbb{E}\left(\mathbf{1}_{A_{I_{0}}} \mid \mathcal{B}_{[n],<I_{0}}^{\sigma}\right) d \mu_{[n]}>0 .
$$

Suppose now that for each $I, B_{I} \in \mathcal{B}_{[n], I}$ with $\mu_{[n]}\left(A_{I} \backslash B_{I}\right)<\delta$ for $I \in \mathcal{I} \backslash\left\{I_{0}\right\}$ and $\mu_{[n]}\left(A_{I_{0}}^{\prime} \backslash B_{I_{0}}\right)<\delta$. We also have

$$
\begin{gathered}
\mu_{[n]}\left(A_{I_{0}} \backslash A_{I_{0}}^{\prime}\right)=\int_{V_{[n]} \backslash A_{I_{0}}^{\prime}} \mathbf{1}_{A_{I_{0}}} d \mu_{[n]}= \\
\int_{V_{[n] \backslash A_{I_{0}}^{\prime}}} \mathbb{E}\left(\mathbf{1}_{A_{I_{0}}} \mid \mathcal{B}_{[n],<I_{0}}\right) d \mu_{[n]}=0,
\end{gathered}
$$

hence $\mu_{[n]}\left(A_{I_{0}} \backslash B_{I_{0}}\right)<\delta$ as well, therefore $\bigcap_{I \in \mathcal{I}} B_{I} \neq \emptyset$.
Applying Claim 2 to each $I \in \mathcal{I}$, we may assume for the rest of the proof that $A_{I} \in \mathcal{B}_{[n],<I}^{\sigma}$ for all $I \in \mathcal{I}$.

Fix some finite Boolean algebra $\mathcal{B} \subseteq \mathcal{B}_{[n], k-1}$ (hence $\mathcal{B}^{\sigma}=\mathcal{B}$) so that for every $I \in \mathcal{I},\left\|\mathbf{1}_{A_{I}}-\mathbb{E}\left(\mathbf{1}_{A_{I}} \mid \mathcal{B}\right)\right\|_{L^{2}\left(\mu_{[n]}\right)}<\frac{\sqrt{\delta}}{\sqrt{\delta}(|\mathcal{I}|+1)}$ (such a \mathcal{B} exists because there are
finitely many I and each A_{I} is $\mathcal{B}_{[n], k-1}^{\sigma}$-measurable, and $\mathcal{B}_{[n], k-1}^{\sigma}$ is generated by $\left.\mathcal{B}_{[n], k-1}\right)$. For each $I \in \mathcal{I}$, set $A_{I}^{*}:=\left\{a_{I}: \mathbb{E}\left(\mathbf{1}_{A_{I}} \mid \mathcal{B}^{\sigma}\right)\left(a_{I}\right)>\frac{|\mathcal{I}|}{|\mathcal{I}|+1}\right\} \in \mathcal{B}$.

Claim 3. For each $I \in \mathcal{I}, \mu_{[n]}\left(A_{I} \backslash A_{I}^{*}\right) \leq \frac{\delta}{2}$.
Proof. Note that

$$
\begin{aligned}
A_{I} \backslash A_{I}^{*}= & \left\{a \in V_{[n]}:\left(\mathbf{1}_{A_{I}}-\mathbb{E}\left(\mathbf{1}_{A_{I}} \mid \mathcal{B}\right)\right)(a) \geq 1-\frac{|\mathcal{I}|}{|\mathcal{I}|+1}=\frac{1}{|\mathcal{I}|+1}\right\} \\
& \subseteq\left\{a \in V_{[n]}:\left|\mathbf{1}_{A_{I}}-\mathbb{E}\left(\mathbf{1}_{A_{I}} \mid \mathcal{B}\right)\right|(a) \geq \frac{1}{|\mathcal{I}|+1}\right\}
\end{aligned}
$$

Recall:
Fact. (Markov's inequality) Let $(\Omega, \mathcal{B}, \mu)$ be a probability space. Given a \mathcal{B} measurable function $f: \Omega \rightarrow \mathbb{R}_{\geq 0}$ and $\alpha>0$, we have

$$
\mu(\{a \in \Omega: f \geq \alpha\}) \leq \frac{\int_{\Omega}(f) d \mu}{\alpha}
$$

Applying Markov's inequality to $f:=\left(\mathbf{1}_{A_{I}}-\mathbb{E}\left(\mathbf{1}_{A_{I}} \mid \mathcal{B}\right)\right)^{2}$, we get that $\mu_{[n]}\left(A_{I} \backslash A_{I}^{*}\right)$ is at most

$$
(|\mathcal{I}|+1)^{2} \int_{V_{[n]}}\left(\mathbf{1}_{A_{I}}-\mathbb{E}\left(\mathbf{1}_{A_{I}} \mid \mathcal{B}\right)\right)^{2} d \mu_{n}=(|\mathcal{I}|+1)^{2}\left\|\mathbf{1}_{A_{I}}-\mathbb{E}\left(\mathbf{1}_{A_{I}} \mid \mathcal{B}\right)\right\|_{L^{2}\left(\mu_{[n]}\right)}^{2} \leq \frac{\delta}{2}
$$

Claim 4. $\mu_{[n]}\left(\bigcap_{I \in \mathcal{I}} A_{I}\right) \geq \frac{\mu_{[n]}\left(\bigcap_{I \in \mathcal{I}} A_{I}^{*}\right)}{|\mathcal{I}|+1}$.
Proof. For each $I_{0} \in \mathcal{I}$, as $A_{I_{0}^{*}} \cap \bigcap_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} A_{I}^{*} \in \mathcal{B}$, we have

$$
\begin{gathered}
\mu_{[n]}\left(\left(A_{I_{0}}^{*} \backslash A_{I_{0}}\right) \cap \bigcap_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} A_{I}^{*}\right)=\int_{A_{I_{0}^{*} \cap \bigcap_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} A_{I}^{*}}\left(1-\mathbf{1}_{A_{I_{0}}}\right) d \mu_{[n]}=} \begin{array}{c}
\int_{A_{I_{0}^{*} \cap \cap} \cap_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} A_{I}^{*}}\left(1-\mathbb{E}\left(\mathbf{1}_{A_{I_{0}}} \mid \mathcal{B}\right)\right) d \mu_{[n]}=\int_{A_{I_{0}}^{*}}\left(1-\mathbb{E}\left(\mathbf{1}_{A_{I_{0}}} \mid \mathcal{B}\right)\right) \prod_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} \mathbf{1}_{A_{I}^{*}} d \mu_{[n]} \\
\leq \frac{1}{|\mathcal{I}|+1} \int_{V_{[n]}} \prod_{I \in \mathcal{I}} \mathbf{1}_{A_{I}^{*}} d \mu_{[n]} \\
\quad=\frac{1}{|\mathcal{I}|+1} \mu_{[n]}\left(\bigcap_{I \in \mathcal{I}} A_{I}^{*}\right)
\end{array}
\end{gathered}
$$

But then

$$
\begin{aligned}
& \mu_{[n]}\left(\bigcap_{I \in \mathcal{I}} A_{I}^{*} \backslash \bigcap_{I \in \mathcal{I}} A_{I}\right) \leq \sum_{I_{0} \in \mathcal{I}} \mu_{[n]}\left(\left(A_{I_{0}}^{*} \backslash A_{I_{0}}\right) \cap \bigcap_{I \in \mathcal{I} \backslash\left\{I_{0}\right\}} A_{I}^{*}\right) \\
& \leq|\mathcal{I}| \frac{1}{|\mathcal{I}|+1} \mu_{[n]}\left(\bigcap_{I \in \mathcal{I}} A_{I}^{*}\right)
\end{aligned}
$$

so $\mu\left(\bigcap_{I \in \mathcal{I}} A_{I}\right) \geq \mu\left(\bigcap_{I \in \mathcal{I}} A_{I}^{*}\right)-\mu\left(\bigcap_{I \in \mathcal{I}} A_{I}^{*} \backslash \bigcap_{I \in \mathcal{I}} A_{I}\right) \geq\left(1-|\mathcal{I}| \frac{1}{|\mathcal{I}|+1}\right) \mu_{[n]}\left(\bigcap_{I \in \mathcal{I}} A_{I}^{*}\right) \geq$ $\frac{1}{|\mathcal{I}|+1} \mu_{[n]}\left(\bigcap_{I \in \mathcal{I}} A_{I}^{*}\right)$.

- Each $A_{I}^{*} \in \mathcal{B}$ can be written in the form $A_{I}^{*}=\bigcup_{i \leq r_{I}} A_{I, i}^{*}$ for some $r_{I} \in \mathbb{N}$, where $A_{I, i}^{*}=\bigcap_{J \in\left({ }_{k-1}^{I}\right)} A_{I, i, J}^{*}$ and $A_{I, i, J}^{*} \in \mathcal{B}_{[n], J}$, such that if $i \neq i^{\prime}$ then $A_{I, i}^{*} \cap A_{I, i^{\prime}}^{*}=\emptyset$.
- Then

$$
\bigcap_{I \in \mathcal{I}} A_{I}^{*}=\bigcup_{\vec{i} \in \prod_{I \in \mathcal{I}}\left[1, r_{I}\right]} \bigcap_{I \in \mathcal{I}} \bigcap_{J \in\left(\left(_{k-1}^{I}\right)\right.} A_{I, i_{I}, J}^{*} .
$$

- For each $\vec{i} \in \prod_{I \in \mathcal{I}}\left[1, r_{I}\right]$, let $D_{\vec{i}}:=\bigcap_{I \in \mathcal{I}} \bigcap_{J \in\left({ }_{k-1}^{I}\right)} A_{I, i_{I}, J}^{*}$.
- Each $A_{I, i_{I}, J}^{*} \in \mathcal{B}_{[n], J}$, so we may regroup the components and write $D_{\vec{i}}=$ $\bigcap_{J \in\binom{[n]}{k-1}} D_{\vec{i}, J}$ where $D_{\vec{i}, J}=\bigcap_{J \subseteq I \in \mathcal{I}} A_{I, i_{I}, J}^{*} \in \mathcal{B}_{[n], J}$.
- Suppose, for a contradiction, that $\mu_{[n]}\left(\bigcap_{I} A_{I}^{*}\right)=0$.

Then $\mu_{[n]}\left(D_{\vec{i}}\right)=\mu_{[n]}\left(\bigcap_{J \in\binom{[n]}{k-1)}} D_{\overrightarrow{\vec{i}}, J}\right)=0$ for all $\vec{i} \in \prod_{I \in \mathcal{I}}\left[1, r_{I}\right]$.

- By the inductive hypothesis applied to each of the $D_{\vec{i}}, \vec{i} \in \vec{i} \in \prod_{I \in \mathcal{I}}\left[1, r_{I}\right]$, for each real $\gamma>0$, there are then some $B_{\vec{i}, J} \in \mathcal{B}_{[n], J}$ such that $\mu_{[n]}\left(D_{\vec{i}, J} \backslash B_{\vec{i}, J}\right)<$ γ and $\bigcap_{J \in\left(\begin{array}{l}{[n]-1}\end{array}\right)} B_{i, J}=\emptyset$.
In particular, this holds with $\gamma:=\frac{\delta}{2\left({ }_{k-1}^{k}\right) \Pi_{I \in \mathcal{I}} r_{I} \max _{I \in \mathcal{I}} r_{I}}$.
- For each $I \in \mathcal{I}, i \leq r_{I}, J \subsetneq I$ define

$$
B_{I, i, J}^{*}=A_{I, i, J}^{*} \cap \bigcap_{\vec{i}, i_{I}=i}\left(B_{\vec{i}, J} \cup \bigcup_{I^{\prime} \supsetneq J, I^{\prime} \neq I} \neg A_{I^{\prime}, i_{I^{\prime}}, J}^{*}\right) \in \mathcal{B}_{[n], J} .
$$

Claim 5. $\mu_{[n]}\left(A_{I, i, J}^{*} \backslash B_{I, i, J}^{*}\right) \leq \frac{\delta}{2\left(k_{-1}^{k}\right) \max _{I \in \mathcal{I}} r_{I}}$.
Proof. If $x \in A_{I, i, J}^{*} \backslash B_{I, i, J}^{*}$, then for some $\vec{i} \in \prod_{I \in \mathcal{I}}\left[1, r_{I}\right]$ with $i_{I}=i$ we have

$$
x \notin B_{\vec{i}, J} \cup \bigcup_{I^{\prime} \supsetneq J, I^{\prime} \neq I} \neg A_{I^{\prime}, i_{I^{\prime}}, J}^{*} .
$$

This means $x \notin B_{\vec{i}, J}$ and $x \in \bigcap_{I^{\prime} \supsetneq J} A_{I^{\prime}, i_{I^{\prime}}, J}^{*}=D_{\vec{i}, J}$. So

$$
\mu_{[n]}\left(A_{I, i, J}^{*} \backslash B_{I, i, J}^{*}\right) \leq \sum_{\vec{i} \in \prod_{I \in \mathcal{I}}^{\left[1, r_{I}\right]}} \mu_{[n]}\left(D_{\vec{i}, J} \backslash B_{\vec{i}, J}\right) \leq \frac{\delta}{2\binom{k}{k-1} \max _{I \in \mathcal{I}} r_{I}}
$$

Claim 6. Let $\left.B_{I}^{*}:=\bigcup_{i \leq r_{I}} \bigcap_{J \in(k-1}^{I}\right) B_{I, i, J}^{*} \in \mathcal{B}_{[n],<I}$. Then $\mu_{[n]}\left(A_{I} \backslash B_{I}^{*}\right) \leq \delta$.
Proof. As $\mu_{[n]}\left(A_{I} \backslash A_{I}^{*}\right) \leq \frac{\delta}{2}$ by Claim 3, it suffices to show that $\mu_{[n]}\left(A_{I}^{*} \backslash B_{I}^{*}\right) \leq$ $\frac{\delta}{2}$. We have

$$
\begin{aligned}
& \mu_{[n]}\left(A_{I}^{*} \backslash B_{I}^{*}\right)=\mu_{[n]}\left(A_{I}^{*} \backslash \bigcup_{i \leq r_{I}} \bigcap_{J \in\left(\left(_{k-1}^{I}\right)\right.} B_{I, i, J}^{*}\right) \\
& =\mu_{[n]}\left(\bigcup_{i \leq r_{I}} \bigcap_{J \in\left(k_{k-1}^{I}\right)} A_{I, i, J}^{*} \backslash \bigcup_{i \leq r_{I}} \bigcap_{J \in\left(K_{k-1}^{I}\right)} B_{I, i, J}^{*}\right) \\
& \quad \leq \mu_{[n]}\left(\bigcup_{i \leq r_{I}}\left(\bigcap_{J} A_{I, i, J}^{*} \backslash \bigcap_{J} B_{I, i, J}^{*}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & \sum_{i \leq r_{I}} \mu_{[n]}\left(\bigcap_{J} A_{I, i, J}^{*} \backslash \bigcap_{J} B_{I, i, J}^{*}\right) \\
& \leq \sum_{i \leq r_{I}} \sum_{J} \mu_{[n]}\left(A_{I, i, J}^{*} \backslash B_{I, i, J}^{*}\right) \\
\leq & r_{I}\binom{k}{k-1} \frac{\delta}{2\binom{k}{k-1} \max _{I \in \mathcal{I}} r_{I}} \leq \frac{\delta}{2}
\end{aligned}
$$

using Claim 5.
Hence the sets B_{I}^{*} satisfy the assumption for all $I \in \mathcal{I}$ by Claim 6, therefore $\bigcap_{I \in \mathcal{I}} B_{I}^{*} \neq \emptyset$.

Claim 7. $\bigcap_{I \in \mathcal{I}} B_{I}^{*} \subseteq \bigcup_{\vec{i} \in \prod_{I \in \mathcal{I}}\left[1, r_{I}\right]} \bigcap_{J \in\binom{[n]}{k-1}} B_{\vec{i}, J}$.
Proof. Suppose $x \in \bigcap_{I \in \mathcal{I}} B_{I}^{*} \subseteq \bigcap_{I \in \mathcal{I}} \bigcup_{i \leq r_{I}} \bigcap_{J \in\binom{I}{k-1}} B_{I, i, J}^{*}$. Then for each $I \in$ \mathcal{I}, there is some $i_{I} \leq r_{I}$ such that $x \in \bigcap_{J \in\binom{I}{k-1}} B_{I, i_{I}, J}^{*}$, and take $\vec{i}_{x}:=\left(i_{I}: I \in \mathcal{I}\right)$.

Since $B_{I, i_{I}, J}^{*} \subseteq A_{I, i_{I}, J}^{*}$, for each $I \in \mathcal{I}$ and $J \subsetneq I, x \in A_{I, i_{I}, J}^{*}$.
For any J, let $I \supset J$. Then

$$
x \in B_{I, i_{I}, J}^{*}=A_{I, i_{I}, J}^{*} \cap \bigcap_{\overrightarrow{i^{\prime}, i_{I}^{\prime}=i_{I}}}\left(B_{\vec{i}^{\prime}, J} \cup \bigcup_{I^{\prime} \supseteq J, I^{\prime} \neq I} \neg A_{I^{\prime}, i_{I^{\prime}}, J}^{*}\right) .
$$

In particular, $x \in B_{\vec{i}_{x}, J} \cup \bigcup_{I^{\prime} \supseteq J, I^{\prime} \neq I} \neg A_{I^{\prime}, i_{I^{\prime}}, J}^{*}$.
Since $x \in A_{I, i_{I^{\prime}}, J}^{*}$ for each $I^{\prime} \supset J$, necessarily $x \in B_{\vec{i}, J}$. This holds for any J, so $x \in \bigcap_{J} B_{\vec{i}, J}$.

Since $\bigcap_{I \in \mathcal{I}} B_{I}^{*} \neq \emptyset$, there is some $\vec{i} \in \prod_{I \in \mathcal{I}}\left[1, r_{I}\right]$ such that $\bigcap_{J} B_{\vec{i}, J} \neq \emptyset$. This is a contradiction to our assumption, hence $\mu_{[n]}\left(\bigcap_{I} A_{I}^{*}\right)>0$, and therefore, $\mu_{[n]}\left(\bigcap_{I \in \mathcal{I}} A_{I}\right) \geq \frac{\mu_{[n]}\left(\bigcap_{I \in \mathcal{I}} A_{I}^{*}\right)}{|\mathcal{I}|+1}>0$ by Claim 4 .

Corollary 3.13. (Hypergraph removal, partitioned version of Theorem 3.3).
Fix $0 \leq k \leq n, \varepsilon>0$ and $\mathcal{I} \subseteq\binom{[n]}{k}$ a k-uniform hypergraph on $[n]$. Then there is $\delta>0$ such that the following holds.

Let $\left(V_{i}: i \in[n]\right)$ be finite non-empty sets. For each $I \in \mathcal{I}$, let A_{I} be a subset of $\prod_{i \in I} V_{i}$. Suppose that

$$
\mid\left\{\left(x_{i}\right)_{i \in[n]} \in \prod_{i \in[n]} V_{i}:\left(x_{i}\right)_{i \in I} \in A_{I} \text { for all } I \in \mathcal{I}\right\}\left|\leq \delta \prod_{i \in[n]}\right| V_{i} \mid
$$

(i.e. the n-partite hypergraph $G=\left(\left(V_{i}\right)_{i \in[n]},\left(A_{I}\right)_{I \in \mathcal{I}}\right)$ contains at most $\delta \prod_{i \in[n]}\left|V_{i}\right|$ copies of \mathcal{I} - not induced, just as a subgraph).

Then for each $I \in \mathcal{I}$ there exists $B_{I} \subseteq \prod_{i \in I} V_{i}$ with $\left|A_{I} \backslash B_{I}\right|<\varepsilon \prod_{i \in I}\left|V_{i}\right|$ such that

$$
\left\{\left(x_{i}\right)_{i \in[n]} \in \prod_{i \in[n]} V_{i}:\left(x_{i}\right)_{i \in I} \in B_{I} \text { for all } I \in \mathcal{I}\right\}=\emptyset
$$

(i.e. the n-partite hypergraph $G^{\prime}=\left(\left(V_{i}\right)_{i \in[n]},\left(B_{I}\right)_{I \in \mathcal{I}}\right)$ contains no copies of \mathcal{I} whatsoever).
Proof. Assume not, and let $k, \mathcal{I} \subseteq\binom{[n]}{k}$ and $\varepsilon>0$ be a counterexample. Since there is no $\delta>0$ as in the statement of the theorem, for each $m \in \mathbb{N}$ we may choose a k-uniform hypergraph $G_{m}=\left(\left(V_{i}^{m}\right)_{i \in[n]},\left(A_{I}^{m}\right)_{I \in \mathcal{I}}\right)$ such that G_{m} contains at most $\frac{1}{m} \prod_{i \in[n]}\left|V_{i}^{m}\right|$ copies of \mathcal{I}, but there are no subsets $B_{I}, I \in \mathcal{I}$ as required.

Then clearly $\left|V_{i}^{m}\right| \rightarrow \infty$ as $m \rightarrow \infty$. Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N}, and let $G:=\prod_{m \in \mathbb{N}} G_{m} / \mathcal{U}, G=\left(\left(V_{i}\right)_{i \in[n]},\left(A_{I}\right)_{I \in \mathcal{I}}\right)$. For each $I \subseteq[n]$, let μ_{I}^{m} be the normalized counting measure on V_{I}^{m}, and let $\mu_{I}=\lim _{\mathcal{U}} \mu_{I}^{m}$ - a f.a.p. measure on the internal subsets of $V_{I}=\prod_{i \in[n]} V_{i}$.

Then $\left(\mu_{I}: I \subseteq[n]\right)$ is a compatible system of measures on $\left(V_{i}: i \in[n]\right)$ (Exercise 3.10). Note that by assumption $\mu_{[n]}^{m}\left(\bigcap_{I \in \mathcal{I}} A_{I}^{m}\right)<\frac{1}{m}$ for all $m \in \mathbb{N}$, hence $\mu_{[n]}\left(\bigcap_{I \in \mathcal{I}} A_{I}\right)=0$. By Theorem 3.12 there are some internal sets $B_{I}, I \in \mathcal{I}$, such that $\mu_{[n]}\left(A_{I} \backslash B_{I}\right)<\frac{\varepsilon}{2}$ and $\bigcap_{I \in \mathcal{I}} B_{I}=\emptyset$. Say $B_{I}=\prod_{m \in \mathbb{N}} B_{I}^{m} / \mathcal{U}$. Then for some $S \in \mathcal{U}$ and all $m \in S$, we must have $\mu_{[n]}^{m}\left(A_{I}^{m} \backslash B_{I}^{m}\right)<\varepsilon$ and $\bigcap_{I \in \mathcal{I}} B_{I}^{m}=\emptyset-$ a contradiction to the choice of the G_{m} 's.

Exercise 3.14. Deduce Theorem 3.3 from Corollary 3.13 (taking $V_{i}=V$ for all i and constructing the corresponding partite hypergraph).

3.3. Szemerédi's theorem on arithmetic progressions.

Theorem 3.15. (Szemerédi's theorem) For any $\varepsilon>0$ and $k \in \mathbb{N}$, there is some $n_{0} \in \mathbb{N}$ such that for any $n \geq n_{0}$ and $A \subseteq[1, n]$ with $|A| \geq \varepsilon n$, there exists an a and $d \neq 0$ such that $a, a+d, a+2 d, \ldots, a+(k-1) d \in A$.

Proof. Let $\delta>0$ be as given by Theorem 3.13 for $\varepsilon^{\prime}:=\frac{\varepsilon^{k}}{2^{k} k^{2(k-1)}}>0, k$ and W the complete k-uniform hypergraph on $k+1$ vertices. Let n_{0} be large enough so that $\delta n_{0}^{k+1}>n_{0}^{k}$.

Let $A \subseteq[1, n]$ be given, with $n \geq n_{0}$. We define a k-uniform $(k+1)$-partite hypergraph as follows. Let $V_{i}:=[1, n]$ for each $i=1, \ldots, k$ and let $V_{k+1}:=$ $\left[1, k^{2} n\right] \subseteq \mathbb{N}$. Given $x_{i} \in V_{i}$ for all $i=1, \ldots, k+1$, we define:

- $\left(x_{1}, \ldots, x_{k}\right)$ is an edge iff $\sum_{i \in[1, k]} i x_{i} \in A$,
- for any $1 \leq i \leq k,\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k+1}\right)$ is an edge iff $\sum_{j \in[1, k] \backslash\{i\}} j x_{j}+$ $i\left(x_{k+1}-\sum_{j \in[1, k] \backslash\{i\}} x_{j}\right) \in A$.
Suppose $\left(x_{1}, \ldots, x_{k+1}\right)$ is a copy of the complete k-uniform hypergraph on $k+1$ vertices with $x_{k+1} \neq \sum_{i \in[1, k]} x_{i}$. Then let $a:=\sum_{i \in[1, k]} i x_{i}$ and $d=x_{k+1}-$ $\sum_{i \in[1, k]} x_{i} \neq 0$. Then we have $a \in A$, and for each $i \leq k$ we have
$a+i d=\sum_{j \in[1, k]} j x_{j}+i\left(x_{k+1}-\sum_{j \in[1, k]} x_{j}\right)=\sum_{j \in[1, k] \backslash\{i\}} j x_{j}+i\left(x_{k+1}-\sum_{j \in[1, k] \backslash\{i\}} x_{j}\right) \in A$,
as wanted.
On the other hand, for any $a \in A$ and any sequence $\left(x_{1}, \ldots, x_{k}\right)$ with $a=$ $\sum_{i \in[1, k]} i x_{i}$, the sequence $\left(x_{1}, \ldots, x_{k}, \sum_{i \in[1, k]} x_{i}\right)$ is also a copy of the complete k-uniform hypergraph on $k+1$ vertices: clearly $\left(x_{1}, \ldots, x_{k}\right)$ is an edge, and for
any $1 \leq i \leq k$ we have $\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}, \sum_{i \in[1, k]} x_{i}\right)$ is an edge as $\sum_{j \in[1, k] \backslash\{i\}} j x_{j}+i\left(\sum_{i \in[1, k]} x_{i}-\sum_{j \in[1, k] \backslash\{i\}} x_{j}\right)=\sum_{j \in[1, k] \backslash\{i\}} j x_{j}+i x_{i}=\sum_{i \in[1, k]} i x_{i}=$ $a \in A$. There are at least $\frac{\varepsilon}{2} n$ choices for $a \in A$ with $a \geq \frac{\varepsilon}{2} n$; and for any $a \geq \frac{\varepsilon}{2} n$ and any choice of $x_{i} \in\left[1, \frac{\varepsilon}{2 k^{2}} n\right]$ for $i=1, \ldots, k-1$ we have $\sum_{i \in[1, k]} i x_{i} \leq \sum_{i \in[1, k]} k x_{i} \leq$ $k^{2} \frac{\varepsilon}{2 k^{2}} n \leq \frac{\varepsilon}{2} n$, so there is some $x_{k} \in[1, n]$ satisfying $\sum_{i \in[1, k]} i x_{i}=a$. Hence the number of such sequences is at least $\frac{\varepsilon}{2} n\left(\frac{\varepsilon}{2 k^{2}} n\right)^{k-1}=\frac{\varepsilon^{k}}{2^{k} k^{2(k-1)}} n^{k} \geq \varepsilon^{\prime} n^{k}$. It is not possible to remove all such sequences by removing $<\varepsilon^{\prime} n^{k}$ edges. Hence the hypergraph removal (Corollary 3.13) implies that there must be $>\delta n^{k+1}$ many copies of the complete k-uniform hypergraph on $k+1$ vertices. But there are at most n^{k} sequences of the form $\left(x_{1}, \ldots, x_{k}, \sum_{i \leq k} x_{i}\right)$ and $\delta n^{k+1}>n^{k}$ by assumption on n, so the remaining copies must correspond to arithmetic progressions.
3.4. References. The proof of Theorem 3.12 presented here follows 19, Section 6], with some clarifications, which in turn is based on the ideas in Tao [17, 18] and others. The deduction of Szemerédi's theorem from hypergraph removal is due to Frankl and Rödl [5], we follow the presentation in [6].

4. Regularity lemma for hypergraphs of finite VC-Dimension

4.1. Bounds in the regularity lemma. Recall the graph regularity lemma (Theorem 2.1) in the bipartite version.

Theorem. Let $\varepsilon>0$ be arbitrary. Then there is some $K=K(\varepsilon) \in \mathbb{N}$ such that for every bipartite finite graph $G=(V, W, E)$ with $|V|,|W| \geq K$ there are partitions $V=V_{1} \sqcup \cdots \sqcup V_{n}$ and $W=W_{1} \sqcup \ldots \sqcup W_{n}$, real numbers $\delta_{i j}, i, j \in[n]$, and an exceptional set of pairs $\Sigma \subseteq[n] \times[n]$ such that:
(1) (Bounded size of the partition) $n \leq K$,
(2) (Few exceptional pairs) $\sum_{(i, j) \in \Sigma}\left|V_{i}\right|\left|W_{j}\right| \leq \varepsilon|V||W|$,
(3) (ε-regularity) for each $(i, j) \in[n] \times[n] \backslash \Sigma$ we have

$$
\left||E(A, B)|-\delta_{i j}\right| A||B||<\varepsilon\left|V_{i}\right|\left|W_{j}\right|
$$

for all $A \subseteq V_{i}, B \subseteq W_{j}$. We call a pair of sets $\left(V_{i}, W_{j}\right)$ with $(i, j) \in$ $[K] \times[K] \backslash \Sigma$ an ε-regular pair.

Remark 4.1. (1) Exceptional pairs are unavoidable (for large n, let $V=W=$ $[n]$ and let $E \subseteq V \times W$ be defined by $E=\{(i, j): i, j \in[n], i<j\}$ - there is no way to cover the diagonal by a bounded number of regular pairs).
(2) The densities $\delta_{i, j} \in[0,1]$ could be arbitrary, e.g. we cannot hope to have $\delta_{i, j} \in\{0,1\}$ in general (e.g. for large n, take a graph with edges distributed uniformly at random with probability $\frac{1}{2}$).
(3) The size of the partition is unavoidably huge!

Fact 4.2. (Gowers [7, [13]) $K(\varepsilon)$ is at least an exponential tower of 2 's of height $O\left(\frac{1}{\varepsilon}\right)^{c}$ for some $c=\frac{1}{16}$.
Fact 4.3. (Fox, Lovás 4]) $K(\varepsilon)$ is at least an exponential tower of height $O\left(\frac{1}{\varepsilon}\right)^{c}$ with $c=2$, and this bound is tight.
The graphs witnessing these are constructed using probabilistic methods. Perhaps one can do better for graphs defined "geometrically" or "algebraically"? We
discuss improved regularity lemmas for some restricted families of graphs. It turns out that these conditions can be characterized by some model-theoretic notions of "tameness".
4.2. VC-dimension. For more details and proofs of the facts in this section, see (2).

Let X be a set (finite or infinite), and let \mathcal{F} be a family of subsets of X. A pair (X, \mathcal{F}) is called a set system.

Definition 4.4. (1) Given $A \subseteq X$, we say that the family \mathcal{F} shatters A if for every $A^{\prime} \subseteq A$, there is a set $S \in \mathcal{F}$ such that $S \cap A=A^{\prime}$.
(2) The family \mathcal{F} has $V C$-dimension at most n (written as $\mathrm{VC}(\mathcal{F}) \leq n$), if there is no $A \subseteq X$ of cardinality $n+1$ such that \mathcal{F} shatters A. We say that \mathcal{F} is of VC-dimension n if it is of VC-dimension at most n and shatters some subset of size n.
(3) If for every $n \in \mathbb{N}$ we can find a subset of X of cardinality n shattered by \mathcal{F}, then we say that \mathcal{F} has infinite VC -dimension $(\operatorname{VC}(\mathcal{F})=\infty)$. If $\mathrm{VC}(\mathcal{F})$ is finite, we say that \mathcal{F} is a $V C$-family. Note that if $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ then $\operatorname{VC}\left(\mathcal{F}^{\prime}\right) \leq \operatorname{VC}(\mathcal{F})$.

Example 4.5. (1) Let X be an infinite set and $\mathcal{F}:=\mathcal{P}(X)$. Then clearly $\operatorname{VC}(\mathcal{F})=\infty$. But for $\mathcal{F}=\binom{X}{k}, \operatorname{VC}(\mathcal{F})=k$.
(2) Let $X=\mathbb{R}$ and let \mathcal{F} be the family of all unbounded intervals. Then \mathcal{F} has VC-dimension 2. Clearly any two-element set can be shattered by \mathcal{F}. However, if we take any $a<b<c$, then $\{a, b, c\}$ cannot be shattered by \mathcal{F}.
Exercise 4.6. (1) Let $X=\mathbb{R}^{2}$, and let \mathcal{F} be the set of all half-spaces. Show that $\operatorname{VC}(\mathcal{F})=3$.
(2) Let $X=\mathbb{R}^{2}$ and let \mathcal{F} be the set of all convex polygons. Show that $\mathrm{VC}(\mathcal{F})=\infty$.

Definition 4.7. We define the shatter function $\pi_{\mathcal{F}}: \mathbb{N} \rightarrow \mathbb{N}$ associated to the family \mathcal{F} as follows. For a set $A \subseteq X$ we let $\mathcal{F} \cap A:=\{S \cap A: S \in \mathcal{F}\}$. Then we define $\pi_{\mathcal{F}}(n):=\max \{|\mathcal{F} \cap A|: A \subseteq X,|A|=n\}$.

Note that $\pi_{\mathcal{F}}(n) \leq 2^{n}$, and that $\operatorname{VC}(\mathcal{F})<n \Longleftrightarrow \pi_{\mathcal{F}}(m)<2^{m}$ for all $m \geq n$. The following fundamental lemma states that either $\pi_{\mathcal{F}}(n)=2^{n}$ for all $n \in \mathbb{N}$, or $\pi_{\mathcal{F}}(n)$ has polynomial growth.

Lemma 4.8. (Sauer-Shelah lemma) Let (X, \mathcal{F}) be a set system of $V C$-dimension at most k. Then, for all $n \geq k$, we have $\pi_{\mathcal{F}}(n) \leq \sum_{i=0}^{k}\binom{n}{i}$.

In particular, $\pi_{\mathcal{F}}(n)=O\left(n^{k}\right)$.
Remark 4.9. (Boolean operations preserve finite VC-dimension) Let $\mathcal{F}_{1}, \mathcal{F}_{2}$ be two families of subsets of X with $\operatorname{VC}\left(\mathcal{F}_{i}\right)=d_{i}<\infty$. Show that all of the following families have finite VC-dimension:
(1) $\mathcal{F}:=\mathcal{F}_{1} \cup \mathcal{F}_{2}$,
(2) $\mathcal{F}_{\cap}:=\left\{S_{1} \cap S_{2}: S_{i} \in \mathcal{F}_{i}, i=1,2\right\}$ and $\mathrm{VC}\left(\mathcal{F}_{\cap}\right) \leq d_{1}+d_{2}+1$,
(3) $\mathcal{F}_{\cup}:=\left\{S_{1} \cup S_{2}: S_{i} \in \mathcal{F}_{i}, i=1,2\right\}, \mathcal{F}_{1}^{c}:=\left\{X \backslash S_{1}: S_{1} \in \mathcal{F}_{1}\right\}$ and $\operatorname{VC}\left(\mathcal{F}_{\cup}\right) \leq$ $d_{1}+d_{2}+1, \mathrm{VC}\left(\mathcal{F}_{1}^{c}\right)=d_{1}$,
(4) $\mathcal{F}_{1} \times \mathcal{F}_{2}:=\left\{S_{1} \times S_{2}: S_{1} \in \mathcal{F}_{1}, S_{2} \in \mathcal{F}_{2}\right\}$ - a family of subsets of $X \times X$.
(5) Besides, if X^{\prime} is an infinite set and $f: X^{\prime} \rightarrow X$ is a map, let $f^{-1}\left(\mathcal{F}_{1}\right):=$ $\left\{f^{-1}(S): S \in \mathcal{F}_{1}\right\}$. Then VC $\left(f^{-1}\left(\mathcal{F}_{1}\right)\right) \leq \operatorname{VC}\left(\mathcal{F}_{1}\right)$.

Recall: by a partitioned formula $\phi(\bar{x}, \bar{y})$ we mean a formula with its free variables partitioned into two groups \bar{x} (object variables) and \bar{y} (parameter variables). Given a partitioned formula $\phi(\bar{x}, \bar{y})$ and $\bar{b} \in M^{|\bar{y}|}$, we let $\phi\left(M^{|\bar{x}|}, \bar{b}\right)$ be the set of all $\bar{a} \in M^{|\bar{x}|}$ such that $\mathcal{M} \models \phi(\bar{a}, \bar{b})$. Sets of this form are called definable (or ϕ definable, in this case). We consider the family $\mathcal{F}_{\phi(\bar{x}, \bar{y})}$ of subsets of $M^{|\bar{x}|}$ defined by $\mathcal{F}_{\phi(\bar{x}, \bar{y})}=\left\{\phi\left(M^{|\bar{x}|}, \bar{b}\right): \bar{b} \in M^{|\bar{y}|}\right\}$.
Theorem 4.10. (Shelah) Let M be a first-order structure. Assume that for every partitioned formula $\phi(x, \bar{y})$ with x a singleton, the family \mathcal{F}_{ϕ} has finite $V C$ dimension. Then for any $\phi(\bar{x}, \bar{y}) \in L$, the corresponding family \mathcal{F}_{ϕ} has finite $V C$ dimension.

The proof uses Ramsey's theorem, and gives bounds that are quite far from optimal.

In model theory, a partitioned formula $\phi(\bar{x}, \bar{y})$ is called NIP (No Independence Property) if the family \mathcal{F}_{ϕ} has finite VC-dimension. A structure \mathcal{M} is NIP if all definable families in it are NIP. Such structures were defined by Shelah around the same time as Vapnik and Chervonenkis have defined their dimension for entirely different purposes, and are currently being actively studied in model theory (see [16] for a survey).
Example 4.11. (Semialgebraic sets of bounded complexity) Recall that a set $X \subseteq$ \mathbb{R}^{n} is semialgebraic if it is given by a Boolean combination of polynomial equalities and inequalities.

We say that the description complexity of a semialgebraic set $X \subseteq \mathbb{R}^{d}$ is bounded by $t \in \mathbb{N}$ if $d \leq t$ and X can be defined as a Boolean combination of at most t polynomial equalities and inequalities, such that all of the polynomials involved have degree at most t. For example, consider the family of all spheres in \mathbb{R}^{n}, or all cubes in \mathbb{R}^{n}, etc.

We claim that for any t, the family \mathcal{F}_{t} of all semialgebraic sets of complexity $\leq t$ has finite VC-dimension. To see this, consider the field of real numbers as a first-order structure $\mathcal{M}=(\mathbb{R},+, \times, 0,1,<)$. Note that \mathcal{F}_{t} is contained in the union of finitely many families of the form $\left\{\mathcal{F}_{\phi_{i}(\bar{x}, \bar{y})}: i<t^{\prime}\right\}$ where t^{\prime} only depends on t (since there are only finitely many different polynomials of degree $\leq t$, up to varying coefficients, and only finitely many different Boolean combinations of size $\leq t$). So it is enough to show that every such family has finite VC-dimension (by Remark 4.9.)

By the classical result of Tarski, this structure \mathcal{M} eliminates quantifiers, and so definable sets are precisely the semialgebraic ones. In particular, if we are given a formula of the form $\phi(x, \bar{y})$, for every $b \in M^{|\bar{y}|}$ the set $\phi(M, b)$ is just a union of at most n_{ϕ} intervals and points, where n_{ϕ} only depends on ϕ. As the collection of all intervals has finite VC-dimension, in view of Remark 4.9 we have that for all formulas $\phi(x, \bar{y})$ with $|x|=1, \mathcal{F}_{\phi}$ has finite VC-dimension. By Theorem 4.10 this implies that the same is true for all formulas.
Example 4.12. Definable families in stable structures.
The class of stable structures is well studied in model theory, originating from Morley's theorem and Shelah's work on classification theory. See e.g. 11 for more details. Examples of stable structures:

- $(\mathbb{C}, \times,+, 0,1)$ (definable sets correspond to the constructible sets, i.e. Boolean combinations of algebraic sets),
- separably closed and differentially closed fields,
- arbitrary planar graphs $G=(V, E)$,
- abelian groups (viewed as structures in the pure group language $(G, \cdot, 1)$),
- [Z. Sela] non-commutative free groups (in the pure group language).

Example 4.13. [8] Let $(G, \cdot,<)$ be an arbitrary ordered abelian group. Then definable families of sets have finite VC-dimension. In particular, all definable families in Presburger arithmetic $(\mathbb{Z},+,<)$ have finite VC-dimension.

Example 4.14. Let $\left(\mathbb{Q}_{p}, \times,+, 0,1\right)$ be the field of p-adics. Using the quantifier elimination result of Macintyre in this setting, one can show that again all definable families have finite VC-dimension.

4.3. The VC-theorem, ε-approximations and ε-nets.

Fact 4.15. (Weak law of large numbers) Let $(\Omega, \mathcal{B}, \mathbb{P})$ be a probability space. Let $A \subseteq \Omega$ be an event and let $\varepsilon>0$ be fixed. Then for any $n \in \mathbb{N}$ we have:

$$
\mathbb{P}^{n}\left(\left(\omega_{1}, \ldots, \omega_{n}\right) \in \Omega^{n}:\left|\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{A}\left(\omega_{i}\right)-\mathbb{P}(A)\right| \geq \varepsilon\right) \leq \frac{1}{4 n \varepsilon^{2}}
$$

Note that this probability $\rightarrow 0$ as $n \rightarrow \infty$. In particular this means that fixing an arbitrary error ε, we can take n large enough so that with high probability the measure of A can be determined up to ε by picking n points at random and counting the proportion of them in A.

The key result in VC-theory is the theorem of Vapnik and Chervonenkis [20] demonstrating that a uniform version of the weak law of large numbers holds for families of events of finite VC-dimension. That is, with high probability sampling on a sufficiently long random tuple gives a good estimate for the measure of all sets in the family \mathcal{F} simultaneously.

Let us fix some notation. For $S \in \mathcal{F}$ and $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ we define

$$
\operatorname{Av}\left(x_{1}, \ldots, x_{n} ; S\right):=\frac{1}{n}\left|\left\{1 \leq i \leq n: x_{i} \in S\right\}\right|
$$

Theorem 4.16. ($V C$-theorem) Let (X, μ) be a finite probability space, and $\mathcal{F} \subseteq \mathcal{P}(X)$ a family of subsets of X. Then for every $\varepsilon>0$ we have

$$
\mu^{n}\left(\sup _{S \in \mathcal{F}}\left|\operatorname{Av}\left(x_{1}, \ldots, x_{n} ; S\right)-\mu(S)\right|>\varepsilon\right) \leq 8 \pi_{\mathcal{F}}(n) \exp \left(-\frac{n \varepsilon^{2}}{32}\right)
$$

Remark 4.17. Note that if $\operatorname{VC}(\mathcal{F})=d$, then $\pi_{\mathcal{F}}(n)=O\left(n^{d}\right)$ and so the right part converges to 0 as n grows. Thus, as long as the VC-dimension of \mathcal{F} is bounded, starting with \mathcal{F} of arbitrary large finite size and an arbitrary measure, we still get an approximation up to an error ε for all sets in \mathcal{F} by sampling on a random tuple of length depending just on d, ε.

Corollary 4.18. Let $d \in \mathbb{N}$ and $\varepsilon>0$ be arbitrary. Then there is some $N=$ $N(d, \varepsilon) \in \mathbb{N}$ such that any set system (X, \mathcal{F}) on a finite probability space (X, μ) with $\mathrm{VC}(\mathcal{F}) \leq d$ admits an ε-approximation of size at most N.

That is, there is a multi-set $\left\{x_{1}, \ldots, x_{N}\right\}$ of elements from X (repetitions are allowed) such that for all $S \in \mathcal{F}$ we have

$$
\left|\operatorname{Av}\left(x_{1}, \ldots, x_{N} ; S\right)-\mu(S)\right| \leq \varepsilon
$$

Proof. By Remark 4.17, it follows from Theorem 4.16 that for N large enough (with respect to d and ε), with high probability any N-tuple from X works as a ε approximation (so in particular that is at least one N -tuple with this property).

Remark 4.19. (1) Note that repetitions among the points x_{1}, \ldots, x_{n} are necessary - think of a measure on a finite set, giving certain different weights to different points.
(2) It is known that one can take $N=C \frac{1}{\varepsilon^{2}} \log \frac{1}{\varepsilon}$, where $C=C(d)$ is a constant.

Definition 4.20. Let V be a set, \mathcal{B} a b.a. on V and μ a f.a.p. measure on \mathcal{B}. Let \mathcal{F} be a family of subsets of V with $\mathcal{F} \subseteq \mathcal{B}$. As usual, for $\varepsilon>0$ we say that a subset $T \subseteq V$ is an ε-net for \mathcal{F} if for every $F \in \mathcal{F}$ we have $\mu(F) \geq \varepsilon \Longrightarrow F \cap T \neq \emptyset$.

Note that every ε-approximation is an ε-net. One can get better bounds on the size of an ε-net $\left(|T| \leq 8 d \frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)$.

We discuss arbitrary measures (with infinite support) that admit ε-approximations.
Definition 4.21. Let V, W be sets with b.a.'s $\mathcal{B}_{V}, \mathcal{B}_{W}$ on them, and let μ be a f.a.p. measure on \mathcal{B}_{V}.
(1) Let \mathcal{F} be a family of subsets of V in \mathcal{B}_{V}. We say that μ is finitely approximable on \mathcal{F} if for every $\varepsilon>0$ there are $p_{1}, \ldots, p_{n} \in V$ (possibly with repetitions) giving an ε-approximation of μ on \mathcal{F}.
(2) Let $R \subseteq V \times W$ be such that $R_{b} \in \mathcal{B}_{V}$ for all $b \in W$. We say that μ is fin.app. on R if it is fin.app. on \mathcal{F}_{m} for all $m \in \mathbb{N}$, where \mathcal{F}_{m} is the family of all subsets of V given by the Boolean combinations of at most m sets of the form $R_{b}, b \in W$.

Remark 4.22. In particular, if μ is fin.app. on R, then it is fin.app. on the family $\mathcal{R}^{\Delta}:=\left\{R_{b} \Delta R_{b^{\prime}}: b, b^{\prime} \in W\right\}$.

Example 4.23. (1) Any measure μ on \mathcal{B}_{V} with a finite support (i.e. there is some finite $B \in \mathcal{B}_{V}$ with $\left.\mu(B)=1\right)$ is fin.app. on \mathcal{B}_{V}.
(2) Let $V=\mathbb{R}$, let \mathcal{B}_{V} be the field generated by all intervals in V, and let \mathcal{R} be the family of all intervals. Let μ be the $0-1$ measure on \mathcal{B}_{V} such that the measure of a set is 1 if and only if it is unbounded from above. Then there are no finite ε-approximations for μ on \mathcal{R}, for any $\varepsilon<1$, as any finite set can be avoided by some unbounded interval of measure 1. Note that $\mathrm{VC}(\mathcal{R})<\infty$. This is not a contradiction with the VC-theorem as μ is not finitely supported.
(3) Let λ_{n} be the Lebesgue measure on the unit cube $[0,1]^{n}$ in \mathbb{R}^{n}. Let \mathcal{M} be an o-minimal structure expanding $(\mathbb{R},+, \times, 0,1)$. If $X \subseteq \mathbb{R}^{n}$ is definable in \mathcal{M}, then $X \cap[0,1]^{n}$ is Lebesgue measurable (for $n=1$ this is clear as every definable subset of \mathbb{R} is just a finite union of intervals and points by o-minimality, and for $n>1$ this follows from the o-minimal cell decomposition). Hence λ_{n} induces an f.a.p. measure on the b.a. of definable subsets of \mathbb{R}^{n}. This measure is fin.app. on every definable relation (Exercise! E.g. for $n=1$ and $\varepsilon>0$, we can take $\left\{\varepsilon i: 1 \leq i \leq \frac{1}{\varepsilon}\right\}$ as an ε-approximation for the family of intervals, etc.).
(4) Similarly, for every prime p, the (additive) Haar measure in \mathbb{Q}_{p} normalized on a compact ball induces a f.a.p. measure on the b.a. of definable subsets
(which are all measurable by the p-adic cell decomposition), and one can check that it is fin.app. on every definable relation.

The following example shows that the class of measures finitely approximable on families of bounded VC-dimension is closed under ultraproducts.

Proposition 4.24. Let $\left(\mathcal{M}_{i}: i \in \mathbb{N}\right)$ be \mathcal{L}-structures, let \mathcal{B}_{i} be a b.a. of definable subsets of M_{i} and μ_{i} an f.a.p. measure on \mathcal{B}_{i}. Let $R_{i} \subseteq M_{i} \times M_{i}^{k}$ be definable with $R_{i}(x, c) \in \mathcal{B}_{i}$ for all $c \in M_{i}^{k}$. Assume that μ_{i} is fin.app. on R_{i}, and assume that $\mathrm{VC}\left(R_{i}\right) \leq d$ for some fixed d and all $i \in \mathbb{N}$. Let \mathcal{U} be a non-principal u.f. on \mathbb{N}, $\mathcal{M}=\prod_{i \in \mathbb{N}} \mathcal{M}_{i} / \mathcal{U}$ and $R=\prod_{i \in \mathbb{N}} R_{i} / \mathcal{U}$. Then $\mu=\lim _{\mathcal{U}} \mu_{i}$ is fin.app. on R.

Proof. By Definition 4.21, we have to show that for every $m \in \mathbb{N}$, the family of all Boolean combinations of at most m fibers of R admits a finite ε-approximation. But by Remark 4.9 the VC-dimension of these family is uniformly bounded in terms of d, hence replacing R by the corresponding Boolean combination $R^{\prime} \subseteq M_{i} \times M_{i}^{k m}$ if necessary, it is enough to show that $\mathcal{F}:=\left\{R(M, c): c \in M^{k}\right\}$ admits a finite ε-approximation for every $\varepsilon>0$.

Fix $\varepsilon>0$ and $i \in \mathbb{N}$.
Let $\mathcal{F}_{i}:=\left\{R_{i}\left(M_{i}, c\right): c \in M_{i}^{k}\right\}$. By assumption VC $\left(\mathcal{F}_{i}\right) \leq d$.
By assumption there is some $n_{i} \in \mathbb{N}$ and some $\left(a_{1}^{i}, \ldots, a_{n_{i}}^{i}\right) \in M_{i}^{n_{i}}$ such that $\mu_{i}(X) \approx^{\varepsilon} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \mathbf{1}_{X}\left(a_{j}^{i}\right)$ for all $X \in \mathcal{F}_{i}$.

Define $\mu_{i}^{\prime}: \mathcal{B}_{i} \rightarrow \mathbb{R}$ by $\mu^{\prime}(X):=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \mathbf{1}_{X}\left(a_{j}^{i}\right)$ for any $X \in \mathcal{B}_{i}$. Then clearly μ_{i}^{\prime} is a f.a.p. measure on \mathcal{B}_{i} supported on a finite set $A_{i}:=\bigcup_{j=1}^{n_{i}}\left\{a_{j}^{i}\right\}$ and $\mu_{i}^{\prime}(X) \approx^{\varepsilon}$ $\mu_{i}(X)$ for all $X \in \mathcal{F}_{i}$. By the VC-theorem (Theorem4.18) there is some $n=n(d, \varepsilon)$ and $\left(b_{1}^{i}, \ldots, b_{m_{i}}^{i}\right) \in A_{i}^{m_{i}}$ with $1 \leq m_{i} \leq n$ such that $\mu_{i}^{\prime}(X) \approx^{\varepsilon} \frac{1}{m_{i}} \sum_{j=1}^{m_{i}} \mathbf{1}_{X}\left(b_{j}^{i}\right)$ for all $X \in \mathcal{F}_{i}$. Hence $\mu_{i}(X) \approx^{2 \varepsilon} \frac{1}{m_{i}} \sum_{j=1}^{m_{i}} \mathbf{1}_{X}\left(b_{j}^{i}\right)$ for all $X \in \mathcal{F}_{i}$.

As \mathcal{U} is an ultrafilter, there is some $S_{1} \in \mathcal{U}$ and $1 \leq m \leq n$ such that $m_{i}=m$ for all $i \in S_{1}$. For $1 \leq j \leq m$, let b_{j} be an element of \mathcal{M} defined by $b_{j}:=\left(b_{j}^{i}: i \in \mathbb{N}\right) / \mathcal{U}$.

Claim. b_{1}, \ldots, b_{m} is a 3ε-approximation for μ on $\mathcal{F}:=\left\{R(M, c): c \in M^{k}\right\}$.
Let $c \in M^{k}$ be arbitrary, say $c=\left(c_{i}: i \in \mathbb{N}\right) / \mathcal{U}$. We have:
(1) exists $S_{2} \in \mathcal{U}$ such that $\mu(R(M, c)) \approx^{\varepsilon} \mu_{i}\left(R_{i}\left(M_{i}, c_{i}\right)\right)$ for all $i \in S_{2}$ (by the definition of the ultralimit measure μ),
(2) exists $S_{3} \in \mathcal{U}$ such that $\frac{1}{m} \sum_{j=1}^{m} \mathbf{1}_{R(M, c)}\left(b_{j}\right)=\frac{1}{m} \sum_{j=1}^{m} \mathbf{1}_{R_{i}\left(M_{i}, c_{i}\right)}\left(b_{j}^{i}\right)$ for all $i \in S_{3}$ (by Łoś theorem),
(3) $\mu_{i}\left(R_{i}\left(M_{i}, c_{i}\right)\right) \approx^{2 \varepsilon} \frac{1}{m} \sum_{j=1}^{m} \mathbf{1}_{R_{i}\left(M_{i}, c_{i}\right)}\left(b_{j}^{i}\right)$ for all $i \in S_{1}$.

As $S_{1} \cap S_{2} \cap S_{3} \neq \emptyset$, we have $\mu(R(M, c)) \approx^{3 \varepsilon} \frac{1}{m} \sum_{j=1}^{m} \mathbf{1}_{R(M, c)}\left(b_{j}\right)$.
As $\varepsilon>0$ was arbitrary, we can conclude.
4.4. Canonical products of finitely approximable measures. As before, let \mathcal{B} be a Boolean algebra on a set V, and let μ be an f.a.p. measure on \mathcal{B}.

Definition 4.25. A function $f: V \rightarrow \mathbb{R}$ is \mathcal{B}-integrable if for all $\varepsilon>0$ there is a \mathcal{B}-simple function g with $|f(x)-g(x)|<\varepsilon$ for all $x \in V$.

Remark 4.26. A function $f: V \rightarrow \mathbb{R}$ is \mathcal{B}-integrable if and only if for any $\varepsilon>0$ there are $Y_{1}, \ldots, Y_{n} \in \mathcal{B}$ covering V such that for any $i \in[n]$ and any $c, c^{\prime} \in Y_{i}$ we have $\left|f(c)-f\left(c^{\prime}\right)\right|<\varepsilon$.

If f is \mathcal{B}-integrable and μ is a f.a.p. measure on \mathcal{B}, then we define

$$
\int_{V} f d \mu:=\lim _{n \rightarrow \infty} \int_{V} g_{n} d \mu
$$

where $\left(g_{n}\right)_{n \in \mathbb{N}}$ is a sequence of \mathcal{B}-simple functions approximating f.
Exercise 4.27. This integral doesn't depend on the choice of a convergent sequence.

Also, for a \mathcal{B}-integrable f and a set $A \in \mathcal{B}$ we define

$$
\int_{A} f d \mu:=\int_{V} \mathbf{1}_{A} f d \mu
$$

Fact 4.28. [15, Theorem 4.4.13]
(1) If f, g are integrable and $c, d \in \mathbb{R}$, then $c f+d g$ is integrable and for every $X \in \mathcal{B}$,

$$
\int_{X}(c f+d g) d \mu=c \int_{X} f d \mu+d \int_{X} g d \mu
$$

(2) If f is integrable then $|f|$ is integrable and for every $X \in \mathcal{B}$,

$$
\left|\int_{X} d \mu\right| \leq \int_{X}|f| d \mu
$$

Our aim is, given two fin.app. measures, to define a certain canonical product measure which is fin.app. and forms a compatible system of measures.

For any set $A \in \mathcal{B}_{V}$, consider the function $h_{R, A}: W \rightarrow \mathbb{R}$ given by $h_{R, A}(b)=$ $\mu\left(R_{b} \cap A\right)$.
Proposition 4.29. Assume that μ is fin.app. on R (or just on $\mathcal{R}^{\Delta}=\left\{R_{b} \Delta R_{b^{\prime}}\right.$: $\left.b, b^{\prime} \in W\right\}$) and that $R_{a} \in \mathcal{B}_{W}$ for all $a \in V$. Then for any set $A \in \mathcal{B}_{V}$, the function $h_{R, A}$ is \mathcal{B}_{W}-integrable.
Proof. Let $\varepsilon>0$. By assumption we can choose $p_{1}, \ldots, p_{n} \in V$ such that

$$
\left|\mu\left(R_{b} \Delta R_{b^{\prime}}\right)-\operatorname{Av}\left(p_{1}, \ldots, p_{n} ; R_{b} \Delta R_{b^{\prime}}\right)\right|<\varepsilon
$$

for every $b, b^{\prime} \in W$.
For $I \subseteq[n]$ let $C_{I} \subseteq W$ be the set $C_{I}=\left\{b \in W: p_{i} \in R_{b} \Leftrightarrow i \in I\right\} \in \mathcal{B}_{W}$. Clearly the sets $C_{I}, I \subseteq[n]$ cover W and for every $I \subseteq[n]$ and $b, b^{\prime} \in C_{I}$ we have $\mu\left(R_{b} \Delta R_{b^{\prime}}\right)<\varepsilon$. Hence, for any $b, b^{\prime} \in C_{I}$ we have

$$
\left|h_{R, A}(b)-h_{R, A}\left(b^{\prime}\right)\right| \leq \mu\left(A \cap\left(R_{b} \Delta R_{b^{\prime}}\right)\right) \leq \mu\left(R_{b} \Delta R_{b^{\prime}}\right)<\varepsilon
$$

By Remark 4.26, the function $h_{R, A}$ is \mathcal{B}_{W}-integrable.
Let now V, W, Z be sets and $R \subseteq V \times W \times Z$. Assume that $\mathcal{R}_{V}=\left\{R_{(b, c)}:(b, c) \in\right.$ $W \times Z\} \subseteq \mathcal{B}_{V}$ and $\mathcal{R}_{W}=\left\{R_{(a, c)}:(a, c) \in V \times Z\right\} \subseteq \mathcal{B}_{W}$. Let μ be a measure on \mathcal{B}_{V} which is fin.app. on $R \subseteq V \times(W \times Z)$, and ν a measure on \mathcal{B}_{W}. Note that by assumption and Proposition 4.29 if E is an arbitrary R-definable subset of $V \times W$ (i.e. a Boolean combination of R-fibers) and $A \in \mathcal{B}_{V}$, then the function $h_{E, A}$ is \mathcal{B}_{W}-integrable. And $h_{E, A}(b)=\int_{A} \mathbf{1}_{E}(x, b) d \mu$. Hence the double integral

$$
\omega_{E}(A, B)=\int_{B}\left(\int_{A} \mathbf{1}_{E}(x, y) d \mu\right) d \nu
$$

is well defined for any $A \in \mathcal{B}_{V}, B \in \mathcal{B}_{W}$.

Let now $\mathcal{B}_{V \times W}$ be the b.a. on $V \times W$ generated by $\mathcal{B}_{V} \otimes \mathcal{B}_{W}$ and $\left\{R_{c}: c \in Z\right\}$. Then we have the following.
Proposition 4.30. (1) There is a unique measure ω on $\mathcal{B}_{V \times W}$ whose restriction to $B_{V} \otimes B_{W}$ is $\mu \times \nu$ and such that $\omega(E \cap(A \times B))=w_{E}(A, B)$ for every R-definable $E \subseteq V \times W, A \in \mathcal{B}_{V}, B \in \mathcal{B}_{W}$. We denote this measure by $\mu \ltimes \nu$.
(2) If in addition ν is fin.app. on R, then $\mu \ltimes \nu$ is also fin.app. on R and $\mu \ltimes \nu(E)=\nu \ltimes \mu(E)$ for all R-definable sets.

Proof. (1) It is easy to see that every set Y in $\mathcal{B}_{V \times W}$ is a finite disjoint union of sets of the form $E_{i} \cap\left(A_{i} \times B_{i}\right)$ where E_{i} is an atom of the Boolean algebra of all R-definable subsets of $V \times W$ and $A_{i} \in \mathcal{B}_{V}, B_{i} \in \mathcal{B}_{W}$. We define $\omega(Y)=\sum \omega_{E_{i}}\left(A_{i}, B_{i}\right)$. It is easy to check that ω is well-defined (for all $A^{\prime} \in$ $\mathcal{B}_{V}, B^{\prime} \in \mathcal{B}_{W}$ and R-definable $E^{\prime} \subseteq V \times W$, if $(A \times B) \cap E=\left(A^{\prime} \times B^{\prime}\right) \cap E^{\prime}$, then $\left.w_{E}(A, B)=w_{E^{\prime}}\left(A^{\prime}, B^{\prime}\right)\right)$ and is a f.a.p. measure on $\mathcal{B}_{V \times W}$ satisfying the requirements. Uniqueness is straightforward from the definition of ω.
(2) It is enough to show that $\mu \ltimes \nu$ is fin.app. on the family of all fibers of any R-definable relation $E \subseteq(V \times W) \times Z$. Fix an arbitrary $\varepsilon>0$. Let us take $p_{1}, \ldots p_{n} \in V$ such that $\mu\left(E_{b, c}\right) \approx^{\varepsilon} \operatorname{Av}\left(p_{1}, \ldots, p_{n} ; E_{b, c}\right)$ for all $(b, c) \in W \times Z$, and $q_{1}, \ldots, q_{m} \in W$ such that $\nu\left(E_{a, c}\right) \approx^{\varepsilon} \operatorname{Av}\left(q_{1}, \ldots, q_{m}, E_{a, c}\right)$ for all $(a, c) \in V \times Z$.

We claim that the set $\left\{\left(p_{i}, q_{j}\right): 1 \leq i<n, 1 \leq j<m\right\}$ gives a 2ε-approximation for $\mu \ltimes \nu\left(E_{c}\right)$, for any $c \in Z$. Namely, using linearity of integration, we have

$$
\begin{gathered}
\mu \ltimes \nu\left(E_{c}\right)=\int_{W}\left(\int_{V} \mathbf{1}_{E_{c}}(v, w) d \mu\right) d \nu \approx^{\varepsilon} \\
\int_{W}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{E_{w, c}}\left(p_{i}\right)\right) d \nu=\frac{1}{n} \sum_{i=1}^{n}\left(\int_{W} \mathbf{1}_{E_{w, c}}\left(p_{i}\right) d \nu\right)= \\
\frac{1}{n} \sum_{i=1}^{n}\left(\int_{W} \mathbf{1}_{E_{p_{i}, c}}(w) d \nu\right) \approx^{\varepsilon} \frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{m} \sum_{j=1}^{m} \mathbf{1}_{E_{p_{i}, c}}\left(q_{j}\right)\right)= \\
=\frac{1}{n m} \sum_{1 \leq i \leq n, 1 \leq j \leq m} \mathbf{1}_{E_{c}}\left(p_{i}, q_{j}\right)
\end{gathered}
$$

so $\mu \ltimes \nu\left(E_{c}\right) \approx^{2 \varepsilon} \operatorname{Av}\left(\left\{\left(p_{i}, q_{j}\right): 1 \leq i \leq n, 1 \leq j \leq m\right\} ; E_{c}\right)$.
The fact that $\mu \ltimes \nu\left(E_{c}\right)=\nu \ltimes \mu\left(E_{c}\right)$ follows as, by the above, for any $\varepsilon>0$ we have

$$
\begin{gathered}
\mu \ltimes \nu\left(E_{c}\right) \approx^{2 \varepsilon} \frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{m} \sum_{j=1}^{m} \mathbf{1}_{E_{p_{i}, c}}\left(q_{j}\right)\right)= \\
\frac{1}{m} \sum_{j=1}^{m}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{E_{q_{j}, c}}\left(p_{i}\right)\right) \approx^{\varepsilon} \frac{1}{m} \sum_{j=1}^{m}\left(\int_{V} \mathbf{1}_{E_{q_{j}, c}}(v) d \mu\right)= \\
\int_{V}\left(\frac{1}{m} \sum_{j=1}^{m} \mathbf{1}_{E_{v, c}}\left(q_{j}\right)\right) d \mu \approx^{\varepsilon} \int_{V}\left(\int_{W} \mathbf{1}_{E_{c}}(v, w) d \nu\right) d \mu= \\
\nu \ltimes \mu\left(E_{c}\right)
\end{gathered}
$$

hence $\mu \ltimes \nu\left(E_{c}\right) \approx^{4 \varepsilon} \nu \ltimes \mu\left(E_{c}\right)$ for arbitrary $\varepsilon>0$.
It is not hard to see that a product of fin.app. measures satisfies a weak Fubini's property.

Corollary 4.31. Let V, W be sets, μ a f.a.p. measure on \mathcal{B}_{V} which is fin. app. on R, ν a f.a.p. measure on \mathcal{B}_{W}. For $\varepsilon>0$ if $\mu\left(R_{a}\right)<\varepsilon$ for all $a \in W$ then $\left(\mu_{V} \ltimes \nu_{W}\right)(R)<\varepsilon$.

We extend products of fap measures to an arbitrary number of sets.
Definition 4.32. Let V_{1}, \ldots, V_{k} be sets, $R \subseteq V_{1} \times \ldots \times V_{k}$ and assume that for each $i \in[k]$ we have a field \mathcal{B}_{i} on V_{i} and a measure μ_{i} on \mathcal{B}_{i} which is fin.app. on R (viewed as a binary relation on $V_{i} \times V_{[k] \backslash i}$). Then, by induction on k, we define a measure $\mu_{1} \ltimes \ldots \ltimes \mu_{k}=\left(\mu_{1} \ltimes \ldots \ltimes \mu_{k-1}\right) \ltimes \mu_{k}$ on $\mathcal{B}_{V_{1}} \times \ldots \times \mathcal{B}_{V_{k}}$ (and the order of integration doesn't matter by Proposition 4.30).
4.5. Measure-theoretic regularity for hypergraphs of finite VC-dimension.

Definition 4.33. (1) Let V_{1}, \ldots, V_{k} be sets, $R \subseteq V_{1} \times \ldots \times V_{k}$ and $I \subseteq[k]$. We say that a subset $X \subseteq V_{I}$ is R-definable over a set $D \subseteq V_{[k] \backslash I}$ if it is a finite Boolean combination of sets of the form R_{b} with $b \in D$, and say that X is R-definable if it is R-definable over $V_{[k] \backslash I}$.
(2) For a set $A \subseteq V_{1} \times \ldots \times V_{k}$ we say that A is R_{\otimes}-definable if A can be written as a finite union of sets of the form $X_{1} \times \ldots \times X_{k}$, such that each $X_{i} \subseteq V_{i}$ is R-definable.
In addition for a tuple $\vec{D}=\left(D_{1}, \ldots, D_{k}\right)$ with $D_{i} \subseteq V_{[k] \backslash i}$ we say that A is R_{\otimes}-definable over \vec{D} if every X_{i} above is R-definable over D_{i}. For such a tuple \vec{D} we use notation $\|\vec{D}\|=\max \left\{\left|D_{i}\right|: i \in[k]\right\}$.

Proposition 4.34. Let $V, W, R \subseteq V \times W$ be sets, μ a f.a.p. measure on V which is fin.app. on R. Then for any $\varepsilon>0$ there are R-definable subsets $X_{1}, \ldots X_{m} \subseteq W$ partitioning W such that for every $i \in[m]$ and any $a, a^{\prime} \in X_{i}$ we have $\mu_{V}\left(R_{a} \Delta R_{a^{\prime}}\right)<$ ε.

In addition, if the family $\mathcal{R}=\left\{R_{a}: a \in W\right\}$ has VC-dimension at most d then we can choose $D \subseteq V$ of size at most $320 d\left(\frac{1}{\varepsilon}\right)^{2}$ such that every X_{i} is R-definable over D.

Proof. We use the same trick as in the proof of Proposition 4.29 .
Let $\mathcal{R}^{\Delta}=\left\{R_{a} \Delta R_{a^{\prime}}: a, a^{\prime} \in W\right\}$. Since μ is fin.app. on R, there are $p_{1}, \ldots p_{n} \in$ V with $\left|\mu(F)-\operatorname{Av}\left(p_{1}, \ldots, p_{n} ; F\right)\right|<\varepsilon$ for any $F \in \mathcal{R}^{\Delta}$.

For each $I \cap[n]$ let $X_{i}=\left\{a \in W: p_{i} \in R_{a} \Leftrightarrow i \in I\right\}$. It is easy to see that the sets $X_{I}, I \subseteq[n]$ partition W, every X_{i} is R-definable and for every $I \subseteq[n]$ and $a, a^{\prime} \in X_{I}$ we have $\mu\left(R_{a} \Delta R_{a}^{\prime}\right)<\varepsilon$.

Assume in addition that \mathcal{R} is a VC-family with VC-dimension at most d. As above we choose $p_{1}, \ldots p_{n} \in V$ with

$$
\left|\mu(F)-\operatorname{Av}\left(p_{1}, \ldots, p_{n} ; F\right)\right|<\varepsilon / 2
$$

for any $F \in \mathcal{R}^{\Delta}$.
Let ω be a measure on \mathcal{B}_{V} given by $\omega(X)=\operatorname{Av}\left(p_{1}, \ldots, p_{n} ; X\right)$. Since \mathcal{R} has VCdimension at most d, the family \mathcal{R}^{Δ} had dimension at most $10 d$ by Remark 4.9 , and
by Corollary 4.18 we can choose an $\varepsilon / 2$-net D for \mathcal{R}^{Δ} and ω with $|D| \leq 80 d \frac{2}{\varepsilon} \log \frac{2}{\varepsilon}$. Clearly

$$
80 d \frac{2}{\varepsilon} \log \frac{2}{\varepsilon} \leq 80 d\left(\frac{2}{\varepsilon}\right)^{2}=320 d\left(\frac{1}{\varepsilon}\right)^{2}
$$

For each $I \cap D$ let $X_{I}=\left\{a \in W: R_{a} \cap D=I\right\}$. It is easy to see that the sets $X_{I}, I \subseteq D$, partition W and every X_{i} is R-definable over D. Let $I \subseteq D$ and $a, a^{\prime} \in$ X_{I}. Then $R_{a} \cap D=R_{a^{\prime}} \cap D$, hence $w\left(R_{a} \Delta R_{a^{\prime}}\right) \leq \varepsilon / 2$, and $\mu\left(R_{a} \Delta R_{a^{\prime}}\right)<\varepsilon$.

Definition 4.35. For sets V_{1}, \ldots, V_{k} and a set $R \subseteq V_{1} \times \ldots \times V_{k}$ we say that R has $V C$-dimension at most d if for every $I \subseteq[k]$ the family $\left\{R_{a}: a \in V_{[k] \backslash I}\right\}$ of subsets of V_{I} has VC-dimension at most d.

Theorem 4.36. Let $V_{1}, \ldots V_{k}$ and $R \subseteq V_{1} \times \ldots \times V_{k}$ be sets, and μ_{1}, \ldots, μ_{k} f.a.p. measures on V_{1}, \ldots, V_{k}, respectively, which are all fin. app. on R. Then for every $\varepsilon>0$ there is an R_{\otimes}-definable $A \subseteq V_{1} \times \ldots \times V_{k}$ with

$$
\left(\mu_{1} \ltimes \ldots \ltimes \mu_{k}\right)(R \Delta A)<\varepsilon
$$

In addition, if R has $V C$-dimension at most d (see Definition 4.35) then we can choose A to be R_{\otimes}-definable over some \vec{D} with $\|\vec{D}\| \leq C_{k, d}\left(\frac{1}{\varepsilon}\right)^{2(k-1) d}$, where $C_{k, d}$ is a constant that depends on k and d only.

Remark 4.37. Returning to our terminology from Section 3.2, this means in particular that R can be approximated up to measure ε by a set in $\mathcal{B}_{[k], 1}$ - a finite union of boxes obtained by products of 1-ary sets.

Proof. We proceed by induction on k.
The case $k=2$. Let V_{1}, V_{2} and $R \subseteq V_{1} \times V_{2}$ be given. Using Corollary 4.34 we can find R-definable sets $X_{1}, \ldots X_{m}$ partitioning V_{2} such that for every $i \in[m]$ and any $a, a^{\prime} \in X_{i}$ we have $\mu_{1}\left(R_{a} \Delta R_{a^{\prime}}\right)<\varepsilon$.

For each $i \in[m]$ we pick some $a_{i} \in X_{i}$ and let $A=\bigcup_{i \in[m]} R_{a_{i}} \times X_{i}$. Obviously A is R_{\otimes}-definable. It is not hard to see that for every $a \in W$ we have $\mu_{1}\left(R_{a} \Delta A_{a}\right)<\varepsilon$, hence, by Lemma 4.31, $\left(\mu_{1} \ltimes \nu_{2}\right)(R \Delta A)<\varepsilon$.

Assume in addition that R has VC-dimension at most d. Then by Corollary 4.34 we can assume that for some $D_{2} \subseteq V_{1}$ with $\left|D_{2}\right| \leq 320 d\left(\frac{1}{\varepsilon}\right)^{2}$ every X_{i} is R-definable over D_{2}. Let $D_{1}=\left\{a_{1}, \ldots, a_{m}\right\}$, and $\vec{D}=\left(D_{1}, D_{2}\right)$. Obviously A is R_{\otimes}-definable over \vec{D}. By Sauer-Shelah lemma (Fact 4.8), $m<C_{d}\left|D_{2}\right|^{d}$, hence $\left|D_{1}\right| \leq C_{d}(320 d)^{d}\left(\frac{1}{\varepsilon}\right)^{2 d}$. And we can take $C_{2, d}=C_{d}(320 d)^{d}$.

Inductive step $k+1$. Let V_{1}, \ldots, V_{k+1} and $R \subseteq V_{1} \times \ldots \times V_{k+1}$ be given.
Viewing $V_{1} \times \ldots \times V_{k+1}$ as $V_{[k]} \times V_{k+1}$ and using the case of $k=2$ we obtain R-definable $X_{1}, \ldots X_{m}$ partitioning V_{k+1} and points $a_{i} \in X_{i}, i \in[m]$, such that for the set $A^{\prime}=\bigcup_{i \in[m]} R_{a_{i}} \times X_{i}$ we have $\left(\mu_{1} \times \ldots \times \mu_{k+1}\right)\left(R \Delta A^{\prime}\right)<\varepsilon / 2$.

For each $i \in[m]$ let $R^{i}=R_{a_{i}}$. It is an R-definable subset of $V_{1} \times \ldots \times V_{k}$. It is easy to see that each R^{i} has VC-dimension at most d. Applying induction hypothesis to each R^{i} we obtain R_{\otimes}^{i}-definable sets $A_{i} \subseteq V_{1} \times \ldots \times V_{k}$ such that $\left(\mu_{1} \ltimes \ldots \ltimes \mu_{k}\right)\left(R^{i} \Delta A_{i}\right)<\varepsilon / 2$. Let $A=\bigcup_{i \in[m]} A_{i} \times X_{i}$. It is an R_{\otimes}-definable set and using Lemma 4.31, it is not hard to see that $\left(\mu_{1} \ltimes \ldots \ltimes \mu_{k+1}\right)\left(A^{\prime} \Delta A\right)<\varepsilon / 2$, hence $\left(\mu_{1} \ltimes \ldots \ltimes \mu_{k+1}\right)(R \Delta A)<\varepsilon$, as required.

Assume in addition that R has VC-dimension at most d. As in the case $k=2$ we can assume that every X_{i} is R-definable over $D_{k+1} \subseteq V_{1}, \ldots, V_{k}$ with $\left|D_{k+1}\right| \leq$
$320 d\left(\frac{2}{\varepsilon}\right)^{2}$ and also assume that

$$
m \leq C_{d}\left|D_{k+1}\right|^{d} \leq C_{d}\left[320 d\left(\frac{2}{\varepsilon}\right)^{2}\right]^{d}=C_{d}(1280 d)^{d}\left(\frac{1}{\varepsilon}\right)^{2 d}
$$

Applying induction hypotheses we can assume that each A_{i} above is R_{\otimes}^{i}-definable over $\vec{D}^{i}=\left(D_{1}^{i}, \ldots D_{k}^{i}\right)$ with $\left\|\vec{D}^{i}\right\| \leq C_{k, d}\left(\frac{2}{\varepsilon}\right)^{2(k-1) d}$, where $D_{j}^{i} \subseteq \prod_{l \in[k] \backslash\{j\}} V_{l}$.

For each $i \in[m]$ and $j \in[k]$ let $\bar{D}_{j}^{i}=\left\{\left(c, a_{i}\right): c \in D_{j}^{i}\right\}, D_{j}=\bigcup_{i \in[m]} \bar{D}_{j}^{i}$, and $\vec{D}=\left(D_{1}, \ldots, D_{k+1}\right)$.

It is not hard to see that A above is R-definable over \vec{D} and

$$
\begin{aligned}
\|\vec{D}\| \leq m C_{k, d}\left(\frac{2}{\varepsilon}\right)^{2(k-1) d} & \leq C_{d}(1280 d)^{d}\left(\frac{1}{\varepsilon}\right)^{2 d} 2^{2(k-1) d}\left(\frac{1}{\varepsilon}\right)^{2(k-1) d}= \\
& =C_{k+1, d}\left(\frac{1}{\varepsilon}\right)^{2 k d}
\end{aligned}
$$

Now we apply this product measure decomposition result to deduce a strong regularity lemma.

Definition 4.38. (1) For a k-hypergraph $E \subseteq V_{1} \times \ldots \times V_{k}$ and $A_{1} \subseteq V_{1}, \ldots, A_{k} \subseteq$ V_{k} we will denote by $E\left(A_{1}, \ldots, A_{k}\right)$ the set $E\left(A_{1}, \ldots, A_{k}\right)=E \cap A_{1} \times \ldots \times$ A_{k}
(2) By a rectangular partition we mean a k-tuple $\overrightarrow{\mathcal{P}}=\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right)$ where each \mathcal{P}_{i} is a finite partition of V_{i}. For a rectangular partition $\overrightarrow{\mathcal{P}}=\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right)$ we define $\|\overrightarrow{\mathcal{P}}\|=\max \left\{\left|\mathcal{P}_{i}\right|: i \in[k]\right\}$, and for a set $X \subseteq V_{1} \times \ldots \times V_{k}$ we write $X \in \overrightarrow{\mathcal{P}}$ if $X=X_{1} \times \ldots \times X_{k}$ for some $X_{i} \in \mathcal{P}_{i}, i \in[k]$. We will also write $\Sigma \subseteq \overrightarrow{\mathcal{P}}$ to indicate that Σ consists of subsets $X \subseteq V_{1} \times \ldots \times V_{k}$ with $X \in \overrightarrow{\mathcal{P}}$.
(3) For $A \subseteq V_{1} \times \ldots \times V_{k}$ and a rectangular partition $\overrightarrow{\mathcal{P}}=\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right)$, say that A is compatible with $\overrightarrow{\mathcal{P}}$ if for any $X \in \overrightarrow{\mathcal{P}}$ either $X \subseteq A$ or $X \cap A=\emptyset$. In other words, A is a finite union of sets $X \in \overrightarrow{\mathcal{P}}$.
(4) A rectangular partition $\overrightarrow{\mathcal{P}}$ is E-definable (over $\vec{D}=\left(D_{1}, \ldots, D_{k}\right)$ as in Definition 4.33) if for each $i \in[k]$, every $X \in \mathcal{P}_{i}$ is E-definable over D_{i}.
(5) Let \mathcal{B}_{i} be a bool. algebra on V_{i}, and μ_{i} a f.a.p. measures on \mathcal{B}_{i} which is fin.app. on E, for all $i \in[k]$. Let $\mu:=\mu_{1} \ltimes \ldots \ltimes \mu_{k}$. Given $\varepsilon>0$, a definable rectangular partition $\overrightarrow{\mathcal{P}}$ is ε-regular with $0-1$-densities if there is $\Sigma \subseteq \overrightarrow{\mathcal{P}}$ such that

$$
\sum_{X \in \Sigma} \mu(X) \leq \varepsilon
$$

and for every $X_{1} \times \ldots \times X_{k} \in \overrightarrow{\mathcal{P}} \backslash \Sigma$ either

$$
\mu\left(Y_{1} \times \ldots \times Y_{k}\right)-\mu\left(E\left(Y_{1}, \ldots, Y_{k}\right)\right)<\varepsilon \mu\left(X_{1} \times \ldots \times X_{k}\right)
$$

for all sets $Y_{i} \in \mathcal{B}_{i}, i=1, \ldots, k$; or

$$
\mu\left(E\left(Y_{1}, \ldots, Y_{k}\right)\right)<\varepsilon \mu\left(X_{1} \times \ldots \times X_{k}\right)
$$

for all sets $Y_{i} \in \mathcal{B}_{i}, i=1, \ldots, k$.
The next proposition demonstrates how existence of an approximation by rectangular sets (Theorem4.36) for the product measure can be used to obtain a regular partition.

Proposition 4.39. (in the context of Definition 4.38) Let $\overrightarrow{\mathcal{P}}$ be a definable rectangular partition of $V_{1} \times \ldots \times V_{k}$. If there is $A \subseteq V_{1} \times \ldots \times V_{k}$, an E_{\otimes}-definable set compatible with $\overrightarrow{\mathcal{P}}$ with $\mu(A \Delta E)<\varepsilon^{2}$, then $\overrightarrow{\mathcal{P}}$ is ε-regular with $0-1$-densities.

Proof. Let

$$
\Sigma=\{X \in \overrightarrow{\mathcal{P}}: \mu(X \cap(A \Delta E)) \geq \varepsilon \mu(X)\}
$$

Since $\mu(A \Delta E)<\varepsilon^{2}$ and μ is finitely additive we obtain that

$$
\sum_{X \in \Sigma} \mu(X) \leq \varepsilon
$$

Let $X=X_{1} \times \ldots \times X_{k} \in \overrightarrow{\mathcal{P}} \backslash \Sigma$. We have

$$
\mu(X \cap(A \Delta E))<\varepsilon \mu(X)
$$

Since A is compatible with \vec{P} either $X \subseteq A$ or $X \cap A=\emptyset$.
Assume first $X \subseteq A$. Let $Y_{i} \subseteq X_{i}$ be from $\mathcal{B}_{i}, i=1, \ldots, k$, and let $Y=$ $Y_{1} \times \ldots \times Y_{k}$. Since $Y \subseteq X$, by monotonicity of μ we have

$$
\mu(Y \cap(A \Delta E))<\varepsilon \mu(X)
$$

As $Y \subseteq A$ we have $Y \cap(A \Delta E)=Y \backslash E\left(Y_{1}, \ldots, Y_{k}\right)$. Since $E\left(Y_{1}, \ldots, Y_{k}\right) \subseteq Y$ we also have

$$
\mu\left(Y \backslash E\left(Y_{1}, \ldots, Y_{k}\right)\right)=\mu(Y)-\mu\left(E\left(Y_{1}, \ldots, Y_{k}\right)\right)
$$

hence

$$
\mu\left(Y_{1} \times \ldots \times Y_{k}\right)-\mu\left(E\left(Y_{1}, \ldots, Y_{k}\right)\right) \leq \varepsilon \mu\left(X_{1} \times \ldots \times X_{k}\right)
$$

If $X \cap A=\emptyset$ similar arguments show that

$$
\mu\left(E\left(Y_{1}, \ldots, Y_{k}\right)\right)<\varepsilon \mu\left(X_{1}, \ldots, X_{k}\right)
$$

for all $Y_{i} \subseteq X_{i}$ from $\mathcal{B}_{i}, i=1, \ldots, k$.
Combining this observation with Theorem 4.36, we obtain a regularity lemma for hypergraphs of finite VC dimension.
Theorem 4.40. Let V_{1}, \ldots, V_{k} and $E \subseteq V_{1} \times \ldots \times V_{k}$ be given, and let μ_{1}, \ldots, μ_{k} be measures on V_{1}, \ldots, V_{k} which are all fin.app. on E. Let $\mu=\mu_{1} \ltimes \ldots \ltimes \mu_{k}$.

For any $\varepsilon>0$ there is an E-definable ε-regular partition $\overrightarrow{\mathcal{P}}$ with $0-1$-densities.
In addition, if E has VC dimension at most d we can choose $\overrightarrow{\mathcal{P}}$ with $\|\overrightarrow{\mathcal{P}}\| \leq$ $C_{d}\left(C_{k, d}\right)^{d}\left(\frac{1}{\varepsilon}\right)^{2(k-1) d^{2}}$, where C_{d} and $C_{k, d}$ are constants from Fact 4.8 and Theorem 4.36.

Proof. Using Theorem 4.36 there is an E_{\otimes}-definable A with $\mu(A \Delta E)<\varepsilon^{2}$. Say $A=\cup_{j \in[m]} A_{1}^{j} \times \ldots \times A_{k}^{j}$ where each $A_{i}^{j} \subseteq V_{i}$ is E-definable.

For each $I \in[k]$ let \mathcal{P}_{i} be the set of all atoms in the Boolean algebra generated by $A_{i}^{1}, \ldots, A_{i}^{m}$. Obviously each \mathcal{P}_{i} consists of E-definable sets partitioning V_{i}, and A is compatible with $\overrightarrow{\mathcal{P}}=\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right)$. By Proposition 4.39, $\overrightarrow{\mathcal{P}}$ is ε-regular with 0 - 1-densities.

Assume in addition that E has VC-dimension at most d. Then using Theorem 4.36 we can assume that A is E_{\otimes}-definable over $\vec{D}=\left(D_{1}, \ldots, D_{k}\right)$ with $\left|D_{i}\right| \leq$ $C_{k, d}\left(\frac{1}{\varepsilon}\right)^{2(k-1) d}$ for $i \in[k]$. For each $i \in[k]$ let \mathcal{P}_{i} be the set of all atoms in the Boolean algebra generated by E-definable over D_{i} subsets of V_{i}. Obviously
each \mathcal{P}_{i} consists of E-definable subsets partitioning V_{i} and A is compatible with $\overrightarrow{\mathcal{P}}=\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right)$. Also, by Sauer-Shelah (Fact 4.8),

$$
\left|\mathcal{P}_{i}\right| \leq C_{d}\left|D_{i}\right|^{d} \leq C_{d}\left(C_{k, d}\left(\frac{1}{\varepsilon}\right)^{2(k-1) d}\right)^{d}=C_{d}\left(C_{k, d}\right)^{d}\left(\frac{1}{\varepsilon}\right)^{2(k-1) d^{2}}
$$

Remark 4.41. In the case when $V_{[k]}$ is finite the above theorem without the VC part is trivial, since we can take \mathcal{P}_{i} to be the set of all atoms in the Boolean algebra of all E-definable subsets of V_{i}.

Let $E \subseteq V_{1}, \ldots, V_{k}$ be a finite k-hypergraph. For each $i \in[k]$ let μ_{i} be the counting measure on V_{i}, i.e. $\mu_{i}(X)=\frac{|X|}{\left|V_{i}\right|}$ and μ be the counting measure on $V_{1} \times \ldots \times V_{k}$. Then all μ_{i} and μ are fin.app. measures with $\mu=\mu_{1} \ltimes \ldots \ltimes \mu_{k}$. Hence all the results of the previous section can be applied to finite k-hypergraphs with respect to counting measures.
Corollary 4.42. Assume $E \subseteq V_{1} \times \ldots \times V_{k}$ has VC-dimension at most d.
Then there are partitions $V_{i}=V_{i, 1} \sqcup \cdots \sqcup V_{i, M}$ for some $M \leq c\left(\frac{1}{\varepsilon}\right)^{c^{\prime}}$, where $c=c(k, d)$ and $c^{\prime}=c^{\prime}(k, d)$, numbers $\delta_{\vec{i}} \in\{0,1\}$ for $\vec{i} \in[M]^{k}$, and an exceptional set $\Sigma \subseteq[M]^{k}$ such that

$$
\sum_{\left(i_{1}, \ldots, i_{k},\right) \in \Sigma}\left|V_{1, i_{1}}\right| \cdots\left|V_{k, i_{k}}\right| \leq \varepsilon\left|V_{1} \times \ldots \times V_{k}\right|
$$

and for each $\vec{i}=\left(i_{1}, \ldots, i_{k}\right) \in[M]^{k} \backslash \Sigma$ we have

$$
\left|\left|E\left(A_{1}, \ldots, A_{k}\right)\right|-\delta_{\vec{i}}\right| A_{1}|\cdots| A_{k}| |<\varepsilon\left|V_{1, i_{1}}\right| \cdots\left|V_{k, i_{k}}\right|
$$

for all $A_{1} \subseteq V_{1, i_{1}}, \ldots, A_{k} \subseteq V_{k, i_{k}}$.
Exercise 4.43. Formulate and show a converse (that this regularity lemma implies finiteness of the VC-dimension of the hypergraph).

4.6. References. ${ }^{* * *}$ TBA

5. REGULARITY LEMMA FOR STABLE HYPERGRAPHS

We work in the same setting as before. Let the sets V_{1}, \ldots, V_{k} and $R \subseteq V_{1} \ldots \times$ $\ldots V_{k}$ be given, let \mathcal{B}_{i} be a b.a. on V_{i}, and let μ_{i} be a f.a.p. measure on \mathcal{B}_{i}. Assume moreover that for every $i \in[k], R_{b} \in \mathcal{B}_{i}$ for all $b \in V_{[k] \backslash\{i\}}$.
Definition 5.1. (1) A binary relation $R(x, y) \subseteq V \times W$ is d-stable if there is no tree of parameters $\left(b_{\eta}: \eta \in 2^{<d}\right)$ in W such that for any $\eta \in 2^{d}$ there is some $a_{\eta} \in V$ such that $a_{\eta} \in R_{b_{\nu}} \Longleftrightarrow \nu \frown 1 \unlhd \eta$ (where \unlhd is the tree order).
(2) A relation $R \subseteq V_{1} \times \ldots \times V_{k}$ is d-stable if for every $I \subseteq[k]$, viewed as a binary relation on $V_{I} \times V_{[k] \backslash I}$ it is d-stable.
(3) A relation R is stable if it is d-stable for some d.

Exercise 5.2. (1) Alternatively, stability of a relation can be defined in terms of the so called order property. Namely, $R \subseteq V \times W$ has the d-order property if there are some elements a_{i} in V and b_{i} in $W, i=1, \ldots, d$, such that $a_{i} \in R_{b_{j}} \Longleftrightarrow i \leq j$ for all $1 \leq i, j \leq d$. Show that R is stable (in the sense of Definition 5.1) if and only if it does not have the d-order property for some d.
(2) Show that if R is d-stable, then $\mathrm{VC}(R) \leq d$.

Lemma 5.3. Let R be a stable relation. Then any measure μ_{i} on \mathcal{B}_{i} is fin.app. on R.

Proof. Fix $i \in[k]$ and assume that R is d-stable.
Claim 1. For any $\varepsilon>0$ there is some $m=m(\varepsilon, E)$ and some $0-1$ measures $\delta_{1}, \ldots, \delta_{m}$ on \mathcal{B}_{i} (possibly with repetitions) such that $\mu_{i}\left(R_{c}\right) \approx^{\varepsilon} \frac{1}{m} \sum_{j=1}^{m} \delta_{j}\left(R_{c}\right)$ for all $c \in V_{[k] \backslash\{i\}}$.

Proof. By Exercise $5.2, \mathrm{VC}(R) \leq d$. Then the claim follows from the VCtheorem applied on the compact space of 0-1 measures on \mathcal{B}_{i}. See [9, Lemma 4.8] for the details (${ }^{* * *}$ TBA).

Claim 2. Every $0-1$ measure δ on \mathcal{B}_{i} is fin.app. on E.
Proof. This is a straightforward consequence of the explicit form of the definability of types in local stability. See e.g. the proof of [14, Lemma 2.2]: identifying our measure δ restricted to E with a complete E-type, an ε-approximation of δ on E is given by the c_{1}, \ldots, c_{m} constructed in that proof, for any m large enough so that $\frac{N}{m}<\varepsilon\left({ }^{* * *}\right.$ TBA).

Now, let $\varepsilon>0$ be arbitrary, and let $\delta_{1}, \ldots, \delta_{m}$ be as given by Claim 1. By Claim 2 , let A_{j} be a multiset in V_{i} giving an ε-approximation for δ_{j}. It is straightforward to verify that $A=\bigcup_{j=1}^{m} A_{j}$ is a 2ε-approximation for μ_{i}.

In view of this lemma, for $I=\left\{i_{1}, \ldots, i_{n}\right\} \subseteq[k]$ we have a semi-direct product measure $\mu_{I}=\mu_{i_{1}} \ltimes \ldots \ltimes \mu_{i_{n}}$ on $\mathcal{B}_{I}=\mathcal{B}_{i_{1}} \times \ldots \times \mathcal{B}_{i_{n}}$ (see Definition 4.32 which is fin.app. on R (Proposition 4.30).

Definition 5.4. A set $A \in \mathcal{B}_{I}$ is ε-good if for any $b \in V_{[k] \backslash I}$, either $\mu_{I}\left(A \cap R_{b}\right)<$ $\varepsilon \mu_{I}(A)$ or $\mu_{I}\left(A \cap R_{b}\right)>(1-\varepsilon) \mu_{I}(A)$.
Remark 5.5. Notice that if a set is ε-good then it has measure greater than 0 .
Lemma 5.6. Assume that $\mu_{[k] \backslash I}$ is fin.app. on R. For any $\varepsilon>0$, consider the set

$$
A=\left\{a \in V_{I}: \mu_{[k] \backslash I}\left(R_{a}\right)<\varepsilon\right\} .
$$

Then there is an R-definable set $A^{\prime} \supseteq A$ such that $\mu_{[k] \backslash I}\left(R_{a}\right)<2 \varepsilon$ for all $a \in A^{\prime}$.
Proof. Let $b_{1}, \ldots, b_{n} \in V_{[k] \backslash I}$ be such that $\mu_{[k] \backslash I}\left(R_{a}\right) \approx^{\frac{\varepsilon}{2}} \operatorname{Av}\left(b_{1}, \ldots, b_{n} ; R_{a}\right)$ for all $a \in V_{I}$. Let $\mathcal{J}=\left\{J \subseteq[n]: \frac{|J|}{n}<\frac{3}{2} \varepsilon\right\}$, and let $A^{\prime}=\bigcup_{J \in \mathcal{J}}\left(\bigcap_{j \in J} R_{b_{j}} \cap \bigcap_{j \notin J} R_{b_{j}}\right)$. It is easy to check that A^{\prime} satisfies the requirements.

Lemma 5.7. Fix some $I \subseteq[k]$ and some $J \subseteq[k] \backslash I$. Let $B \in \mathcal{B}_{J}$ be an ε-good set, and let $A \in \mathcal{B}_{I}$ and $c \in V_{[k] \backslash(I \cup J)}$ be arbitrary, such that both A and B are of positive measure. Then (by Definition 5.4) A is a disjoint union of the sets

$$
A_{B, c}^{0}=\left\{a \in A: \bar{\mu}_{J}\left(R_{a, c} \cap B\right)<\varepsilon \mu_{J}(B)\right\}
$$

and

$$
A_{B, c}^{1}=\left\{a \in A: \mu_{J}\left(R_{a, c} \cap B\right)>(1-\varepsilon) \mu_{J}(B)\right\}
$$

Assume that $\varepsilon<\frac{1}{4}$. Then $A_{B, c}^{0}, A_{B, c}^{1} \in \mathcal{B}_{I}$.
Proof. Indeed, let μ_{I}^{\prime} be the restriction of μ_{I} to A and let μ_{J}^{\prime} be the restriction of μ_{J} to B. As R is stable, by Lemma 5.3 both $\mu_{I}^{\prime}, \mu_{J}^{\prime}$ are fin.app. on R. Hence, by Lemma 5.6 applied to $\mu_{I}^{\prime}, \mu_{J}^{\prime}$ we can find some R-definable $A_{0}^{\prime} \supseteq A_{B, c}^{0}, A_{1}^{\prime} \supset A_{B, c}^{1}$ such that $\mu_{J}^{\prime}\left(R_{a, c}\right)<2 \varepsilon$ for all $a \in A_{0}^{\prime}$ and $\mu_{J}^{\prime}\left(R_{a, c}\right)>(1-2 \varepsilon)$ for all $a \in A_{1}^{\prime}$ (here
we have applied it to the complement $\neg R$, which is also d-stable). As $\varepsilon<\frac{1}{4}$, it follows that in fact $A_{B, c}^{0}=A_{0}^{\prime} \cap A, A_{B, c}^{1}=A_{1}^{\prime} \cap A$.

In particular, it makes sense to speak of the μ_{I}-measure of $A_{B, c}^{0}, A_{B, c}^{1}$.
Definition 5.8. Let $0<\varepsilon<\frac{1}{4}$ be arbitrary, and let $I \subseteq[k]$. We say that a set $A \in \mathcal{B}_{I}$ is ε-excellent if it is ε-good and for every $J \subseteq[k] \backslash I$, every ε-good $B \in \mathcal{B}_{J}$ and every $c \in V_{[k] \backslash(I \cup J)}$, either $\mu_{I}\left(A_{B, c}^{0}\right)<\varepsilon \mu_{I}(A)$ or $\mu_{I}\left(A_{B, c}^{1}\right)<\varepsilon \mu_{I}(A)$ (in the notation from Lemma 5.7.
Lemma 5.9. Let $R \subseteq V_{1} \times \ldots \times V_{k}$ be d-stable, $1 \leq n \leq k$ and let $0<\varepsilon<\frac{1}{2^{d}}$ be arbitrary. Assume that $A \in \mathcal{B}_{n}$ and $\mu_{n}(A)>0$. Then there is an ε-excellent R-definable set $A^{\prime} \in \mathcal{B}_{n}$ with $\mu_{n}\left(A^{\prime} \cap A\right) \geq \varepsilon^{d} \mu_{n}(A)$.
Proof. We will need the following claim.
Claim. Assume that $0<\varepsilon<\frac{1}{4}$ and $A \in \mathcal{B}_{n}$ is not ε-excellent. Then there are disjoint $A^{0}, A^{1} \subseteq A$ with $A_{i} \in \mathcal{B}_{n}$ and $\mu\left(A_{i}\right) \geq \varepsilon \mu(A)$ for $i \in\{0,1\}$, and such that for any finite $S^{0} \subseteq A^{0}, S^{1} \subseteq A^{1}$ with $\left|S^{0}\right|+\left|S^{1}\right| \leq \frac{1}{\varepsilon}$ there is some $c \in V_{[k] \backslash\{n\}}$ such that $a \in R_{c}$ for all $a \in S^{1}$ and $a \notin R_{c}$ for all $a \in S^{0}$.

Proof. If A is not ε-good, there is some $c \in V_{[k] \backslash\{n\}}$ such that $\mu_{n}\left(A \cap R_{c}\right) \geq$ $\varepsilon \mu_{n}(A)$ and $\mu_{n}\left(A \cap \neg R_{c}\right) \geq \varepsilon \mu_{n}(A)$. We let $A^{1}=A \cap R_{c}$ and $A^{0}=A \cap\left(\neg R_{c}\right)$.

If A is ε-good, as it is not ε-excellent, there are some $J \subseteq[k] \backslash\{n\}$, some set $B \in \mathcal{B}_{J}$ which is ε-good, and some $c^{\prime} \in V_{[k] \backslash(\{n\} \cup J)}$ such that A is a disjoint union of the sets $A^{0}:=A_{B, c^{\prime}}^{0}, A^{1}:=A_{B, c^{\prime}}^{1}$ (in the notation from Lemma 5.7) and $\mu_{n}\left(A^{t}\right) \geq \varepsilon \mu_{n}(A)$ for both $t \in\{0,1\}$. Now given S^{0}, S^{1} as in the claim, we have $\mu_{J}\left(B \cap R_{a, c^{\prime}}\right) \leq \varepsilon \mu_{J}(B)$ for all $a \in S^{0}$ and $\mu_{J}\left(B \cap \neg\left(R_{a, c^{\prime}}\right)\right) \leq \varepsilon \mu_{J}(B)$ for all $a \in S^{1}$. Let

$$
B^{\prime}=B \cap\left(\bigcup_{a \in S^{0}} R_{a, c^{\prime}} \cup \bigcup_{a \in S^{1}} \neg\left(R_{a, c^{\prime}}\right)\right)
$$

As $\left|S^{0}\right|+\left|S^{1}\right|<\frac{1}{\varepsilon}$, it follows that $\mu_{J}\left(B^{\prime}\right) \leq \frac{1}{\varepsilon} \varepsilon \mu_{J}(B)<\mu_{J}(B)$. In particular there is some $b^{\prime} \in B \backslash B^{\prime}$, and taking $c=b^{\prime} \frown c^{\prime}$ satisfies the claim.

Assume now that the conclusion of the lemma fails. By induction we choose sets $\left(A_{\eta}: \eta \in 2^{\leq d}\right)$ in \mathcal{B}_{n} such that $A_{\emptyset}=A$ and given $\eta \in 2^{<d}$, we take $A_{\eta \frown 0}:=$ $\left(A_{\eta}\right)^{0}, A_{\eta-1}:=\left(A_{\eta}\right)^{1}$ as given by the claim applied to A_{η}. For every $\eta \in 2^{d}$, pick some $a_{\eta} \in A_{\eta}$ (possible as $\mu_{n}\left(A_{\eta}\right) \geq \varepsilon^{d} \mu_{n}(A)>0$). For every $\nu \in 2^{<d}$ there is some $c_{\nu} \in V_{[k] \backslash\{n\}}$ such that $a_{\eta} \in R_{c_{\nu}}$ if and only if $\nu \frown 1 \unlhd \eta$ - which gives contradiction to the d-stability of R. Namely we can take c given by the claim for $S^{0}=\left\{a_{\eta}: \eta \in 2^{d}, \nu \frown 0 \unlhd \eta\right\}$ and $S^{1}=\left\{a_{\eta}: \eta \in 2^{d}, \nu \frown 1 \unlhd \eta\right\}$ (note that $\left|S^{0}\right|+\left|S^{1}\right| \leq 2^{d}<\frac{1}{\varepsilon}$ by assumption).
Lemma 5.10. Let $R \subseteq V_{1} \times \ldots \times V_{k}$ be d-stable, and let $0<\varepsilon<\frac{1}{2^{d}}$ be arbitrary. For any $n \in[k]$, there is a partition of V_{n} into ε-excellent sets from \mathcal{B}_{n}, and the size of the partition can be bounded by a polynomial of degree $d+1$ in $\frac{1}{\varepsilon}$.
Proof. Repeatedly applying Lemma 5.9, we let A_{m+1} be an $\frac{\varepsilon}{2}$-excellent subset of $B_{m}:=V_{n} \backslash\left(\bigcup_{1 \leq i \leq m} A_{i}\right)$ with $\mu_{n}\left(A_{m+1}\right) \geq\left(\frac{\varepsilon}{2}\right)^{d} \mu_{n}\left(B_{m}\right)$. Then $\mu_{n}\left(B_{m+1}\right) \leq$ $\mu_{n}\left(B_{m}\right)-\left(\frac{\varepsilon}{2}\right)^{d} \mu_{n}\left(B_{m}\right) \leq\left(1-\left(\frac{\varepsilon}{2}\right)^{d}\right) \mu_{n}\left(B_{m}\right)$, hence $\mu_{n}\left(B_{m}\right) \leq\left(1-\left(\frac{\varepsilon}{2}\right)^{d}\right)^{m-1}$ for all m. Thus $\mu_{n}\left(B_{m}\right) \leq \frac{\varepsilon}{2} \mu_{n}\left(A_{1}\right)$ after $m=\frac{\log \left(\frac{\varepsilon}{2}\right)^{d+1}}{\log \left(1-\left(\frac{\varepsilon}{2}\right)^{d}\right)}$ steps. Letting $A_{1}^{\prime}=A_{1} \cup B_{m}$, it is easy to check that A_{1}^{\prime} is an ε-excellent set, and $A_{1}^{\prime}, A_{2}, \ldots, A_{m}$ is a partition of V_{n}.

Finally, for the size of the partition we have an estimate

$$
m=-\frac{(d+1) \log 2}{\log \left(1-\left(\frac{\varepsilon}{2}\right)^{d}\right)} \log \left(\frac{1}{\varepsilon}\right) \leq-\frac{c}{\ln \left(1-\left(\frac{\varepsilon}{2}\right)^{d}\right)} \ln \left(\frac{1}{\varepsilon}\right)
$$

for some constant $c \in \mathbb{N}$ depending just on d. And as $-\ln (1-x) \geq x$ for all x, this gives

$$
m \leq c\left(\frac{\varepsilon}{2}\right)^{d} \ln \left(\frac{1}{\varepsilon}\right) \leq c^{\prime}\left(\frac{1}{\varepsilon}\right)^{d+1}
$$

for some $c^{\prime}=c^{\prime}(d) \in \mathbb{N}$.
Finally we can use the partition in Lemma 5.10 to obtain a regular partition for $R \subseteq V_{1} \times \ldots \times V_{k}$.

Lemma 5.11. If $A \subseteq V_{n}$ is ε-excellent and $B \subseteq V_{[n-1]}$ is ε-good then $B \times A$ is 2ε-good.

Proof. Let $c \in V_{[k] \backslash[n]}$ be arbitrary. As B is ε-good and A is ε-excellent, by Definition $\backslash \operatorname{ref}\left\{\right.$ def: epsilon excellent\} we have $A=A_{B, c}^{0} \cup A_{B, c}^{1}$ and either $\mu_{n}\left(A_{B, c}^{0}\right)<$ $\varepsilon \mu_{n}(A)$ or $\mu_{n}\left(A_{B, c}^{1}\right)<\varepsilon \mu_{n}(A)$. Assume we are in the first case. Then, using the definition of $\mu_{[n]}$ and Lemma 4.31, we have

$$
\begin{gathered}
\mu_{[n]}\left((B \times A) \cap R_{c}\right)=\int_{A}\left(\mu_{[n-1]}\left(R_{a, c} \cap B\right)\right) d \mu_{n} \geq \\
\int_{A_{B, c}^{1}}\left(\mu_{[n-1]}\left(R_{a, c} \cap B\right)\right) d \mu_{n} \geq \int_{A_{B, c}^{1}}(1-\varepsilon) \mu_{[n-1]}(B) d \mu_{n} \geq \\
(1-\varepsilon)^{2} \mu_{n}(A) \mu_{[n-1]}(B)>(1-2 \varepsilon) \mu_{[n]}(A \times B)
\end{gathered}
$$

Similarly, in the second case we obtain that $\mu_{[n]}\left((B \times A) \cap R_{c}\right) \leq 2 \varepsilon \mu_{[n]}(A \times B)$.
Theorem 5.12. Let $R \subseteq V_{1} \times \ldots \times V_{k}$ be d-stable, and let $0<\varepsilon<\frac{1}{2^{d}}$ be arbitrary. Then there is an R-definable ε-regular partition $\overrightarrow{\mathcal{P}}$ of $V_{1} \times \ldots \times V_{k}$ with $0-1$-densities (see Definition 4.38) without any bad k-tuples in the partition (i.e. $\Sigma=\emptyset$) and such that the size of the partition $\|\overrightarrow{\mathcal{P}}\|$ is bounded by a polynomial of degree $d+1$ in $\frac{1}{\varepsilon}$.
Proof. For each $n \leq k$, let \mathcal{P}_{n} be a partition of V_{n} into $\frac{\varepsilon}{2^{k+1}}$-excellent sets as given by Lemma 5.10, and let $\overrightarrow{\mathcal{P}}:=\left\{X_{1} \times \ldots \times X_{k}: X_{n} \in \mathcal{P}_{n}\right\}$. We claim that \mathcal{P}_{n} is ε-regular with $\Sigma=\emptyset$. Indeed, let $X=X_{1} \times \ldots \times X_{k} \in \overrightarrow{\mathcal{P}}$ be arbitrary, and let $Y=Y_{1} \times \ldots \times Y_{k}$, where $Y_{n} \subseteq X_{n}, Y_{n} \in \mathcal{B}_{n}$ are arbitrary. Let $X^{\prime}:=$ $X_{1} \times \ldots \times X_{k-1}, Y^{\prime}:=Y_{1} \times \ldots \times Y_{k-1}$. Applying Lemma $5.11 k$ times, the set X^{\prime} is $\frac{\varepsilon}{2}$-good, and X_{k} is $\frac{\varepsilon}{2}$-excellent. Then, by Definition \backslash ref\{def: epsilon excellent\}, X_{k} is a disjoint union of the sets $\left(X_{k}\right)_{X^{\prime}}^{0},\left(X_{k}\right)_{X^{\prime}}^{1} \in \mathcal{B}_{k}$ and $\mu_{k}\left(\left(X_{k}\right)_{X^{\prime}}^{t}\right)<\frac{\varepsilon}{2} \mu_{k}\left(X_{k}\right)$ for one of $t \in\{0,1\}$. Let $Y_{k}^{0}:=\left(X_{k}\right)_{X^{\prime}}^{0} \cap Y_{k}$ and $Y_{k}^{1}:=\left(X_{k}\right)_{X^{\prime}}^{1} \cap Y_{k}$. We have

$$
\mu_{[k]}(R \cap Y)=\int_{Y_{k}} \mu_{[k-1]}\left(R_{c} \cap Y^{\prime}\right) d \mu_{k}(c)
$$

As Y_{k} is a disjoint union of Y_{k}^{0}, Y_{k}^{1} and $\mu\left(Y_{k}^{t}\right) \leq \frac{\varepsilon}{2} \mu_{k}\left(X_{k}\right)$ for some $t \in\{0,1\}$, we have

$$
\begin{gathered}
\left|\mu_{[k]}(R \cap Y)-\int_{Y_{k}^{t}} \mu_{[k-1]}\left(R_{c} \cap Y^{\prime}\right) d \mu_{k}(c)\right| \leq \\
\frac{\varepsilon}{2} \mu_{k}\left(X_{k}\right) \mu_{[k-1]}\left(Y_{1} \times \ldots Y_{k-1}\right) \leq \frac{\varepsilon}{2} \mu_{[k]}\left(X_{1} \times \ldots \times X_{k}\right)
\end{gathered}
$$

for some $t \in\{0,1\}$.
Assume that $t=0$. Then for all $c \in Y_{k}^{0}$ we have $\mu_{[k-1]}\left(R_{c} \cap X^{\prime}\right)<\frac{\varepsilon}{2} \mu_{[k-1]}\left(X^{\prime}\right)$. Hence

$$
\int_{Y_{k}^{0}} \mu_{[k-1]}\left(R_{c} \cap Y^{\prime}\right) d \mu_{k}(c) \leq \mu\left(Y_{k}^{0}\right) \frac{\varepsilon}{2} \mu_{[k-1]}\left(X^{\prime}\right) \leq \frac{\varepsilon}{2} \mu_{[k]}\left(X_{1} \times \ldots \times X_{k}\right)
$$

and so $\mu_{[k]}(R \cap Y) \leq \varepsilon \mu_{[k]}(X)$.
If $t=1$, applying the same argument to $\neg R$ we obtain $\mu_{[k]}(\neg R \cap Y) \leq \varepsilon \mu_{[k]}(X)$, hence $\left|\mu_{[k]}(\neg R \cap Y)-\mu_{[k]}(Y)\right| \leq \varepsilon \mu_{[k]}(X)$.

References. Regularity lemma for stable graphs was proved in \backslash cite\{ms\} for counting measures. Later, \backslash cite\{malliaris2016stable\} provides a proof for general measures. However, the proof in \cite\{malliaris2016stable\} does not give any bounds on the size of the partition. Here we present a proof from ${ }^{* * *}$ combining these two approaches and prove a regularity lemma for stable hypergraphs relatively to arbitrary measures, bounding the size of the partition by a polynomial in $\$ \backslash$ frac $\{1\}\{\backslash$ varepsilon $\} \$$.

6. TAME HYPERGRAPH REMOVAL

Fact 6.1. (Conant) Let $(\mathbb{Z},+, 0, A)$ be stable, with $A \subseteq \mathbb{N}$. Then A doesn't contain an infinite arithmetic progression.

Problem 6.2. Can still contain arbitrary long finite arithmetic progressions?
Fact 6.3. What about the NIP case?
Remark 6.4. (\mathbb{Z}, Primes $)$ is simple by Kaplan-Shelah. Does it mean that there is no improved simple regularity lemma? Can Gower's lower bound be carried out here?
6.1. Graph removal in stable/NIP. seems we get $\delta=\varepsilon^{t}$ for some $t=t(\operatorname{VC}(E))$. By Ricardo Bello Aguirre, $\prod_{k \in \mathbb{N}} \mathbb{Z} / p^{k} \mathbb{Z} / \mathcal{U}$ is NIP. Does it imply anything for Szemeredi's theorem on progressions? Maybe by Chebycheff's density of primes, gives smth...

In fact, maybe only use additive structure? Then the ultraproduct is just an abelian group? Hence stable.

Brr, definition uses A.
Hence, assume $(\mathbb{Z},+, A)$ is stable/NIP. Then hopefully something happens. If A is definable in an NIP exapnsion of Z with order, then all these initial pieces are uniformly definable, so the ultraproduct is NIP as well?

References

[1] Artem Chernikov. Lecture notes on stability theory (math 285D). http://www. math. ucla. edu/ ~chernikov/teaching/StabilityTheory285D/StabilityNotes.pdf
[2] Artem Chernikov. Lecture notes on topics in combinatorics (math 285N). http:// www. math. ucla. edu/ ~chernikov/teaching/Combinatorics285N/CombinatoricsNotes. pdf.
[3] Lester E Dubins. An elementary proof of bochner's finitely additive radon-nikodym theorem. The American Mathematical Monthly, 76(5):520-523, 1969.
[4] Jacob Fox and László Miklós Lovász. A tight lower bound for szemerédi?s regularity lemma. preprint, 2014.
[5] Peter Frankl and Vojtěch Rödl. Extremal problems on set systems. Random Structures 8 Algorithms, 20(2):131-164, 2002.
[6] Isaac Goldbring and Henry Towsner. An approximate logic for measures. Israel Journal of Mathematics, 199(2):867-913, 2014.
[7] William T Gowers. Lower bounds of tower type for szemerédi's uniformity lemma. Geometric 63 Functional Analysis GAFA, 7(2):322-337, 1997.
[8] Yuri Gurevich and Peter H Schmitt. The theory of ordered abelian groups does not have the independence property. Transactions of the American Mathematical Society, 284(1):171-182, 1984.
[9] Ehud Hrushovski and Anand Pillay. On nip and invariant measures. Journal of the European Mathematical Society, 13(4):1005-1061, 2011.
[10] H Jerome Keisler. The ultraproduct construction. Ultrafilters Across Mathematics, http: //www. math. wisc. edu/ ~keisler/ultraproducts-web-final. pdf, 530:163-179, 2010.
[11] János Komlós and Miklós Simonovits. Szemerédi's regularity lemma and its applications in graph theory. 1996.
[12] Jerzy Łoś and Edward Marczewski. Extensions of measure. Fundamenta Mathematicae, 36(1):267-276, 1949.
[13] Guy Moshkovitz and Asaf Shapira. A short proof of gowers? lower bound for the regularity lemma. Combinatorica, pages 1-8, 2013.
[14] Anand Pillay. Geometric stability theory. Number 32. Oxford University Press, 1996.
[15] KPS Bhaskara Rao and M Bhaskara Rao. Theory of charges: a study of finitely additive measures, volume 109. Academic Press, 1983.
[16] Pierre Simon. A guide to NIP theories, volume 44. Cambridge University Press, 2015.
[17] Terence Tao. A variant of the hypergraph removal lemma. Journal of combinatorial theory, Series A, 113(7):1257-1280, 2006.
[18] Terence Tao. A correspondence principle between (hyper) graph theory and probability theory, and the (hyper) graph removal lemma. Journal d'Analyse Mathématique, 103(1):1-45, 2007.
[19] Henry Towsner. An analytic approach to sparse hypergraphs: hypergraph removal. Preprint, arXiv:1204.1884, 2012.
[20] Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability \& Its Applications, 16(2):264-280, 1971.

