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1. Ultrafilters, ultraproducts and ultralimits

1.1. Filters and ultrafilters. Let I be a set, and let P (I) denote the set of all
subsets of I. Given a subset S ⊆ I, we denote by ¬S the complement of S in I, i.e.
¬S := I \ S.

Definition 1.1. A filter on I is a collection F of subsets of I such that:
(1) I ∈ F , ∅ /∈ F ,
(2) A,B ∈ F =⇒ A ∩B ∈ F ,
(3) A ∈ F and A ⊆ B ⊆ I =⇒ B ∈ F .

It follows from the definition that I ∈ F and that the intersection of finitely
many sets in F is also in F . Intuitively, one can think of a filter as a collection of
“large” subsets of I.

Example 1.2. (1) Assume that I is an infinite set. Then F = {¬S : S ⊆ I finite}
is the Fréchet filter on I.

(2) Fix a non-empty set A ⊆ I. Then F = {S ⊆ I : A ⊆ S} is the principal
filter generated by A.

Definition 1.3. We say that a filter U on I is an ultrafilter if for every set S ⊆ I,
either S ∈ U or ¬S ∈ U .

Fact 1.4. For any filter F on I there is an ultrafilter U on I with F ⊆ U .

This fact is equivalent (modulo ZFC) to a weak form of the axiom of choice
called the Boolean prime ideal theorem.

Remark 1.5. (1) Ultrafilters are precisely the maximal filters (under inclusion).
(2) Assume that U is an ultrafilter on I, S ∈ U and S = S1 ∪ . . . ∪ Sn. Then

Si ∈ U for at least one 1 ≤ i ≤ n.
(3) Note that if a ∈ I, then the principal filter generated by {a} is an ultrafilter.
(4) An ultrafilter U on I is non-principal if and only if it extends the Fréchet

filter on I. In particular, every infinite set admits a non-principal ultrafilter
on it.

(5) In fact, for any infinite set I there are 22|I| different non-principal ultrafilters
on it.

(6) For any infinite set S ⊆ N, there is an ultrafilter U on N with S ∈ U .

Non-principal ultrafilters provide a tool for finding a “generic” object associated
to an infinite collection of objects. We will need two instances of this idea.

1.2. Ultralimits. Let (X, d) be a metric space, and let U be a non-principal ul-
trafilter on N.

Definition 1.6. Let (xn)n∈N be a sequence of points in X. The point x ∈ X is
called the ultralimit of xn (relatively to U), denoted x = limU xn, if for every ε > 0
we have {n ∈ N : d (xn, x) ≤ ε} ∈ U .

Remark 1.7. (1) If an ultralimit of a sequence of points exists, then it is unique.
(2) If x = limn→∞ xn in the usual sense of metric limits, then x = limU xn

(uses that U is non-principal).

Fact 1.8. If (X, d) is compact and U is a non-principal ultrafilter on N, then any
sequence of points in X has an ultralimit relatively to U .
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Corollary 1.9. Any bounded sequence (xn : n ∈ N) of real numbers has a well-
defined ultralimit in R relatively to any non-principal ultrafilter on U (as closed
intervals are compact).

Of course, this limit depends on the ultrafilter. For example, let xn = 0 if n is
even and xn = 1 if n is odd. Then limU xn = 0 for any ultrafilter U on N containing
the set of even numbers, and limU xn = 1 for any ultrafilter on N containing the
set of odd numbers.

1.3. Some model-theoretic notation.

Definition 1.10. A (first-order) structure

M = (M,R1, R2, . . . , f1, f2, . . . , c1, c2, . . .)

consists of an underlying set M , together with some distinguished relations Ri
(subsets of Mni , ni ∈ N), functions fi : Mni →M , and constants ci (distinguished
elements of M). We refer to the collection of all these relations, function symbols
and constants as the signature ofM, or the language ofM.

Example 1.11. A group can be naturally viewed as a structure
(
G, ·,−1 , 1

)
, as

well as a ring (R,+, ·, 0, 1), an ordered set (X,<), a graph (X,E), etc.

Definition 1.12. A formula is an expression of the form

ψ (y1, . . . , ym) = ∀x1∃x2 . . . ∀xn−1∃xnφ (x1, . . . , xn; y1, . . . , yn) ,

where φ is given by a boolean combination of (superpositions of) the basic relations
and functions (and y1, . . . , yn are the free variables of ψ).

We denote the set of all formulas by L. We also consider formulas with parame-
ters, i.e. expressions of the form ψ

(
ȳ, b̄
)
with ψ ∈ L and b̄ a tuple of elements inM .

Given a set of parameters B ⊆ M , we let L (B) =
{
ψ
(
ȳ, b̄
)

: ψ ∈ L, b̄ ∈ B|b̄|
}
. If

ψ (ȳ) ∈ L (B) is satisfied by a tuple ā of elements of M , we denote it asM |= ψ (ā)
or a |= ψ (ȳ), and we call ā a solution of ψ. If Ψ (ȳ) is a set of formulas, we write
a |= Ψ (ȳ) to denote that a |= ψ (ȳ) for all ψ ∈ Ψ. Given a set A ⊆M |x|, we denote
by ψ (A) the set

{
a ∈ A|x| :M |= ψ (A)

}
of all solutions of ψ in A. We say that

X ⊆Mn is an A-definable set if there is some ψ (x̄) ∈ L (A) such that X = ψ (Mn).
If ψ has no free variables, then it is called a sentence, and it is either true or false
inM. By the theory ofM, or Th (M), we mean the collection of all sentences that
are true in M .

1.4. Ultraproducts of first-order structures. Let L be a language and I an
infinite set. Suppose thatMi is an L-structure for each i ∈ I. Let U be an ultrafilter
on I. We define a new structureM =

∏
Mi/U , which we call the ultraproduct of

theMi modulo U .
• Define a relation ∼ on X :=

∏
i∈IMi by:

given a = (a (i) : i ∈ I) , b = (b (i) : i ∈ I) in X, a ∼ b if and only if
{i ∈ I : a (i) = b (i)} ∈ U .
• ∼ is an equivalence relation on X (using that U is an ultrafilter), and given
a in X, we denote its ∼-equivalence class by [a].
• The universe ofM will beM = X/ ∼, i.e. the set of the equivalence classes

relatively to ∼.
• If c is a constant symbol of L, let cM :=

[(
cMi : i ∈ I

)]
.
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• If f (x1, . . . , xn) is a function symbol in L and [a1] , . . . , [an] ∈M , we define
fM ([a1] , . . . , [an]) :=

[
fMi (a1 (i) , . . . , an (i))

]
.

• If R (x1, . . . , xn) is a relation symbol in L, we define RM on Mn by saying
that RM ([a1] , . . . , [an]) holds inM if and only if

{i ∈ I :Mi |= R (a1 (i) , . . . , an (i))} ∈ U .

Exercise 1.13. Check that this is well-defined using the properties of ultrafilters.

Fact 1.14. (Łoś theorem) Let φ (x1, . . . , xn) be an L-formula, and letM =
∏
i∈IMi/U .

Then for any [a1] , . . . , [an] ∈M,

M |= φ ([a1] , . . . , [an]) ⇐⇒ {i ∈ I :Mi |= φ (a1 (i) , . . . , an (i))} ∈ U .

Hence one can think of M as a “limit” of the structures Mi, i ∈ I: a formula
holds inM if it holds inMi for some/any large set of i ∈ I (relatively to U).

Corollary 1.15. For each set of sentences T in L, every ultraproduct of models of
T is a model of T .

Corollary 1.16. (Compactness theorem of first-order logic) If T is a set of sen-
tences (of arbitrary cardinality) such that every finite subset T0 ⊆ T is consistent,
then T is consistent. (Exercise)

Example 1.17. Let U be a non-principal ultrafilter on N. LetMi = ({0, 1, . . . , i− 1} , <)
be a finite linear order on i elements. LetM :=

∏
i∈NMi/U , and let T := Th (M).

For any i ∈ N,Mi has the first and the last elements, and is a discrete linear order
(i.e. every element has immediate successor and predecessor) of size ≥ i. Each of
these properties can be expressed by a first-order sentence. Hence, by Łoś theorem,
M is an infinite discrete linear order with endpoints (these properties axiomatize
a complete first-order theory, hence determine T ). In fact,M∼= N+

∑
j∈L Z+N∗,

where L is a dense linear order without endpoints and N∗. What is the cardinality
ofM? We will find out soon.

Definition 1.18. LetM be an L-structure.
(1) Let A be a set of parameters in M . By a partial type Φ (x) over A (where

x is an ordered tuple of variables) we mean a collection of L-formulas of
the form φ (x) with parameters from A such that every finite subcollection
has a common solution inM.

(2) By a complete type over A we mean a partial type such that for every
formula φ (x) ∈ L (A), either φ (x) or ¬φ (x) is in it. For b ∈M, we denote
by tp (b/A) the complete type of b over A, i.e.

tp (b/A) = {φ (x) : b |= φ (x) , φ (x) ∈ L (A)} .

(3) We say that a (partial) type Φ (x) is realized inM if there is some b ∈ M
satisfying simultaneously all of the formulas in Φ.

Example 1.19. LetM = (R,+,×, 0, 1) be the field of real numbers. The partial
type Φ (x) = {x < n : n ∈ N} over ∅ is not realized in R (where n = 1 + . . .+ 1︸ ︷︷ ︸

n times

).

Definition 1.20. Let κ be a cardinal. A structureM is κ-saturated if every partial
type over a set of parameters of size < κ is realized inM.
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Consider again Φ (x) from the previous example. It shows that R is not ℵ0-
saturated. Let U be a non-principal ultrafilter on N, and let R∗ := RI/U . Then
Φ (x) is also a partial type over ∅ in R∗, and [(n : n ∈ N)] is an element of R∗
realizing Φ (x) (using Łoś theorem). More generally:

Proposition 1.21. Let L be a countable language, (Mi : i ∈ N) a sequence of L-
structures and U a non-principal ultrafilter on N. Then the ultraproduct M =∏
i∈NMi/U is ℵ1-saturated (i.e. every partial type over a countable set of param-

eters is realized inM).

Proof. Let Φ (x) be a partial type over a countable set of parameters A ⊆ M . As
L is countable, Φ (x) can be enumerated as {φn (x, [an]) : n ∈ N}, φn (x, [an]) ∈
L (M). Let X0 = N and for 1 ≤ n ∈ N let

Xn = {i ∈ N :Mi |= ∃xφ1 (x, a1 (i)) ∧ . . . ∧ φn (x, an (i))} ∩ [n,∞) .

As Φ (x) is a partial type, every finite set of formulas from Φ is realized in
M. In particular, M |= ∃xφ1 (x, [a1]) ∧ . . . ∧ φn (x, [an]) for all n ∈ N. As U is
non-principal, by Łoś theorem it follows that Xn ∈ U for all n ∈ N. Moreover,⋂
n∈NXn = ∅ and Xn ⊇ Xn+1. Hence for every i ∈ N there is a greatest n (i) ∈ N

such that i ∈ Xn(i).
We define a sequence b = (b (i) : i ∈ N) as follows. If n (i) = 0 let b (i) be an

arbitrary element in Mi. If n (i) > 0, let b (i) be some element in Mi realizing
φ1 (x, a1 (i)) ∧ . . . ∧ φn(i)

(
x, an(i) (i)

)
.

Now fix any n > 0. Then for any i ∈ Xn we have n ≤ n (i), hence Mi |=
φn (b (i) , an (i)). As Xn ∈ U , it follows that M |= φn ([b] , [an]). As this holds for
any n, [b] realizes Φ (x) inM. �

Note that every infinite κ-saturated structureM has size at least κ (if |M| < κ,
then {x 6= a : a ∈M} is a partial type over a set of size < κ which cannot be
realized inM). If follows from Proposition 1.21 that any ultraproduct relatively to
a non-principal ultrafilter in N is either finite or of size at least ℵ1. In fact, more is
true.

Proposition 1.22. Let U be a non-principal ultrafilter on N. Then any ultraproduct
M =

∏
i∈NMi/U is either finite or of cardinality ≥ 2ℵ0 .

Proof. Assume thatM is infinite.
Claim 1. There is a family F of functions f : N→ N such that:
(1) |F| = 2ℵ0 ,
(2) f (n) < 2n for any f ∈ F and n ∈ N,
(3) if f 6= g are in F , then {n : f (n) = g (n)} is finite.

Proof of Claim 1. For each A ⊆ N, let fA : N → N be given by fA (n) =∑
k<n 1A (k) 2k, where 1A is the indicator function of A, i.e. 1A (k) = 1 if k ∈ A,

and 1A (k) = 0 otherwise. Then F = {fA : A ⊆ N} is as needed.

Claim 2. There is a set S ∈ U and a partition S =
⋃
n∈NAn such that:

(1) An /∈ U for all n ∈ N,
(2) if i ∈ An, then |Mi| ≥ 2n.

Proof of Claim 2. Let S0 = {i ∈ N :Mi is finite}, S1 = {i ∈ N :Mi is infinite}.
As N = S0 ∪ S1, we have St ∈ U for some t ∈ {0, 1}.
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If S0 ∈ U , we let S := S0 and let An =
{
i ∈ S : 2n ≤ |Mi| < 2n+1

}
. The sets

An clearly partition N. Assume that An ∈ U for some n. As having at most 2n+1

elements is a property of a structure expressible by a first-order sentence, it would
follow by Łoś theorem that |M| ≤ 2n+1 — contrary to the assumption. Hence
An /∈ U for all n ∈ N.

If S1 ∈ U , say S1 = {ai : i ∈ N}, we can just take S = S1 and An = {an}.

Now for each i ∈ An, by Claim 2 let {ai,j : j < 2n} be some 2n distinct elements
of Mi. For f ∈ F as in Claim 1, define cf ∈

∏
i∈NMi by cf (i) := ai,f(n), where

n is such that i ∈ An, when i ∈ S, and let cf (i) be an arbitrary element inMi if
i /∈ S.

Note that if f 6= g are in F , then

S′ := {i ∈ S : cf (i) = cg (i)} =
⋃
{An : n ∈ N, f (n) = g (n)}

is a finite union of the sets An /∈ U , hence S′ /∈ U . But then

S \ S′ = {i ∈ S : cf (i) 6= cg (i)} ∈ U ,

which implies that [cf ] 6= [cg]. Hence {[cf ] : f ∈ F} is a subset ofM of size 2ℵ0 , so
|M| ≥ 2ℵ0 . �

Corollary 1.23. Let U be a non-principal ultrafilter on N, and assume thatMi, i ∈
N is a countable L-structure. Then any ultraproduct M =

∏
i∈NMi/U is either

finite or of size 2ℵ0 .

Proof. Obviously
∣∣∏

i∈NMi/U
∣∣ ≤ ∣∣∏i∈NMi

∣∣ ≤ ∣∣NN
∣∣ = 2ℵ0 , and |M| ≥ 2ℵ0 by

Proposition 1.22. �

Example 1.24. Returning to Example 1.17, we now know that
∏
i∈N ({0, 1, . . . , i− 1} , <) /U

is a linear order of the form N +
∑
j∈L Z + N∗, where L is a dense ℵ1-saturated

linear order of cardinality 2ℵ0 .

Exercise 1.25. For i ∈ N letMi be a graph (undirected, without self-loops) which
is a cycle on i vertices (i.e. Mi = ({0, 1, . . . , i− 1} , E) and the edges are {j, j + 1}
for all j = 0, . . . , i − 2 and {i− 1, 0}). Let U be a non-principal ultrafilter on N.
Determine

∏
i∈NMi/U (up to isomorphism).

1.5. References. See e.g. [10] for a brief survey of further properties of the ultra-
product construction and references for the results in this section.

2. Graph regularity and measures on ultraproducts

2.1. Szemerédi’s regularity lemma. Szemerédi’s regularity lemma is a funda-
mental result in graph combinatorics with numerous applications in extremal com-
binatorics, additive number theory, computer science and other areas (see e.g. [11]
for a survey). It has many versions and strengthenings, we begin by considering its
simplest form.

Roughly speaking, the lemma asserts that every sufficiently large graph can be
partitioned into a small number of sets, so that on almost all pairs of those sets the
edges are approximately uniformly distributed at random.

More precisely, by a graph G = (V,E) we mean a set G with a symmetric subset
E ⊆ V 2. For A,B ⊆ V we denote by E(A,B) the set of edges between A and B
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and by dE (A,B) = |E(A,B)|
|A||B| the density of the edges between A and B. For n ∈ N,

we denote [n] = {1, 2, . . . , n}.

Theorem 2.1. (Szemerédi’s regularity lemma) Let ε > 0 be arbitrary. Then there
is some K = K (ε) ∈ N such that for every finite graph G = (V,E) with |V | ≥ K
there is a partition V = V1 t · · · tVK into disjoint sets, real numbers δij , i, j ∈ [K],
and an exceptional set of pairs Σ ⊆ [K]× [K] such that∑

(i,j)∈Σ

|Vi||Vj | ≤ ε|V |2

and for each (i, j) ∈ [K]× [K] \ Σ we have

| |E(A,B)| − δij |A||B| | < ε|Vi||Vj |
for all A ⊆ Vi, B ⊆ Vj. We call a pair of sets (Vi, Vj) with (i, j) ∈ [K] × [K] \ Σ
an ε-regular pair.

Exercise 2.2. (1) We can take δij = dE (Vi, Vj) =
|E(Vi,Vj)|
|Vi||Vj | — the edge den-

sity between Vi and Vj (at the price of possibly doubling the error).
(2) The regularity condition can be rephrased as: |dE (A,B)− dE (Vi, Vj)| < ε

for all A ⊆ Vi, B ⊆ Vj with |A| ≥ ε |Vi| , |B| ≥ ε |Vj |.
(3) Moreover, one can assume that all parts are of almost equal size, i.e.
||Vi| − |Vj || ≤ 1 for all i, j ∈ [K]. In this case, we say that the partition
V = V1 t . . . t VK is an equipartition.

Remark 2.3. Note that any sufficiently large graph has some ε-regular partition,
e.g. into parts each of which consists of a single vertex. The crucial point of
the theorem is that the size of the partition is bounded only in terms of ε, and
independently of the size of G.

Remark 2.4. Regularity lemma doesn’t say anything about what happens on the
“diagonal” in V 2. Namely, given an ε-regular partition V1, . . . , VK of V , it is pos-
sible that all of the pairs on the diagonal (Vi, Vi), 1 ≤ i ≤ K are exceptional
simultaneously. Namely, if Σ is the collection of all bad pairs, we have that∑

(i,j)∈Σ |Vi| |Vj | < ε |V |2. On the other hand, if let’s say (Vi : 1 ≤ i ≤ K) is

an equipartition, we have
∑

1≤i≤K |Vi| 2 ≤ K |V |
2

K2 ≤ 1
K |V |

2, which can be smaller
than ε |V |2 when K is sufficiently large.

Exercise 2.5. A half-graph on n vertices is G = (V,E) with V = [n] = {1, 2, . . . , n}
such that E =

{
(i, j) ∈ [n]

2
: i < j

}
. Using half-graphs, show that in Theorem 2.1

one cannot assume in addition that Σ = ∅.

Next we are going to prove Theorem 2.1. Assume that the theorem is false. This
means that for some ε > 0 we have a sequence of finite graphs Gi = (Vi, Ei), i ∈ N,
such that there is no ε-regular partition of Vi into at most i parts (in particular
|Vi| → ∞ by Remark 2.3). Let G :=

∏
i∈N Gi/U , with U a non-principal ultrafilter

on N. We will see that regularity follows from basic measure theory applied to the
“limit” of the counting measures on the Vi’s.

2.2. Finitely additive measures. Let X be a set, and let B be a Boolean algebra
of subsets of X, i.e. B ⊆ P (X) is such that ∅ ∈ B, X ∈ B and if A,B ∈ B then
A ∩B ∈ B and ¬A ∈ B. Note that this also implies A ∪B ∈ B.
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Definition 2.6. A function µ : B → R≥0 is a finitely additive measure, or f.a.
measure, if for every A,B ∈ B such that A ∩ B = ∅ we have µ (A ∪B) = µ (A) +
µ (B).

Remark 2.7. This implies:
(1) For any disjoint A1, . . . , An ∈ B, µ (A1 ∪ . . . ∪An) = µ (A1) + . . .+µ (An).
(2) If A,B ∈ B, A ⊆ B, then µ (A) ≤ µ (B).
(3) µ (∅) = 0.
(4) For any A,B ∈ B, µ (A ∪B) = µ (A) + µ (B)− µ (A ∩B).

Definition 2.8. A finitely additive probability measure, or f.a.p. measure, on B is
f.a. measure on B such that moreover µ (X) = 1.

Example 2.9. (1) Let X be a finite set. The counting measure µ on P (X)

is defined by µ (Y ) = |Y |
|X| for all Y ⊆ X. Then µ is a f.a.p. measure on

P (X).
(2) Let U be an ultrafilter on a setX. It may be naturally identified with a f.a.p.

measure on the Boolean algebra P (X) taking values in {0, 1}. Namely, for
Y ⊆ X, we define µU (Y ) = 1 if Y ∈ U , and µU (Y ) = 0 if Y /∈ U . It is
easy to check that µU is a f.a.p. measure on P. Conversely, for every f.a.p.
measure µ on P (X) with values in {0, 1}, the set {Y ⊆ X : µ (Y ) = 1} is
an ultrafilter.

We saw that one can extend ultrafilters using the axiom of choice. The same
applies to general f.a.p. measures.

Fact 2.10. (see e.g. [12]) Let X be a set and B ⊆ B′ ⊆ P (X) be Boolean algebras.
Let µ be a f.a.p. measure on B. Then there is a f.a.p. measure µ′ on B′ extending
µ. Moreover, for any S ∈ B′ we can choose µ′ with µ′ (S) = r for any r satisfying

sup {µ (A) : A ∈ B, A ⊆ S} ≤ r ≤ inf {µ (B) : B ∈ B, S ⊆ B} .

Another example is given by the limit f.a.p. measure on an ultraproduct of
structures each of which is equipped with a f.a.p. measure.

Definition 2.11. Assume we have a fixed sequence of sets Vi, i ∈ N. For each i,
let Bi be a Boolean algebra of subsets of Vi. Let U be a non-principal ultrafilter on
N, and let V :=

∏
i∈N Vi/U .

(1) We call a set A ⊆ V internal relatively to the Bi’s if A =
∏
i∈NAi/U for

some Ai ∈ Bi (i.e. [a] ∈ X ⇐⇒ {i ∈ N : a (i) ∈ Ai} ∈ U).
(2) We say simply that A is internal if it is internal relatively to the Boolean

algebras P (Vi), i ∈ N.
(3) Let B be the collection of all subsets of V internal relatively to the Bi’s. It

is a Boolean algebra of subsets of V (e.g. by Łoś theorem).

Exercise 2.12. Recall the definition of ultralimit from Definition 1.6. Let (X, d)
and (Y, d′) be metric spaces, and assume that f : X → Y is continuous. Then for
any sequence (ai)i∈N from X and any non-principal ultrafilter U on N, we have

lim
U
ai = a =⇒ lim

U
f (ai) = f (a) .

Definition 2.13. In the context of Definition 2.11, assume also that µi is an f.a.p.
measure on Bi, for all i ∈ N. For any set A ∈ B, say A =

∏
i∈NAi/U , define
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µ (A) = limU µi (Ai) (ultralimit exists as µi take values in [0, 1]). Then µ (X) is a
f.a.p. measure on B.

(Exercise: check that this is well-defined, i.e. doesn’t depend on the choice of
the Ai’s as above).

Proof. Note that if ai, bi ∈ [0, 1], then limU (ai + bi) = limU ai+limU bi (by Exercise
2.12 applied to X = [0, 1]

2 and Y = [0, 2]).
Let now A =

∏
i∈NAi/U , B =

∏
i∈NBi/U in B be disjoint. Then there is

some S ∈ U such that Ai ∩ Bi = ∅ for all i ∈ S. Then for all i ∈ S, we
have µi (Ai ∪Bi) = µi (Ai) + µi (Bi). Note that A ∪ B =

∏
i∈N (Ai ∪Bi) /U ,

hence µ (A ∪B) = limU µi (Ai ∪Bi) = limU (µi (Ai) + µi (Bi)) = limU µi (Ai) +
limU µi (Bi) = µ (A) + µ (B), as wanted. �

2.3. Obtaining countable additivity. We would like to apply some basic theory
of integration. Normally it is developed in the context of countably additive mea-
sures, rather than f.a.p. measures. We will in fact use the theory of integration for
f.a.p. measures (see e.g. [15]), but first we point out how countable additivity can
be obtained for free in our setting (the so-called Loeb measure construction).

Definition 2.14. Let X be a set. We say that E ⊆ P (X) is a σ-algebra on X if
∅ ∈ E , A ∈ E =⇒ ¬A ∈ E , and Ai ∈ E for all i ∈ N =⇒ A =

⋃
i∈NAi ∈ E .

This implies: X ∈ E and E is closed under countable intersections. For any
F ⊆ P (X), there exists a unique smallest (under inclusion) σ-algebra σF on X
with F ⊆ σF . We call σF the σ-algebra generated by F .

Fact 2.15. (Carathéodory’s extension theorem) Let B be a Boolean algebra on a
set X, and assume that µ is a σ-additive measure defined on B. Then µ extends to
the σ-algebra σB generated by B. Furthermore, if µ is σ-finite (e.g. a probability
measure), then this extension is unique.

Proposition 2.16. Let M be an ℵ1-saturated structure, and let B be a Boolean
algebra of definable subsets of Mn (with parameters). Let µ be an f.a.p. measure
on B. Then it extends in a unique way to a countably additive probability measure
µ′ on the σ-algebra σB generated by B.

Proof. In view of the Carathéodory’s theorem, it is enough to check that µ is already
σ-additive on B. So assume that X ∈ B is a definable set, and assume X =

⊔
i∈NXi

with Xi ∈ B definable. We want to show that µ (X) =
∑
i∈N µ (Xi). Assume that

X )
⋃
i<nXi for all n ∈ N. But then every finite subset of {X}∪{¬Xi : i ∈ N} has a

non-empty intersection, so by saturation ofM we must have that X∩
⋂
i∈N ¬Xi 6= ∅

— contradicting the assumption. It follows that X =
⊔
i<nXi for some n ∈ N, and

Xi = ∅ for i ≥ n. The conclusion follows from the finite additivity of µ. �

Corollary 2.17. LetMi, i ∈ N be L-structures in a countable language L, and let
U be a non-principal ultrafilter on N. Let n ∈ N be fixed, and let Bi be the Boolean
algebra of all L-definable subsets of Mn

i . Let µi be an f.a.p. measure on Bi, and let
µ be the ultralimit measure on B — the Boolean algebra of all L-definable subsets
of Mn. Then µ has a unique extension to a σ-additive measure on the σ-algebra
σB.

Proof. Combine Proposition 2.16 and ℵ1-saturation of the ultraproductM. �
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Exercise 2.18. Let Vi be a sequence of finite sets, and let V :=
∏
i∈N Vi/U . Let B

be the Boolean algebra of all internal subsets of V (See Definition 2.11(2)). Let µi
be the counting measure on P (Vi) Show that the ultralimit of the µi’s extends to
a σ-additive measure on σB.

2.4. Integration for charges (signed f.a. measures).

Definition 2.19. Let B be a Boolean algebra on a set V . A f.a. charge (or a
signed f.a. measure) µ on B is a f.a. bounded function µ : B → R.

Hence a f.a. measure is a f.a. charge taking only positive values. The set of all
f.a. charges on B forms a vector space over R.

Definition 2.20. Let BU ,BV be Boolean algebras on the sets U, V , respectively.
(1) Let BU × BV := {A×B : A ∈ BU , B ∈ BV } ⊆ P (U × V ), and let BU ⊗
BV ⊆ P (U × V ) denote the Boolean algebra generated by BU × BV .
Note: X ⊆ BU ⊗BV iff X can be written as a finite (disjoint) union of sets
from BU × BV .

(2) Let µU , µV be f.a. charges on BU ,BV , respectively. Then there is a unique
f.a. charge µ on BU ⊗ BV with µ (A×B) = µU (A)µV (B) for all A ∈
BU , B ∈ BV (uniqueness follows from finite additivity). We will denote this
µ by µU × µV , the product measure on BU ⊗ BV .
Note: if both µU , µV are f.a. (f.a.p.) measures then µ is f.a. (f.a.p.)
measure.

Definition 2.21. For an f.a. charge µ, define µ+, µ−, |µ| : B → R by

µ+ (X) := sup {µ (Y ) : Y ⊆ X,Y ∈ B} ,
µ− (X) = − inf {µ (Y ) : Y ⊆ X,Y ∈ B} ,

|µ| (X) := µ+ (X) + µ− (X)

for all X ∈ B.

Fact 2.22. [15, Theorems 2.2.1 and 2.2.2]
(1) All of µ+, µ−, |µ| are f.a. measures on B, and µ = µ+ − µ− and |µ| =

µ+ + µ−.
(2) Let µ be an f.a. charge on B. Then for every X ∈ B we have

|µ| (X) = sup
∑
Y ∈Q

|µ (Y )| ,

where sup is taken over all finite partitions Q of X with Q ⊆ B.

Definition 2.23. For a f.a. charge µ on B ⊆ P (V ), define ‖µ‖ = |µ| (V ).

Exercise 2.24. [15, Theorems 2.2.1 and 2.2.2] ‖·‖ is a norm on the vector space
of f.a. charges on B.

We will use basic theory of integration relatively to f.a. charges.
Fix a set V and a Boolean algebra B ⊆ P (V ). For a set X ⊆ V , 1X is the

indicator function, i.e. 1X (a) = 1 if a ∈ X and 1X (a) = 0 if a /∈ X.

Definition 2.25. A function f : V → R is B-simple (or just simple if there is no
ambiguity) if

f =

n∑
i=1

ri1Ai
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for some r1, . . . , rn ∈ R and A1, . . . , An ∈ B.

One may always choose disjoint A1, . . . , An as above. The set of all B-simple
functions forms an R-algebra.

Definition 2.26. For a f.a. charge µ on B and a simple function f =
∑n
i=1 ri1Ai

we define ∫
Ω

fdµ :=

n∑
i=1

riµ (Ai) .

(Exercise: this definition doesn’t depend on the specific representation of f as a
simple function.)

If A ⊆ V , A ∈ B, then we also define∫
A

fdµ :=

∫
V

1Afdµ =

n∑
i=1

riµ (A ∩Xi) .

Note: for any A ∈ B, µ (A) =
∫
V
1Adµ.

Definition 2.27. Let f be a B-simple function. Then the function B → R defined
by A 7→

∫
A
fdµ is a f.a. charge on B. We will denote it by fdµ.

We will need a version of the Radon-Nikodym theorem for f.a. measures. As
before, B is a Boolean algebra on V .

Definition 2.28. Let µ, ν be f.a. charges on B. We say that ν is absolutely
continuous with respect to µ, and write ν � µ if for every ε > 0 there is δ > 0 such
that |µ| (X) < δ implies |ν| (X) < ε for every X ∈ B.

Theorem 2.29. (Radon-Nikodym for f.a. measures, see [3], or [15, Theorem 6.3.4])
Let µ, ν be f.a. charges on B with ν � µ. Then for every ε > 0 there is a simple
function fε with ‖ν − fεdµ‖ < ε.

For f.a. charges µ, ν on B, write µ ≤ ν if µ (X) ≤ ν (X) for all X ∈ B.

Corollary 2.30. Let µ be a f.a.p. measure on B and ν a f.a. measure on B with
ν ≤ µ. Then for every ε there is a simple function fε such that ‖ν − fεdµ‖ < ε.

Remark 2.31. Assuming σ-additivity, one finds a σB-measurable function f such
that ν (A) =

∫
A
fdµ for all A ∈ σB (and this function f can be approximated by

simple functions). Moreover, such function f is unique (up to differences on sets of
measure zero) and is called the Radon-Nikodym derivative.

2.5. Measure-theoretic regularity. We are ready to prove a measure-theoretic
(bipartite) form of regularity.

Theorem 2.32. Let BU ,BV be Boolean algebras on U, V , resp. Let µU , µV be
f.a.p. measures on BU ,BV , resp. Let B be an arbitrary Boolean algebra on U ×V
extending BU ⊗ BV , and µ a f.a.p. measure on B extending µU × µV .

Assume that E ∈ B. Then for any ε > 0 there are:
(1) a partition U = U1 t . . . t Umwith Ui ∈ BU ,
(2) a partition V = V1 t . . . t Vn with Vi ∈ BV ,
(3) real numbers δij ∈ [0, 1], for 1 ≤ i ≤ m, 1 ≤ j ≤ n,
(4) an exceptional set of pairs Σ ⊆ [n]× [m]

such that
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(1)
∑

(i,j)∈Σ µU (Ui)µV (Vj) < ε,
(2) for every (i, j) /∈ Σ, for any A ∈ BU , B ∈ BV with A ⊆ Ui, B ⊆ Vj we have

|µ (E ∩ (A×B))− δijµU (A)µV (B)| < εµU (Ui)µV (Vj) .

Proof. Let BUV := BU ⊗ BV and µUV := µU × µV — a f.a.p. measure on BUV .
Let νE : BUV → [0, 1] be defined as νE (X) := µ (E ∩X) for all X ∈ BUV . Then

νE is a f.a. measure on ΣUV with νE ≤ µUV .
By Radon–Nikodym (Corollary 2.30) there is a BUV -simple function f such that

‖νE − fdµUV ‖ < ε2.
As f is simple, there are some partitions U = U1t. . .tUm with Ui ∈ BU and V =

V1 t . . . t Vn with Vi ∈ BV , and δij ∈ [0, 1] such that f =
∑

(i,j)∈[m]×[n] δij1Ui×Vj .
Let Σ be the set of all (i, j) ∈ [m]× [n] such that

|νE − fdµUV | (Ui × Vj) ≥ εµUV (Ui × Vj) .

Since |νE − fdµUV | is a f.a. measure on BUV ,

ε2 > |νE − fdµUV | (U × V ) ≥
∑

(i,j)∈Σ

εµUV (Ui × Vj) = ε
∑

(i,j)∈Σ

µUV (Ui × Vj) .

Hence
∑

(i,j)∈Σ µUV (Ui × Vj) < ε, and conclusion (1) is satisfied.
Let’s show (2). Assume (i, j) /∈ Σ, hence

|νE − fdµUV | (Ui × Vj) < εµU (Ui)µV (Vj) .

Let A ∈ BU , B ∈ BV with A ⊆ Ui, B ⊆ Vj be arbitrary. Then:

|µ (E ∩ (A×B))− δijµUV (A×B)| = |νE (A×B)− fdµUV (A×B)| ≤ |νE − fdµUV | (A×B) .

Since |νE − fdµUV | is a f.a. measure andA×B ⊆ Ui×Vj , we have |νE − fdµUV | (A×B) ≤
|νE − fdµUV | (Ui × Vj) — as wanted. �

Exercise 2.33. Give a variant of this proof using σ-additive measures and a stan-
dard version of the Radon–Nikodym theorem. (Hint: define a first-order structure
M with two sort U, V in which all elements of BU , BV and B are named by a
predicate. Every structure has an ℵ1-saturated elementary extension — without
loss of generality can work in it).

Corollary 2.34. Szemerédi’s regularity lemma for finite graphs, i.e. Theorem 2.1,
holds.

Proof. Assume it doesn’t hold. This means that for some fixed ε > 0 we have
a sequence of finite graphs Gi = (Vi, Ei), i ∈ N, such that there is no ε-regular
partition of Vi into at most i parts (in particular |Vi| → ∞ by Remark 2.3). Let
G :=

∏
i∈N Gi/U , with U a non-principal ultrafilter on N, write G = (V,E).

Let Bi = P (Vi), and let B be the Boolean algebra of all internal subsets of V .
Let B′i = P

(
V 2
)
, and let B′ be the Boolean algebra of all internal subsets of V 2.

Finally, let µi be the counting measure on Vi, let µ′i be the counting measure on
V 2
i . Then µ = limU µi is an f.a.p. measure on B, µ′ = limU µ

′
i is an f.a.p. measure

on B′, B′ ⊇ B ⊗ B, and µ′ is extending µ× µ. Moreover, E ∈ B′.
Applying Theorem 2.32, we obtain an ε

2 -regular (relatively to µ) finite partition
of V into internal subsets. But then on a U-large set of indices i ∈ N this gives an
ε-regular partition of Vi into the same fixed number of pieces — contradicting the
choice of the sequence Gi. �
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Exercise 2.35. Using the same ultraproduct argument, demonstrate that in The-
orem 2.32 a bound on the size of the partition n,m can be chosen depending only
on ε (so uniformly over all Boolean algebras and all measures).

2.6. References. *** TBA. The use of the finitely additive Radon-Nikodym arose
from my work with Sergei Starchenko.

3. Hypergraph removal

3.1. Removal lemmas. We first consider the more standard triangle removal for
graphs.

Fact 3.1. (Triangle removal lemma, Ruzsa and Szemerédi) For every ε > 0 there
is δ > 0 satisfying the following. If G is a finite graph on n vertices with at most
δn3 triangles, then it may be made triangle-free by removing at most εn2 edges.

Proof. We will deduce it from the regularity lemma (Theorem 2.1).
Let G = (V,E) with |V | = n. Let V = V1 t . . . t VK be an ε

4 -regular partition
of the vertices of G, where K = K (ε), i.e.

•
∑

(i,j)∈Σ |Vi| |Vj | ≤
ε
4n

2,
• |dE (A,B)− dE (Vi, Vj)| < ε

4 for all A ⊆ Vi, B ⊆ Vj with |A| ≥ ε
4 |Vi| , |B| ≥

ε
4 |Vj | (see Exercise 2.2).

We remove an edge xy from G if:

(1) (x, y) ∈ Vi × Vj , where (Vi, Vj) is not an ε
4 -regular pair,

(2) (x, y) ∈ Vi × Vj , where dE (Vi, Vj) <
ε
2 ,

(3) x ∈ Vi, where |Vi| ≤ ε
4Kn.

The number of the edges removed in (1) is at most
∑

(i,j)∈Σ |Vi| |Vj | ≤
ε
4n

2, in
(2) — clearly at most ε

2n
2, and (3) — at most Kn ε

4Kn = ε
4n

2. Overall, we have
removed at most εn2 edges.

Suppose that some triangle remains in the graph, say xyz, where x ∈ Vi, y ∈ Vj
and z ∈ Vk. Then the pairs (Vi, Vj) , (Vj , Vk) and (Vk, Vi) are all ε

4 -regular with
density at least ε

2 , and |Vi| , |Vj | , |Vk| ≥
ε

4Kn.
Lemma. Let X,Y, Z be subsets of V such that (X,Y ) , (Y, Z) , (Z,X) are ε-

regular with d (X,Y ) = α, d (Y, Z) = β, d (Z,X) = γ. Then, provided α, β, γ ≥ 2ε,
the number of triangles xyz with x ∈ X, y ∈ Y, z ∈ Z is at least

(1− 2ε) (α− ε) (β − ε) (γ − ε) |X| |Y | |Z| .

Proof of the lemma. For every x ∈ X, let dY (x) and dZ (x) be the number
of neighbors of x in Y and Z, resp.

LetX ′ := {x ∈ X : dY (x) < (α− ε) |Y |}. Then |X ′| ≤ ε |X| (if not thenX ′ ⊆ X
is of size at least ε |X| and such that dE (X ′, Y ) < α−ε— contradicting regularity).

Let X ′′ := {x : dZ (x) < (γ − ε) |Z|}. Similarly, |X ′′| ≤ ε |X|.
If dY (x) > (α− ε) |Y | and dZ (x) > (γ − ε) |Z|, using that the pair (Y,Z) is

ε-regular with density β, the number of edges between N (x) ∩ Y and N (x) ∩ Z
is at least (α− ε) (β − ε) (γ − ε) |Y | |Z| (hence there are at least as many triangles
containing x).

Summing over all x ∈ X \ (X ′ ∪X ′′) gives the result.
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Applying the lemma to our situation, the number of triangles in G is at least(
1− ε

2

) (
ε
4

)3 ( ε
4K

)3
n3. Taking δ =

(
1− ε

2

) (
ε
4

)3 ( ε
4K

)3
> 0 gives a contradiction.

�

More recently, this was generalized to hypergraphs.

Definition 3.2. A k-uniform hypergraph G on a set of vertices V is any subset
G ⊆

(
V
d

)
of
(
V
d

)
.

Theorem 3.3. (Hypergraph removal lemma, [Gowers] and [Nagle, Rödl, Schacht
and Skokan]) For each k ∈ N, ε > 0 and a finite k-uniform hypergraph (W,F ) there
is some δ > 0 such that: whenever (V,E) is a k-uniform hypergraph containing at
most δ |V ||W | copies of (W,F ), it is possible to remove at most ε |V |k edges from it
to obtain a hypergraph with no copies of (W,F ) at all.

Again, we will convert it into a more general measure-theoretic statement.

3.2. Measure-theoretic hypergraph removal. We introduce some notation.
Fix some sets V1, . . . , Vn. For every I ⊆ [n], let VI =

∏
i∈I Vi. We will write

aI , bI , cI , etc. for elements in VI . Given aI ∈ VI and J ⊆ I, we will write aJ ∈ VJ for
the subtuple of aI given by restricting to the coordinates in J . For any J ⊆ I ⊆ [n],
E ⊆ VI and b ∈ VJ , we write Eb :=

{
a ∈ VI\J : (a, b) ∈ E

}
⊆ VI\J .

Definition 3.4. For every I ⊆ [n], let BI be a Boolean algebra of subsets of VI ,
such that:

(1) for any I, J ⊆ [n] with I ∩ J = ∅, we have BI ⊗ BJ ⊆ BI∪J ,
(2) for any I, J ⊆ [n] with I ∩ J = ∅, b ∈ VJ and E ∈ BI∪J , the fiber Eb =
{a ∈ VI : (a, b) ∈ E} is in BI .

Then we call (BI : I ⊆ [n]) a compatible system of b.a.’s on (Vi : i ∈ [n]).

Example 3.5. (1) Fix a first-order structure M. Fix n ∈ N, and for each
I ⊆ [n] let BI be the b.a. of all definable subsets ofM |I|. Then (BI : I ⊆ [n])
is a compatible system of b.a.’s on V1 = . . . = Vn = M .

(2) Let W =
∏
i∈NWi/U , fix n and for I ⊆ [n] let BI be the b.a. of all internal

subsets of W |I|. Then (BI : I ⊆ [n]) is a compatible system of b.a.’s on
V1 = . . . = Vn = W .

Definition 3.6. (in a compatible system of b.a.’s)
(1) For J ⊆ I ⊆ [n], let BI,J be the b.a. on VI generated by the sets of the

form {aI ∈ VI : aJ ∈ E} for all E ∈ BJ .
(2) If J ⊆ P (I), let BI,J be the Boolean algebra generated by

⋃
J∈J BI,J .

When k ≤ |I|, let BI,k := BI,{J⊆I:|J|=k}.
(3) We write < I for the set of all proper subsets of I, so e.g. BI,<I =
BI,{J⊆I:J(I}.

(4) Given I,J ⊆ [n], let I ∧ J := {K : ∃I ∈ I, J ∈ J s.t. K ⊆ I ∩ J}.
(5) We add a superscript Bσ to denote the σ-algebra generated by the b.a. B.

Definition 3.7. Let (BI : I ⊆ [n]) be a compatible system of b.a.’s on (Vi : i ∈ [n]).
For each I ⊆ [n], let µI be a probability measure on BσI . Assume moreover that

for any J ⊆ I ⊆ [n] we have:
(1) µI extends the product measure µJ × µI\J ,
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(2) For each BσI -measurable function f : VI → R, the function b 7→
∫
VI\J

f
(
xI\J , b

)
dµI\J

from VJ to R is BσJ -measurable,
(3) (Fubini) For each BσI -measurable function f : VI → R and J ⊆ I, we have∫

VI

fdµI =

∫
VJ

(∫
VI\J

f
(
xI\J , bJ

)
dµI\J

)
dµJ (bJ) .

Then we call (µI ,BI : I ⊆ [n]) a compatible system of measures on (Vi : i ∈ [n]).

Remark 3.8. (1) Note that applying (3) to I \ J instead of J , the order of
integration in (3) doesn’t matter.

(2) In particular we have: for any E ∈ BσI , we have µI (E) =
∫
VJ
µI\J (Ex) dµJ (x) =∫

VI\J
µI (Ey) dµI\J (y).

Problem 3.9. Can we recover full (2) and (3) from assuming it only for the indi-
cator functions? I.e., assuming

• For each E ∈ BI and b ∈ VJ , the function b 7→ µI\J (Eb) from VJ to R is
BJ -measurable,

• For any E ∈ BI , we have µI (E) =
∫
VJ
µI\J (Ex) dµJ (x) =

∫
VI\J

µI (Ey) dµI\J (y).

Example 3.10. (1) Let V1, . . . , Vn be finite sets, fix n. For each I ⊆ [n], let
BI := P (VI) and let µI be the counting measure on P (VI) (i.e. µI (X) =
|X|
|VI | for all X ⊆ VI). Note that BI = BσI . Then (µI ,BI : I ⊆ [n]) is a
compatible system of measures.

(2) In the context of Example 3.5(2), let µI = limU µ
|I|
i , where µki is the count-

ing measure on V ki for all k ∈ N.
Then (µI ,BI : I ⊆ [n]) is a compatible system of measures (Exercise! Note
that it is obviously satisfied by the counting measures on finite sets, and
verify that it transfers to the ultralimit).

Remark 3.11. If E ∈ Bσ[n],I then µ[n] (E) = µI (πI (E)), where πI (E) ⊆ VI is the
projection of E onto VI . Indeed, as E ∈ Bσ[n],I , E = πI (E) × V[n]\I , hence by
compatibility µ[n] (E) = µI (πI (E))µ[n]\I

(
V[n]\I

)
= µI (πI (E)).

Theorem 3.12. (Hypergraph removal lemma, measure-theoretic version)
Let (µI ,BI : I ⊆ [n]) be a compatible system of measures on (Vi : i ∈ [n]). Let I ⊆(

[n]
k

)
and AI ∈ B[n],I for all I ∈ I.

Suppose there is δ > 0 such that for any BI ∈ B[n],I (M) with µ[n] (AI \BI) < δ

for all I ∈ I,
⋂
I∈I BI 6= ∅. Then µ[n]

(⋂
I∈I AI

)
> 0.

Proof. By induction on k.

Base step k = 1. If the assumption holds, then necessarily µ[n] (AI) > 0 for all
I ∈ I (assume that µ[n] (AI0) = 0 for some I0 ∈ I; taking BI0 = ∅ and BI = AI for
all I ∈ I \ {I0}, we would have µ[n] (AI \BI) = 0 for all I ∈ I, yet

⋂
I∈I BI = ∅ —

so no δ > 0 as required could be chosen). Hence

µ[n]

(⋂
I∈I

AI

)
=
∏
I∈I

µ[n] (AI) > 0.



MODEL THEORY AND COMBINATORICS: CHAPTER 2 (DRAFT) 16

Induction step. So we assume that k > 1 and that whenever BI ∈ B[n],I with
µ[n] (AI \BI) < δ for all I ∈ I, then

⋂
I∈I BI 6= ∅.

We prove it in a series of claims.
We saw in the regularity lemma, that the indicator function of a graph can be

well-approximated by a simple function on the product Boolean algebra. Similarly,
the indicator function of a hypergraph can be “approximated” by a simple function
on the Boolean algebra generated by all of the smaller product Boolean algebras
— as the following two claims will show.

Fact. Let (Ω,B, µ) be a probability space, and let A be a σ-subalgebra of B.
Given a B-measurable function f : Ω → R≥0, there is a unique (up to differences
on sets of measure zero) A-measurable function g : Ω → R≥0 with the property
that

∫
X
fdµ =

∫
X
gdµ for every X ∈ A. Such a g is denoted E (f |A), the condi-

tional expectation of f relatively to A. (This is a corollary of the Radon-Nikodym
theorem).

Claim 1. For any I0 ∈ I,∫
⋂
I∈I\{I0}

AI

1AI0 =

∫
⋂
I∈I\{I0}

AI

E
(
1AI0 |B

σ
[n],<I0

)
dµ[n].

Proof.
Let f : V[n] → R be the function defined by

f :=
(
1AI0 − E

(
1AI0 |B

σ
[n],<I0

)) ∏
I∈I\{I0}

1AI .

Note that f is B[n]-measurable. By Definition 3.7(3), the function a 7→
∫
VI0

f (xI0 , a) dµI0
from V[n]\I0 to R is B[n]\I0 -measurable and

∫
V[n]

f
(
x[n]

)
dµ[n] =

∫
V[n]\I0

(∫
VI0

f (xI0 , a) dµI0

)
dµ[n]\I0 (a) .

Hence it is sufficient to show that
∫
VI0

f (xI0 , a) dµI0 = 0 for all a ∈ V[n]\I0 .
Fix some a ∈ V[n]\I0 . We want to exploit the fact that the sets involved don’t

depend on the coordinates outside of I0. For each I ∈ I0 we have:
• AI = A′I × V[n]\I for some A′I ∈ BσI ,
• 1AI0 (xI0 , a) = 1A′I0

(xI0),
• For any I ∈ I \ {I0}, as |I0| = |I| = k, we have I ∩ I0 ( I0, I. So
1AI (xI0 , a) = 1A′I

(
xI∩I0 , aI\I0

)
— it is BσI0,I0∩I -measurable by compatibil-

ity.
• Hence

∏
I∈I\{I0} 1AI (xI0 , a) is BI0,<I0 -measurable, and

C ′ :=

c ∈ VI0 :
∏

I∈I\{I0}

1AI (xI0 , a) > 0

 ∈ BσI0,<I0 .
• Let h′ (xI0) := E

(
1A′I0

(xI0) |BσI0,<I0
)
. We claim that h

(
x[n]

)
:= h′ (xI0)

gives E
(
1AI0

(
x[n]

)
|Bσ[n],<I0

)
.

To see this, take any D ∈ Bσ[n],<I0
. W.m.a. D = D′ × V[n]\I0 for some
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D′ ∈ BσI0,<I0 . Then, using compatibility,∫
D

h
(
x[n]

)
dµ[n] =

∫
V[n]\I0

(∫
D′
h
(
xI0 , x[n]\I0

)
dµI0

)
dµ[n]\I0

(
x[n]\I0

)
=

∫
V[n]\I0

(∫
D′
h′ (xI0) dµI0

)
dµ[n]\I0 =

∫
V[n]\I0

(∫
D′

1A′I0
(xI0) dµI0

)
dµ[n]\I0 =

=

∫
V[n]\I0

(∫
D′

1AI0
(
xI0 , x[n]\I

)
dµI0

)
dµ[n]\I0 =

∫
D

1AI0
(
x[n]

)
dµ[n].

Hence, E
(
1A′I0
|BσI0,<I0

)
(xI0) = E

(
1AI0 |B

σ
[n],<I0

)
(xI0 , a).

Combining these observations we have∫
VI0

f (xI0 , a) dµI0 =

∫
C′

(
1A′I0

(xI0)− E
(
1A′I0
|BσI0,<I0

)
(xI0)

)
dµI0 = 0.

Claim 2. For any I0 ∈ I, there is some A′I0 ∈ B
σ
[n],<I0

such that:

• If BI ∈ B[n],I for all I ∈ I satisfy µ[n] (AI \BI) < δ for each I 6= I0 and
µ[n]

(
A′I0 \BI0

)
< δ, then

⋂
I∈I BI 6= ∅,

• If µ[n]

(
A′I0 ∩

⋂
I∈I\{I0}AI

)
> 0 then µ[n]

(⋂
I∈I AI

)
> 0.

Proof. Define A′I0 :=
{
x[n] ∈ V[n] : E

(
1AI0 |B

σ
[n],<I0

) (
x[n]

)
> 0
}
. Note that A′I0 ∈

Bσ[n],<I0
(as E

(
1AI0 |B

σ
[n],<I0

)
is Bσ[n],<I0

-measurable).

If µ[n]

(
A′I0 ∩

⋂
I∈I\{I0}AI

)
> 0 then∫

⋂
I∈I\{I0}

AI

E
(
1AI0 |B

σ
[n],<I0

)
dµ[n] > 0,

and using Claim 1 this implies

µ[n]

(⋂
I∈I

AI

)
=

∫
⋂
I∈I\{I0}

AI

1AI0dµ[n] =

∫
⋂
I∈I\{I0}

AI

E
(
1AI0 |B

σ
[n],<I0

)
dµ[n] > 0.

Suppose now that for each I, BI ∈ B[n],I with µ[n] (AI \BI) < δ for I ∈ I \ {I0}
and µ[n]

(
A′I0 \BI0

)
< δ. We also have

µ[n]

(
AI0 \A′I0

)
=

∫
V[n]\A′I0

1AI0dµ[n] =

∫
V[n]\A′I0

E
(
1AI0 |B[n],<I0

)
dµ[n] = 0,

hence µ[n] (AI0 \BI0) < δ as well, therefore
⋂
I∈I BI 6= ∅.

Applying Claim 2 to each I ∈ I, we may assume for the rest of the proof that
AI ∈ Bσ[n],<I for all I ∈ I.

Fix some finite Boolean algebra B ⊆ B[n],k−1 (hence Bσ = B) so that for every
I ∈ I, ‖1AI − E (1AI |B)‖L2(µ[n]) <

√
δ√

2(|I|+1)
(such a B exists because there are
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finitely many I and each AI is Bσ[n],k−1-measurable, and Bσ[n],k−1 is generated by

B[n],k−1). For each I ∈ I, set A∗I :=
{
aI : E (1AI |Bσ) (aI) >

|I|
|I|+1

}
∈ B.

Claim 3. For each I ∈ I, µ[n] (AI \A∗I) ≤ δ
2 .

Proof. Note that

AI \A∗I =

{
a ∈ V[n] : (1AI − E (1AI |B)) (a) ≥ 1− |I|

|I|+ 1
=

1

|I|+ 1

}
⊆
{
a ∈ V[n] : |1AI − E (1AI |B)| (a) ≥ 1

|I|+ 1

}
.

Recall:
Fact. (Markov’s inequality) Let (Ω,B, µ) be a probability space. Given a B-

measurable function f : Ω→ R≥0 and α > 0, we have

µ ({a ∈ Ω : f ≥ α}) ≤
∫

Ω
(f) dµ

α
.

Applying Markov’s inequality to f := (1AI − E (1AI |B))
2, we get that µ[n] (AI \A∗I)

is at most

(|I|+ 1)
2
∫
V[n]

(1AI − E (1AI |B))
2
dµn = (|I|+ 1)

2 ‖1AI − E (1AI |B)‖2L2(µ[n]) ≤
δ

2
.

Claim 4. µ[n]

(⋂
I∈I AI

)
≥ µ[n](

⋂
I∈I A

∗
I)

|I|+1 .
Proof. For each I0 ∈ I, as AI∗0 ∩

⋂
I∈I\{I0}A

∗
I ∈ B, we have

µ[n]

(A∗I0 \AI0) ∩ ⋂
I∈I\{I0}

A∗I

 =

∫
AI∗0
∩
⋂
I∈I\{I0}

A∗I

(
1− 1AI0

)
dµ[n] =

∫
AI∗0
∩
⋂
I∈I\{I0}

A∗I

(
1− E

(
1AI0 |B

))
dµ[n] =

∫
A∗I0

(
1− E

(
1AI0 |B

)) ∏
I∈I\{I0}

1A∗Idµ[n]

≤ 1

|I|+ 1

∫
V[n]

∏
I∈I

1A∗Idµ[n]

=
1

|I|+ 1
µ[n]

(⋂
I∈I

A∗I

)
.

But then

µ[n]

(⋂
I∈I

A∗I \
⋂
I∈I

AI

)
≤
∑
I0∈I

µ[n]

(A∗I0 \AI0) ∩ ⋂
I∈I\{I0}

A∗I


≤ |I| 1

|I|+ 1
µ[n]

(⋂
I∈I

A∗I

)
,

so µ
(⋂

I∈I AI
)
≥ µ

(⋂
I∈I A

∗
I

)
−µ
(⋂

I∈I A
∗
I \
⋂
I∈I AI

)
≥
(

1− |I| 1
|I|+1

)
µ[n]

(⋂
I∈I A

∗
I

)
≥

1
|I|+1µ[n]

(⋂
I∈I A

∗
I

)
.
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• Each A∗I ∈ B can be written in the form A∗I =
⋃
i≤rI A

∗
I,i for some rI ∈ N,

where A∗I,i =
⋂
J∈( I

k−1)
A∗I,i,J and A∗I,i,J ∈ B[n],J , such that if i 6= i′ then

A∗I,i ∩A∗I,i′ = ∅.
• Then ⋂

I∈I
A∗I =

⋃
~i∈

∏
I∈I [1,rI ]

⋂
I∈I

⋂
J∈( I

k−1)

A∗I,iI ,J .

• For each ~i ∈
∏
I∈I [1, rI ], let D~i :=

⋂
I∈I

⋂
J∈( I

k−1)
A∗I,iI ,J .

• Each A∗I,iI ,J ∈ B[n],J , so we may regroup the components and write D~i =⋂
J∈( [n]

k−1)
D~i,J where D~i,J =

⋂
J(I∈I A

∗
I,iI ,J

∈ B[n],J .
• Suppose, for a contradiction, that µ[n] (

⋂
I A
∗
I) = 0.

Then µ[n]

(
D~i
)

= µ[n]

(⋂
J∈( [n]

k−1)
D~i,J

)
= 0 for all ~i ∈

∏
I∈I [1, rI ].

• By the inductive hypothesis applied to each of the D~i, ~i ∈~i ∈
∏
I∈I [1, rI ],

for each real γ > 0, there are then someB~i,J ∈ B[n],J such that µ[n]

(
D~i,J \B~i,J

)
<

γ and
⋂
J∈( [n]

k−1)
B~i,J = ∅.

In particular, this holds with γ := δ

2( k
k−1)

∏
I∈I rI maxI∈I rI

.

• For each I ∈ I, i ≤ rI , J ( I define

B∗I,i,J = A∗I,i,J ∩
⋂

~i,iI=i

B~i,J ∪ ⋃
I′)J,I′ 6=I

¬A∗I′,iI′ ,J

 ∈ B[n],J .

Claim 5. µ[n]

(
A∗I,i,J \B∗I,i,J

)
≤ δ

2( k
k−1) maxI∈I rI

.

Proof. If x ∈ A∗I,i,J \B∗I,i,J , then for some ~i ∈
∏
I∈I [1, rI ] with iI = i we have

x /∈ B~i,J ∪
⋃

I′)J,I′ 6=I
¬A∗I′,iI′ ,J .

This means x /∈ B~i,J and x ∈
⋂
I′)J A

∗
I′,iI′ ,J

= D~i,J . So

µ[n]

(
A∗I,i,J \B∗I,i,J

)
≤

∑
~i∈

∏
I∈I [1,rI ]

µ[n]

(
D~i,J \B~i,J

)
≤ δ

2
(
k
k−1

)
maxI∈I rI

.

Claim 6. Let B∗I :=
⋃
i≤rI

⋂
J∈( I

k−1)
B∗I,i,J ∈ B[n],<I . Then µ[n] (AI \B∗I ) ≤ δ.

Proof. As µ[n] (AI \A∗I) ≤ δ
2 by Claim 3, it suffices to show that µ[n] (A∗I \B∗I ) ≤

δ
2 . We have

µ[n] (A∗I \B∗I ) = µ[n]

A∗I \ ⋃
i≤rI

⋂
J∈( I

k−1)

B∗I,i,J


= µ[n]

⋃
i≤rI

⋂
J∈( I

k−1)

A∗I,i,J \
⋃
i≤rI

⋂
J∈( I

k−1)

B∗I,i,J


≤ µ[n]

⋃
i≤rI

(⋂
J

A∗I,i,J \
⋂
J

B∗I,i,J

)
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≤
∑
i≤rI

µ[n]

(⋂
J

A∗I,i,J \
⋂
J

B∗I,i,J

)

≤
∑
i≤rI

∑
J

µ[n]

(
A∗I,i,J \B∗I,i,J

)
≤ rI

(
k

k − 1

)
δ

2
(
k
k−1

)
maxI∈I rI

≤ δ

2

using Claim 5.

Hence the sets B∗I satisfy the assumption for all I ∈ I by Claim 6, therefore⋂
I∈I B

∗
I 6= ∅.

Claim 7.
⋂
I∈I B

∗
I ⊆

⋃
~i∈

∏
I∈I [1,rI ]

⋂
J∈( [n]

k−1)
B~i,J .

Proof. Suppose x ∈
⋂
I∈I B

∗
I ⊆

⋂
I∈I

⋃
i≤rI

⋂
J∈( I

k−1)
B∗I,i,J . Then for each I ∈

I, there is some iI ≤ rI such that x ∈
⋂
J∈( I

k−1)
B∗I,iI ,J , and take ~ix := (iI : I ∈ I).

Since B∗I,iI ,J ⊆ A
∗
I,iI ,J

, for each I ∈ I and J ( I, x ∈ A∗I,iI ,J .
For any J , let I ⊃ J . Then

x ∈ B∗I,iI ,J = A∗I,iI ,J ∩
⋂

~i′,i′I=iI

B~i′,J ∪ ⋃
I′⊇J,I′ 6=I

¬A∗I′,iI′ ,J

 .

In particular, x ∈ B~ix,J ∪
⋃
I′⊇J,I′ 6=I ¬A∗I′,iI′ ,J .

Since x ∈ A∗I,iI′ ,J for each I ′ ⊃ J , necessarily x ∈ B~i,J . This holds for any J , so
x ∈

⋂
J B~i,J .

Since
⋂
I∈I B

∗
I 6= ∅, there is some ~i ∈

∏
I∈I [1, rI ] such that

⋂
J B~i,J 6= ∅.

This is a contradiction to our assumption, hence µ[n] (
⋂
I A
∗
I) > 0, and therefore,

µ[n]

(⋂
I∈I AI

)
≥ µ[n](

⋂
I∈I A

∗
I)

|I|+1 > 0 by Claim 4. �

Corollary 3.13. (Hypergraph removal, partitioned version of Theorem 3.3).
Fix 0 ≤ k ≤ n, ε > 0 and I ⊆

(
[n]
k

)
a k-uniform hypergraph on [n]. Then there

is δ > 0 such that the following holds.
Let (Vi : i ∈ [n]) be finite non-empty sets. For each I ∈ I, let AI be a subset of∏
i∈I Vi. Suppose that∣∣∣∣∣∣

(xi)i∈[n] ∈
∏
i∈[n]

Vi : (xi)i∈I ∈ AI for all I ∈ I


∣∣∣∣∣∣ ≤ δ

∏
i∈[n]

|Vi| .

(i.e. the n-partite hypergraph G =
(

(Vi)i∈[n] , (AI)I∈I

)
contains at most δ

∏
i∈[n] |Vi|

copies of I - not induced, just as a subgraph).
Then for each I ∈ I there exists BI ⊆

∏
i∈I Vi with |AI \BI | < ε

∏
i∈I |Vi| such

that (xi)i∈[n] ∈
∏
i∈[n]

Vi : (xi)i∈I ∈ BI for all I ∈ I

 = ∅.
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(i.e. the n-partite hypergraph G′ =
(

(Vi)i∈[n] , (BI)I∈I

)
contains no copies of I

whatsoever).

Proof. Assume not, and let k, I ⊆
(

[n]
k

)
and ε > 0 be a counterexample. Since there

is no δ > 0 as in the statement of the theorem, for each m ∈ N we may choose a
k-uniform hypergraph Gm =

(
(V mi )i∈[n] , (A

m
I )I∈I

)
such that Gm contains at most

1
m

∏
i∈[n] |V mi | copies of I, but there are no subsets BI , I ∈ I as required.

Then clearly |V mi | → ∞ as m → ∞. Let U be a non-principal ultrafilter on N,
and let G :=

∏
m∈NGm/U , G =

(
(Vi)i∈[n] , (AI)I∈I

)
. For each I ⊆ [n], let µmI be

the normalized counting measure on V mI , and let µI = limU µ
m
I — a f.a.p. measure

on the internal subsets of VI =
∏
i∈[n] Vi.

Then (µI : I ⊆ [n]) is a compatible system of measures on (Vi : i ∈ [n]) (Exer-
cise 3.10). Note that by assumption µm[n]

(⋂
I∈I A

m
I

)
< 1

m for all m ∈ N, hence
µ[n]

(⋂
I∈I AI

)
= 0. By Theorem 3.12, there are some internal sets BI , I ∈ I,

such that µ[n] (AI \BI) < ε
2 and

⋂
I∈I BI = ∅. Say BI =

∏
m∈NB

m
I /U . Then for

some S ∈ U and all m ∈ S, we must have µm[n] (AmI \BmI ) < ε and
⋂
I∈I B

m
I = ∅ —

a contradiction to the choice of the Gm’s. �

Exercise 3.14. Deduce Theorem 3.3 from Corollary 3.13 (taking Vi = V for all i
and constructing the corresponding partite hypergraph).

3.3. Szemerédi’s theorem on arithmetic progressions.

Theorem 3.15. (Szemerédi’s theorem) For any ε > 0 and k ∈ N, there is some
n0 ∈ N such that for any n ≥ n0 and A ⊆ [1, n] with |A| ≥ εn, there exists an a
and d 6= 0 such that a, a+ d, a+ 2d, . . . , a+ (k − 1) d ∈ A.

Proof. Let δ > 0 be as given by Theorem 3.13 for ε′ := εk

2kk2(k−1) > 0, k and W the
complete k-uniform hypergraph on k + 1 vertices. Let n0 be large enough so that
δnk+1

0 > nk0 .
Let A ⊆ [1, n] be given, with n ≥ n0. We define a k-uniform (k + 1)-partite

hypergraph as follows. Let Vi := [1, n] for each i = 1, . . . , k and let Vk+1 :=[
1, k2n

]
⊆ N. Given xi ∈ Vi for all i = 1, . . . , k + 1, we define:

• (x1, . . . , xk) is an edge iff
∑
i∈[1,k] ixi ∈ A,

• for any 1 ≤ i ≤ k, (x1, . . . , xi−1, xi+1, . . . , xk+1) is an edge iff
∑
j∈[1,k]\{i} jxj+

i
(
xk+1 −

∑
j∈[1,k]\{i} xj

)
∈ A.

Suppose (x1, . . . , xk+1) is a copy of the complete k-uniform hypergraph on k + 1
vertices with xk+1 6=

∑
i∈[1,k] xi. Then let a :=

∑
i∈[1,k] ixi and d = xk+1 −∑

i∈[1,k] xi 6= 0. Then we have a ∈ A, and for each i ≤ k we have

a+id =
∑
j∈[1,k]

jxj+i

xk+1 −
∑
j∈[1,k]

xj

 =
∑

j∈[1,k]\{i}

jxj+i

xk+1 −
∑

j∈[1,k]\{i}

xj

 ∈ A,
as wanted.

On the other hand, for any a ∈ A and any sequence (x1, . . . , xk) with a =∑
i∈[1,k] ixi, the sequence

(
x1, . . . , xk,

∑
i∈[1,k] xi

)
is also a copy of the complete

k-uniform hypergraph on k + 1 vertices: clearly (x1, . . . , xk) is an edge, and for
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any 1 ≤ i ≤ k we have
(
x1, . . . , xi−1, xi+1, . . . , xk,

∑
i∈[1,k] xi

)
is an edge as∑

j∈[1,k]\{i} jxj+i
(∑

i∈[1,k] xi −
∑
j∈[1,k]\{i} xj

)
=
∑
j∈[1,k]\{i} jxj+ixi =

∑
i∈[1,k] ixi =

a ∈ A. There are at least ε2n choices for a ∈ A with a ≥ ε
2n; and for any a ≥ ε

2n and
any choice of xi ∈

[
1, ε

2k2n
]
for i = 1, . . . , k−1 we have

∑
i∈[1,k] ixi ≤

∑
i∈[1,k] kxi ≤

k2 ε
2k2n ≤

ε
2n, so there is some xk ∈ [1, n] satisfying

∑
i∈[1,k] ixi = a. Hence the

number of such sequences is at least ε
2n
(
ε

2k2n
)k−1

= εk

2kk2(k−1)n
k ≥ ε′nk. It is not

possible to remove all such sequences by removing < ε′nk edges. Hence the hyper-
graph removal (Corollary 3.13) implies that there must be > δnk+1 many copies
of the complete k-uniform hypergraph on k + 1 vertices. But there are at most nk

sequences of the form
(
x1, . . . , xk,

∑
i≤k xi

)
and δnk+1 > nk by assumption on n,

so the remaining copies must correspond to arithmetic progressions. �

3.4. References. The proof of Theorem 3.12 presented here follows [19, Section
6], with some clarifications, which in turn is based on the ideas in Tao [17, 18] and
others. The deduction of Szemerédi’s theorem from hypergraph removal is due to
Frankl and Rödl [5], we follow the presentation in [6].

4. Regularity lemma for hypergraphs of finite VC-dimension

4.1. Bounds in the regularity lemma. Recall the graph regularity lemma (The-
orem 2.1) in the bipartite version.

Theorem. Let ε > 0 be arbitrary. Then there is some K = K (ε) ∈ N such that for
every bipartite finite graph G = (V,W,E) with |V | , |W | ≥ K there are partitions
V = V1 t · · · t Vn and W = W1 t . . . tWn, real numbers δij , i, j ∈ [n], and an
exceptional set of pairs Σ ⊆ [n]× [n] such that:

(1) (Bounded size of the partition) n ≤ K,
(2) (Few exceptional pairs)

∑
(i,j)∈Σ |Vi||Wj | ≤ ε|V | |W |,

(3) (ε-regularity) for each (i, j) ∈ [n]× [n] \ Σ we have

| |E(A,B)| − δij |A||B| | < ε|Vi||Wj |
for all A ⊆ Vi, B ⊆ Wj. We call a pair of sets (Vi,Wj) with (i, j) ∈
[K]× [K] \ Σ an ε-regular pair.

Remark 4.1. (1) Exceptional pairs are unavoidable (for large n, let V = W =
[n] and let E ⊆ V ×W be defined by E = {(i, j) : i, j ∈ [n] , i < j} — there
is no way to cover the diagonal by a bounded number of regular pairs).

(2) The densities δi,j ∈ [0, 1] could be arbitrary, e.g. we cannot hope to have
δi,j ∈ {0, 1} in general (e.g. for large n, take a graph with edges distributed
uniformly at random with probability 1

2 ).
(3) The size of the partition is unavoidably huge!

Fact 4.2. (Gowers [7, 13]) K (ε) is at least an exponential tower of 2’s of
height O

(
1
ε

)c for some c = 1
16 .

Fact 4.3. (Fox, Lovás [4]) K (ε) is at least an exponential tower of height
O
(

1
ε

)c with c = 2, and this bound is tight.

The graphs witnessing these are constructed using probabilistic methods. Per-
haps one can do better for graphs defined “geometrically” or “algebraically”? We
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discuss improved regularity lemmas for some restricted families of graphs. It turns
out that these conditions can be characterized by some model-theoretic notions of
“tameness”.

4.2. VC-dimension. For more details and proofs of the facts in this section, see
[2].

Let X be a set (finite or infinite), and let F be a family of subsets of X. A pair
(X,F) is called a set system.

Definition 4.4. (1) Given A ⊆ X, we say that the family F shatters A if for
every A′ ⊆ A, there is a set S ∈ F such that S ∩A = A′.

(2) The family F has VC-dimension at most n (written as VC (F) ≤ n), if
there is no A ⊆ X of cardinality n+ 1 such that F shatters A. We say that
F is of VC-dimension n if it is of VC-dimension at most n and shatters
some subset of size n.

(3) If for every n ∈ N we can find a subset of X of cardinality n shattered
by F , then we say that F has infinite VC-dimension (VC (F) = ∞). If
VC (F) is finite, we say that F is a VC-family. Note that if F ′ ⊆ F then
VC (F ′) ≤ VC (F).

Example 4.5. (1) Let X be an infinite set and F := P (X). Then clearly
VC (F) =∞. But for F =

(
X
k

)
, VC (F) = k.

(2) Let X = R and let F be the family of all unbounded intervals. Then F
has VC-dimension 2. Clearly any two-element set can be shattered by F .
However, if we take any a < b < c, then {a, b, c} cannot be shattered by F .

Exercise 4.6. (1) Let X = R2, and let F be the set of all half-spaces. Show
that VC (F) = 3.

(2) Let X = R2 and let F be the set of all convex polygons. Show that
VC (F) =∞.

Definition 4.7. We define the shatter function πF : N → N associated to the
family F as follows. For a set A ⊆ X we let F ∩ A := {S ∩A : S ∈ F}. Then we
define πF (n) := max {|F ∩A| : A ⊆ X, |A| = n}.

Note that πF (n) ≤ 2n, and that VC (F) < n ⇐⇒ πF (m) < 2m for all m ≥ n.
The following fundamental lemma states that either πF (n) = 2n for all n ∈ N, or
πF (n) has polynomial growth.

Lemma 4.8. (Sauer-Shelah lemma) Let (X,F) be a set system of VC-dimension
at most k. Then, for all n ≥ k, we have πF (n) ≤

∑k
i=0

(
n
i

)
.

In particular, πF (n) = O
(
nk
)
.

Remark 4.9. (Boolean operations preserve finite VC-dimension) Let F1,F2 be two
families of subsets of X with VC (Fi) = di < ∞. Show that all of the following
families have finite VC-dimension:

(1) F := F1 ∪ F2,
(2) F∩ := {S1 ∩ S2 : Si ∈ Fi, i = 1, 2} and VC (F∩) ≤ d1 + d2 + 1,
(3) F∪ := {S1 ∪ S2 : Si ∈ Fi, i = 1, 2} ,Fc1 := {X \ S1 : S1 ∈ F1} and VC (F∪) ≤

d1 + d2 + 1,VC (Fc1) = d1,
(4) F1 ×F2 := {S1 × S2 : S1 ∈ F1, S2 ∈ F2} — a family of subsets of X ×X.
(5) Besides, if X ′ is an infinite set and f : X ′ → X is a map, let f−1 (F1) :={

f−1 (S) : S ∈ F1

}
. Then VC

(
f−1 (F1)

)
≤ VC (F1).



MODEL THEORY AND COMBINATORICS: CHAPTER 2 (DRAFT) 24

Recall: by a partitioned formula φ (x̄, ȳ) we mean a formula with its free variables
partitioned into two groups x̄ (object variables) and ȳ (parameter variables). Given
a partitioned formula φ (x̄, ȳ) and b̄ ∈ M |ȳ|, we let φ

(
M |x̄|, b̄

)
be the set of all

ā ∈ M |x̄| such that M |= φ
(
ā, b̄
)
. Sets of this form are called definable (or φ-

definable, in this case). We consider the family Fφ(x̄,ȳ) of subsets of M |x̄| defined
by Fφ(x̄,ȳ) =

{
φ
(
M |x̄|, b̄

)
: b̄ ∈M |ȳ|

}
.

Theorem 4.10. (Shelah) Let M be a first-order structure. Assume that for ev-
ery partitioned formula φ (x, ȳ) with x a singleton, the family Fφ has finite VC
dimension. Then for any φ (x̄, ȳ) ∈ L, the corresponding family Fφ has finite VC
dimension.

The proof uses Ramsey’s theorem, and gives bounds that are quite far from
optimal.

In model theory, a partitioned formula φ (x̄, ȳ) is called NIP (No Independence
Property) if the family Fφ has finite VC-dimension. A structure M is NIP if all
definable families in it are NIP. Such structures were defined by Shelah around the
same time as Vapnik and Chervonenkis have defined their dimension for entirely
different purposes, and are currently being actively studied in model theory (see
[16] for a survey).

Example 4.11. (Semialgebraic sets of bounded complexity) Recall that a set X ⊆
Rn is semialgebraic if it is given by a Boolean combination of polynomial equalities
and inequalities.

We say that the description complexity of a semialgebraic set X ⊆ Rd is bounded
by t ∈ N if d ≤ t and X can be defined as a Boolean combination of at most t
polynomial equalities and inequalities, such that all of the polynomials involved
have degree at most t. For example, consider the family of all spheres in Rn, or all
cubes in Rn, etc.

We claim that for any t, the family Ft of all semialgebraic sets of complexity
≤ t has finite VC-dimension. To see this, consider the field of real numbers as a
first-order structureM = (R,+,×, 0, 1, <). Note that Ft is contained in the union
of finitely many families of the form

{
Fφi(x̄,ȳ) : i < t′

}
where t′ only depends on t

(since there are only finitely many different polynomials of degree ≤ t, up to varying
coefficients, and only finitely many different Boolean combinations of size ≤ t). So
it is enough to show that every such family has finite VC-dimension (by Remark
4.9).

By the classical result of Tarski, this structureM eliminates quantifiers, and so
definable sets are precisely the semialgebraic ones. In particular, if we are given a
formula of the form φ (x, ȳ), for every b ∈ M |ȳ| the set φ (M, b) is just a union of
at most nφ intervals and points, where nφ only depends on φ. As the collection of
all intervals has finite VC-dimension, in view of Remark 4.9 we have that for all
formulas φ (x, ȳ) with |x| = 1, Fφ has finite VC-dimension. By Theorem 4.10 this
implies that the same is true for all formulas.

Example 4.12. Definable families in stable structures.
The class of stable structures is well studied in model theory, originating from

Morley’s theorem and Shelah’s work on classification theory. See e.g. [1] for more
details. Examples of stable structures:

• (C,×,+, 0, 1) (definable sets correspond to the constructible sets, i.e. Boolean
combinations of algebraic sets),
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• separably closed and differentially closed fields,
• arbitrary planar graphs G = (V,E),
• abelian groups (viewed as structures in the pure group language (G, ·, 1)),
• [Z. Sela] non-commutative free groups (in the pure group language).

Example 4.13. [8] Let (G, ·, <) be an arbitrary ordered abelian group. Then
definable families of sets have finite VC-dimension. In particular, all definable
families in Presburger arithmetic (Z,+, <) have finite VC-dimension.

Example 4.14. Let (Qp,×,+, 0, 1) be the field of p-adics. Using the quantifier
elimination result of Macintyre in this setting, one can show that again all definable
families have finite VC-dimension.

4.3. The VC-theorem, ε-approximations and ε-nets.

Fact 4.15. (Weak law of large numbers) Let (Ω,B,P) be a probability space. Let
A ⊆ Ω be an event and let ε > 0 be fixed. Then for any n ∈ N we have:

Pn
(

(ω1, . . . , ωn) ∈ Ωn :

∣∣∣∣∣ 1n
n∑
i=1

1A (ωi)− P (A)

∣∣∣∣∣ ≥ ε
)
≤ 1

4nε2
.

Note that this probability → 0 as n → ∞. In particular this means that fixing
an arbitrary error ε, we can take n large enough so that with high probability the
measure of A can be determined up to ε by picking n points at random and counting
the proportion of them in A.

The key result in VC-theory is the theorem of Vapnik and Chervonenkis [20]
demonstrating that a uniform version of the weak law of large numbers holds for
families of events of finite VC-dimension. That is, with high probability sampling
on a sufficiently long random tuple gives a good estimate for the measure of all sets
in the family F simultaneously.

Let us fix some notation. For S ∈ F and (x1, . . . , xn) ∈ Xn we define

Av (x1, . . . , xn;S) :=
1

n
|{1 ≤ i ≤ n : xi ∈ S}| .

Theorem 4.16. (VC-theorem) Let (X,µ) be a finite probability space, and F ⊆P (X)
a family of subsets of X. Then for every ε > 0 we have

µn
(

sup
S∈F
|Av (x1, . . . , xn;S)− µ (S)| > ε

)
≤ 8πF (n) exp

(
−nε

2

32

)
.

Remark 4.17. Note that if VC (F) = d, then πF (n) = O
(
nd
)
and so the right part

converges to 0 as n grows. Thus, as long as the VC-dimension of F is bounded,
starting with F of arbitrary large finite size and an arbitrary measure, we still get
an approximation up to an error ε for all sets in F by sampling on a random tuple
of length depending just on d, ε.

Corollary 4.18. Let d ∈ N and ε > 0 be arbitrary. Then there is some N =
N (d, ε) ∈ N such that any set system (X,F) on a finite probability space (X,µ)
with VC (F) ≤ d admits an ε-approximation of size at most N .

That is, there is a multi-set {x1, . . . , xN} of elements from X (repetitions are
allowed) such that for all S ∈ F we have

|Av (x1, . . . , xN ;S)− µ (S)| ≤ ε.
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Proof. By Remark 4.17, it follows from Theorem 4.16 that for N large enough
(with respect to d and ε), with high probability any N -tuple from X works as a ε-
approximation (so in particular that is at least one N -tuple with this property). �

Remark 4.19. (1) Note that repetitions among the points x1, . . . , xn are neces-
sary — think of a measure on a finite set, giving certain different weights
to different points.

(2) It is known that one can take N = C 1
ε2 log 1

ε , where C = C (d) is a constant.

Definition 4.20. Let V be a set, B a b.a. on V and µ a f.a.p. measure on B. Let
F be a family of subsets of V with F ⊆ B. As usual, for ε > 0 we say that a subset
T ⊆ V is an ε-net for F if for every F ∈ F we have µ(F ) ≥ ε =⇒ F ∩ T 6= ∅.

Note that every ε-approximation is an ε-net. One can get better bounds on the
size of an ε-net (|T | ≤ 8d 1

ε log 1
ε ).

We discuss arbitrary measures (with infinite support) that admit ε-approximations.

Definition 4.21. Let V,W be sets with b.a.’s BV ,BW on them, and let µ be a
f.a.p. measure on BV .

(1) Let F be a family of subsets of V in BV . We say that µ is finitely ap-
proximable on F if for every ε > 0 there are p1, . . . , pn ∈ V (possibly with
repetitions) giving an ε-approximation of µ on F .

(2) Let R ⊆ V ×W be such that Rb ∈ BV for all b ∈ W . We say that µ is
fin.app. on R if it is fin.app. on Fm for all m ∈ N, where Fm is the family
of all subsets of V given by the Boolean combinations of at most m sets of
the form Rb, b ∈W .

Remark 4.22. In particular, if µ is fin.app. on R, then it is fin.app. on the family
R∆ := {Rb∆Rb′ : b, b′ ∈W}.

Example 4.23. (1) Any measure µ on BV with a finite support (i.e. there is
some finite B ∈ BV with µ (B) = 1) is fin.app. on BV .

(2) Let V = R, let BV be the field generated by all intervals in V , and let R
be the family of all intervals. Let µ be the 0− 1 measure on BV such that
the measure of a set is 1 if and only if it is unbounded from above. Then
there are no finite ε-approximations for µ on R, for any ε < 1, as any finite
set can be avoided by some unbounded interval of measure 1. Note that
VC (R) <∞. This is not a contradiction with the VC-theorem as µ is not
finitely supported.

(3) Let λn be the Lebesgue measure on the unit cube [0, 1]
n in Rn. LetM be

an o-minimal structure expanding (R,+,×, 0, 1). If X ⊆ Rn is definable
in M, then X ∩ [0, 1]

n is Lebesgue measurable (for n = 1 this is clear as
every definable subset of R is just a finite union of intervals and points by
o-minimality, and for n > 1 this follows from the o-minimal cell decomposi-
tion). Hence λn induces an f.a.p. measure on the b.a. of definable subsets
of Rn. This measure is fin.app. on every definable relation (Exercise! E.g.
for n = 1 and ε > 0, we can take

{
εi : 1 ≤ i ≤ 1

ε

}
as an ε-approximation

for the family of intervals, etc.).
(4) Similarly, for every prime p, the (additive) Haar measure in Qp normalized

on a compact ball induces a f.a.p. measure on the b.a. of definable subsets
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(which are all measurable by the p-adic cell decomposition), and one can
check that it is fin.app. on every definable relation.

The following example shows that the class of measures finitely approximable on
families of bounded VC-dimension is closed under ultraproducts.

Proposition 4.24. Let (Mi : i ∈ N) be L-structures, let Bi be a b.a. of definable
subsets of Mi and µi an f.a.p. measure on Bi. Let Ri ⊆Mi×Mk

i be definable with
Ri (x, c) ∈ Bi for all c ∈ Mk

i . Assume that µi is fin.app. on Ri, and assume that
VC (Ri) ≤ d for some fixed d and all i ∈ N. Let U be a non-principal u.f. on N,
M =

∏
i∈NMi/U and R =

∏
i∈NRi/U . Then µ = limU µi is fin.app. on R.

Proof. By Definition 4.21, we have to show that for every m ∈ N, the family of
all Boolean combinations of at most m fibers of R admits a finite ε-approximation.
But by Remark 4.9 the VC-dimension of these family is uniformly bounded in terms
of d, hence replacing R by the corresponding Boolean combination R′ ⊆Mi×Mkm

i

if necessary, it is enough to show that F :=
{
R (M, c) : c ∈Mk

}
admits a finite

ε-approximation for every ε > 0.
Fix ε > 0 and i ∈ N.
Let Fi :=

{
Ri (Mi, c) : c ∈Mk

i

}
. By assumption VC (Fi) ≤ d.

By assumption there is some ni ∈ N and some
(
ai1, . . . , a

i
ni

)
∈ Mni

i such that
µi (X) ≈ε 1

ni

∑ni
j=1 1X

(
aij
)
for all X ∈ Fi.

Define µ′i : Bi → R by µ′ (X) := 1
ni

∑ni
j=1 1X

(
aij
)
for any X ∈ Bi. Then clearly

µ′i is a f.a.p. measure on Bi supported on a finite set Ai :=
⋃ni
j=1

{
aij
}
and µ′i (X) ≈ε

µi (X) for allX ∈ Fi. By the VC-theorem (Theorem 4.18) there is some n = n (d, ε)
and

(
bi1, . . . , b

i
mi

)
∈ Amii with 1 ≤ mi ≤ n such that µ′i (X) ≈ε 1

mi

∑mi
j=1 1X

(
bij
)
for

all X ∈ Fi. Hence µi (X) ≈2ε 1
mi

∑mi
j=1 1X

(
bij
)
for all X ∈ Fi.

As U is an ultrafilter, there is some S1 ∈ U and 1 ≤ m ≤ n such that mi = m for
all i ∈ S1. For 1 ≤ j ≤ m, let bj be an element ofM defined by bj :=

(
bij : i ∈ N

)
/U .

Claim. b1, . . . , bm is a 3ε-approximation for µ on F :=
{
R (M, c) : c ∈Mk

}
.

Let c ∈Mk be arbitrary, say c = (ci : i ∈ N) /U . We have:
(1) exists S2 ∈ U such that µ (R (M, c)) ≈ε µi (Ri (Mi, ci)) for all i ∈ S2 (by

the definition of the ultralimit measure µ),
(2) exists S3 ∈ U such that 1

m

∑m
j=1 1R(M,c) (bj) = 1

m

∑m
j=1 1Ri(Mi,ci)

(
bij
)
for

all i ∈ S3 (by Łoś theorem),
(3) µi (Ri (Mi, ci)) ≈2ε 1

m

∑m
j=1 1Ri(Mi,ci)

(
bij
)
for all i ∈ S1.

As S1 ∩ S2 ∩ S3 6= ∅, we have µ (R (M, c)) ≈3ε 1
m

∑m
j=1 1R(M,c) (bj).

As ε > 0 was arbitrary, we can conclude. �

4.4. Canonical products of finitely approximable measures. As before, let
B be a Boolean algebra on a set V , and let µ be an f.a.p. measure on B.

Definition 4.25. A function f : V → R is B-integrable if for all ε > 0 there is a
B-simple function g with |f (x)− g (x)| < ε for all x ∈ V .

Remark 4.26. A function f : V → R is B-integrable if and only if for any ε > 0
there are Y1, . . . , Yn ∈ B covering V such that for any i ∈ [n] and any c, c′ ∈ Yi we
have |f (c)− f (c′)| < ε.
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If f is B-integrable and µ is a f.a.p. measure on B, then we define∫
V

fdµ := lim
n→∞

∫
V

gndµ,

where (gn)n∈N is a sequence of B-simple functions approximating f .

Exercise 4.27. This integral doesn’t depend on the choice of a convergent se-
quence.

Also, for a B-integrable f and a set A ∈ B we define∫
A

fdµ :=

∫
V

1Afdµ.

Fact 4.28. [15, Theorem 4.4.13]
(1) If f, g are integrable and c, d ∈ R, then cf + dg is integrable and for every

X ∈ B, ∫
X

(cf + dg) dµ = c

∫
X

fdµ+ d

∫
X

gdµ.

(2) If f is integrable then |f | is integrable and for every X ∈ B,∣∣∣∣∫
X

dµ

∣∣∣∣ ≤ ∫
X

|f | dµ.

Our aim is, given two fin.app. measures, to define a certain canonical product
measure which is fin.app. and forms a compatible system of measures.

For any set A ∈ BV , consider the function hR,A : W → R given by hR,A(b) =
µ(Rb ∩A).

Proposition 4.29. Assume that µ is fin.app. on R (or just on R∆ = {Rb∆Rb′ :
b, b′ ∈W}) and that Ra ∈ BW for all a ∈ V . Then for any set A ∈ BV , the function
hR,A is BW -integrable.

Proof. Let ε > 0. By assumption we can choose p1, . . . , pn ∈ V such that

|µ(Rb∆Rb′)−Av(p1, . . . , pn;Rb∆Rb′)| < ε

for every b, b′ ∈W .
For I ⊆ [n] let CI ⊆ W be the set CI = {b ∈ W : pi ∈ Rb ⇔ i ∈ I} ∈ BW .

Clearly the sets CI , I ⊆ [n] cover W and for every I ⊆ [n] and b, b′ ∈ CI we have
µ(Rb∆Rb′) < ε. Hence, for any b, b′ ∈ CI we have

|hR,A(b)− hR,A(b′)| ≤ µ(A ∩ (Rb∆Rb′)) ≤ µ(Rb∆Rb′) < ε.

By Remark 4.26, the function hR,A is BW -integrable. �

Let now V,W,Z be sets and R ⊆ V ×W×Z. Assume that RV = {R(b,c) : (b, c) ∈
W × Z} ⊆ BV and RW = {R(a,c) : (a, c) ∈ V × Z} ⊆ BW . Let µ be a measure on
BV which is fin.app. on R ⊆ V × (W × Z), and ν a measure on BW . Note that by
assumption and Proposition 4.29 if E is an arbitrary R-definable subset of V ×W
(i.e. a Boolean combination of R-fibers) and A ∈ BV , then the function hE,A is
BW -integrable. And hE,A(b) =

∫
A
1E(x, b)dµ. Hence the double integral

ωE(A,B) =

∫
B

(∫
A

1E(x, y)dµ

)
dν

is well defined for any A ∈ BV , B ∈ BW .



MODEL THEORY AND COMBINATORICS: CHAPTER 2 (DRAFT) 29

Let now BV×W be the b.a. on V ×W generated by BV ⊗BW and {Rc : c ∈ Z}.
Then we have the following.

Proposition 4.30. (1) There is a unique measure ω on BV×W whose restric-
tion to BV ⊗ BW is µ × ν and such that ω(E ∩ (A × B)) = wE(A,B) for
every R-definable E ⊆ V ×W , A ∈ BV , B ∈ BW . We denote this measure
by µn ν.

(2) If in addition ν is fin.app. on R, then µ n ν is also fin.app. on R and
µn ν(E) = ν n µ(E) for all R-definable sets.

Proof. (1) It is easy to see that every set Y in BV×W is a finite disjoint union
of sets of the form Ei ∩ (Ai × Bi) where Ei is an atom of the Boolean alge-
bra of all R-definable subsets of V × W and Ai ∈ BV , Bi ∈ BW . We define
ω(Y ) =

∑
ωEi(Ai, Bi). It is easy to check that ω is well-defined (for all A′ ∈

BV , B′ ∈ BW and R-definable E′ ⊆ V × W , if (A × B) ∩ E = (A′ × B′) ∩ E′,
then wE(A,B) = wE′(A

′, B′)) and is a f.a.p. measure on BV×W satisfying the
requirements. Uniqueness is straightforward from the definition of ω.

(2) It is enough to show that µ n ν is fin.app. on the family of all fibers of
any R-definable relation E ⊆ (V ×W ) × Z. Fix an arbitrary ε > 0. Let us take
p1, . . . pn ∈ V such that µ (Eb,c) ≈ε Av (p1, . . . , pn;Eb,c) for all (b, c) ∈W × Z, and
q1, . . . , qm ∈W such that ν (Ea,c) ≈ε Av (q1, . . . , qm, Ea,c) for all (a, c) ∈ V × Z.

We claim that the set {(pi, qj) : 1 ≤ i < n, 1 ≤ j < m} gives a 2ε-approximation
for µn ν(Ec), for any c ∈ Z. Namely, using linearity of integration, we have

µn ν (Ec) =

∫
W

(∫
V

1Ec (v, w) dµ

)
dν ≈ε∫

W

(
1

n

n∑
i=1

1Ew,c (pi)

)
dν =

1

n

n∑
i=1

(∫
W

1Ew,c (pi) dν

)
=

1

n

n∑
i=1

(∫
W

1Epi,c(w)dν

)
≈ε 1

n

n∑
i=1

 1

m

m∑
j=1

1Epi,c (qj)

 =

=
1

nm

∑
1≤i≤n,1≤j≤m

1Ec (pi, qj) ,

so µn ν (Ec) ≈2ε Av ({(pi, qj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} ;Ec).
The fact that µn ν(Ec) = ν n µ(Ec) follows as, by the above, for any ε > 0 we

have

µn ν (Ec) ≈2ε 1

n

n∑
i=1

 1

m

m∑
j=1

1Epi,c (qj)

 =

1

m

m∑
j=1

(
1

n

n∑
i=1

1Eqj,c (pi)

)
≈ε 1

m

m∑
j=1

(∫
V

1Eqj,c (v) dµ

)
=

∫
V

 1

m

m∑
j=1

1Ev,c (qj)

 dµ ≈ε
∫
V

(∫
W

1Ec (v, w) dν

)
dµ =

ν n µ (Ec) ,
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hence µn ν(Ec) ≈4ε ν n µ(Ec) for arbitrary ε > 0. �

It is not hard to see that a product of fin.app. measures satisfies a weak Fubini’s
property.

Corollary 4.31. Let V,W be sets, µ a f.a.p. measure on BV which is fin. app.
on R, ν a f.a.p. measure on BW . For ε > 0 if µ(Ra) < ε for all a ∈ W then
(µV n νW )(R) < ε.

We extend products of fap measures to an arbitrary number of sets.

Definition 4.32. Let V1, . . . , Vk be sets, R ⊆ V1 × . . . × Vk and assume that for
each i ∈ [k] we have a field Bi on Vi and a measure µi on Bi which is fin.app. on R
(viewed as a binary relation on Vi × V[k]\i). Then, by induction on k, we define a
measure µ1 n . . .n µk = (µ1 n . . .n µk−1) n µk on BV1 × . . .× BVk (and the order
of integration doesn’t matter by Proposition 4.30).

4.5. Measure-theoretic regularity for hypergraphs of finite VC-dimension.

Definition 4.33. (1) Let V1, . . . , Vk be sets, R ⊆ V1 × . . . × Vk and I ⊆ [k].
We say that a subset X ⊆ VI is R-definable over a set D ⊆ V[k]\I if it is a
finite Boolean combination of sets of the form Rb with b ∈ D, and say that
X is R-definable if it is R-definable over V[k]\I .

(2) For a set A ⊆ V1 × . . . × Vk we say that A is R⊗-definable if A can be
written as a finite union of sets of the form X1 × . . .×Xk, such that each
Xi ⊆ Vi is R-definable.
In addition for a tuple ~D = (D1, . . . , Dk) with Di ⊆ V[k]\i we say that A is
R⊗-definable over ~D if every Xi above is R-definable over Di. For such a
tuple ~D we use notation ‖ ~D‖ = max{|Di| : i ∈ [k]}.

Proposition 4.34. Let V,W,R ⊆ V ×W be sets, µ a f.a.p. measure on V which
is fin.app. on R. Then for any ε > 0 there are R-definable subsets X1, . . . Xm ⊆W
partitioningW such that for every i ∈ [m] and any a, a′ ∈ Xi we have µV (Ra∆Ra′) <
ε.

In addition, if the family R = {Ra : a ∈ W} has VC-dimension at most d then
we can choose D ⊆ V of size at most 320d

(
1
ε )2 such that every Xi is R-definable

over D.

Proof. We use the same trick as in the proof of Proposition 4.29.
Let R∆ = {Ra∆Ra′ : a, a

′ ∈W}. Since µ is fin.app. on R, there are p1, . . . pn ∈
V with |µ(F )−Av(p1, . . . , pn;F )| < ε for any F ∈ R∆.

For each I ∩ [n] let Xi = {a ∈ W : pi ∈ Ra ⇔ i ∈ I}. It is easy to see that the
sets XI , I ⊆ [n] partition W , every Xi is R-definable and for every I ⊆ [n] and
a, a′ ∈ XI we have µ(Ra∆R′a) < ε.

Assume in addition that R is a VC-family with VC-dimension at most d. As
above we choose p1, . . . pn ∈ V with

|µ(F )−Av(p1, . . . , pn;F )| < ε/2

for any F ∈ R∆.
Let ω be a measure on BV given by ω(X) = Av(p1, . . . , pn;X). Since R has VC-

dimension at most d, the family R∆ had dimension at most 10d by Remark 4.9, and
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by Corollary 4.18 we can choose an ε/2-net D for R∆ and ω with |D| ≤ 80d 2
ε log 2

ε .
Clearly

80d 2
ε log 2

ε ≤ 80d
(

2
ε

)2
= 320d

(
1
ε )2.

For each I ∩D let XI = {a ∈ W : Ra ∩D = I}. It is easy to see that the sets
XI , I ⊆ D, partition W and every Xi is R-definable over D. Let I ⊆ D and a, a′ ∈
XI . Then Ra ∩D = Ra′ ∩D, hence w(Ra∆Ra′) ≤ ε/2, and µ(Ra∆Ra′) < ε. �

Definition 4.35. For sets V1, . . . , Vk and a set R ⊆ V1× . . .×Vk we say that R has
VC-dimension at most d if for every I ⊆ [k] the family {Ra : a ∈ V[k]\I} of subsets
of VI has VC-dimension at most d.

Theorem 4.36. Let V1, . . . Vk and R ⊆ V1 × . . .× Vk be sets, and µ1, . . . , µk f.a.p.
measures on V1, . . . , Vk, respectively, which are all fin. app. on R. Then for every
ε > 0 there is an R⊗-definable A ⊆ V1 × . . .× Vk with

(µ1 n . . .n µk)(R∆A) < ε.

In addition, if R has VC-dimension at most d (see Definition 4.35) then we can
choose A to be R⊗-definable over some ~D with ‖ ~D‖ ≤ Ck,d

(
1
ε

)2(k−1)d, where Ck,d
is a constant that depends on k and d only.

Remark 4.37. Returning to our terminology from Section 3.2, this means in par-
ticular that R can be approximated up to measure ε by a set in B[k],1 — a finite
union of boxes obtained by products of 1-ary sets.

Proof. We proceed by induction on k.
The case k = 2. Let V1, V2 and R ⊆ V1 × V2 be given. Using Corollary 4.34

we can find R-definable sets X1, . . . Xm partitioning V2 such that for every i ∈ [m]
and any a, a′ ∈ Xi we have µ1(Ra∆Ra′) < ε.

For each i ∈ [m] we pick some ai ∈ Xi and let A =
⋃
i∈[m]Rai×Xi. Obviously A

is R⊗-definable. It is not hard to see that for every a ∈W we have µ1(Ra∆Aa) < ε,
hence, by Lemma 4.31, (µ1 n ν2)(R∆A) < ε.

Assume in addition that R has VC-dimension at most d. Then by Corollary
4.34, we can assume that for some D2 ⊆ V1 with |D2| ≤ 320d

(
1
ε )2 every Xi is

R-definable over D2. Let D1 = {a1, . . . , am}, and ~D = (D1, D2). Obviously A

is R⊗-definable over ~D. By Sauer-Shelah lemma (Fact 4.8), m < Cd|D2|d, hence
|D1| ≤ Cd(320d)d( 1

ε )2d. And we can take C2,d = Cd(320d)d.

Inductive step k + 1. Let V1, . . . , Vk+1 and R ⊆ V1 × . . .× Vk+1 be given.
Viewing V1 × . . . × Vk+1 as V[k] × Vk+1 and using the case of k = 2 we obtain

R-definable X1, . . . Xm partitioning Vk+1 and points ai ∈ Xi, i ∈ [m], such that for
the set A′ =

⋃
i∈[m]Rai ×Xi we have (µ1 × . . .× µk+1)(R∆A′) < ε/2.

For each i ∈ [m] let Ri = Rai . It is an R-definable subset of V1 × . . . × Vk.
It is easy to see that each Ri has VC-dimension at most d. Applying induction
hypothesis to each Ri we obtain Ri⊗-definable sets Ai ⊆ V1 × . . . × Vk such that
(µ1 n . . . n µk)(Ri∆Ai) < ε/2. Let A =

⋃
i∈[m]Ai ×Xi. It is an R⊗-definable set

and using Lemma 4.31, it is not hard to see that (µ1 n . . . n µk+1)(A′∆A) < ε/2,
hence (µ1 n . . .n µk+1)(R∆A) < ε, as required.

Assume in addition that R has VC-dimension at most d. As in the case k = 2
we can assume that every Xi is R-definable over Dk+1 ⊆ V1, . . . , Vk with |Dk+1| ≤
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320d( 2
ε )2 and also assume that

m ≤ Cd|Dk+1|d ≤ Cd
[
320d

(
2
ε

)2]d
= Cd(1280d)d

(
1
ε

)2d
.

Applying induction hypotheses we can assume that each Ai above is Ri⊗-definable
over ~Di = (Di

1, . . . D
i
k) with ‖ ~Di‖ ≤ Ck,d( 2

ε )2(k−1)d, where Di
j ⊆

∏
l∈[k]\{j} Vl.

For each i ∈ [m] and j ∈ [k] let D̄i
j = {(c, ai) : c ∈ Di

j}, Dj =
⋃
i∈[m] D̄

i
j , and

~D = (D1, . . . , Dk+1).
It is not hard to see that A above is R-definable over ~D and

‖ ~D‖ ≤ mCk,d
(

2
ε

)2(k−1)d ≤ Cd(1280d)d
(

1
ε

)2d
22(k−1)d

(
1
ε

)2(k−1)d
=

= Ck+1,d(
1
ε )2kd.

�

Now we apply this product measure decomposition result to deduce a strong
regularity lemma.

Definition 4.38. (1) For a k-hypergraph E ⊆ V1×. . .×Vk andA1 ⊆ V1, . . . , Ak ⊆
Vk we will denote by E(A1, . . . , Ak) the set E(A1, . . . , Ak) = E∩A1× . . .×
Ak

(2) By a rectangular partition we mean a k-tuple ~P = (P1, . . . ,Pk) where each
Pi is a finite partition of Vi. For a rectangular partition ~P = (P1, . . . ,Pk)

we define ‖~P‖ = max{| Pi | : i ∈ [k]}, and for a set X ⊆ V1 × . . . × Vk we
write X ∈ ~P if X = X1 × . . .×Xk for some Xi ∈ Pi, i ∈ [k]. We will also
write Σ ⊆ ~P to indicate that Σ consists of subsets X ⊆ V1 × . . .× Vk with
X ∈ ~P.

(3) For A ⊆ V1× . . .×Vk and a rectangular partition ~P = (P1, . . . ,Pk), say
that A is compatible with ~P if for any X ∈ ~P either X ⊆ A or X ∩ A = ∅.
In other words, A is a finite union of sets X ∈ ~P.

(4) A rectangular partition ~P is E-definable (over ~D = (D1, . . . , Dk) as in
Definition 4.33) if for each i ∈ [k], every X ∈ Pi is E-definable over Di.

(5) Let Bi be a bool. algebra on Vi, and µi a f.a.p. measures on Bi which is
fin.app. on E, for all i ∈ [k]. Let µ := µ1 n . . . n µk. Given ε > 0, a
definable rectangular partition ~P is ε-regular with 0− 1-densities if there is
Σ ⊆ ~P such that ∑

X∈Σ

µ(X) ≤ ε,

and for every X1 × . . .×Xk ∈ ~P \ Σ either

µ(Y1 × . . .× Yk)− µ(E(Y1, . . . , Yk)) < εµ(X1 × . . .×Xk)

for all sets Yi ∈ Bi, i = 1, . . . , k; or

µ(E(Y1, . . . , Yk)) < εµ(X1 × . . .×Xk)

for all sets Yi ∈ Bi, i = 1, . . . , k.

The next proposition demonstrates how existence of an approximation by rectan-
gular sets (Theorem 4.36) for the product measure can be used to obtain a regular
partition.
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Proposition 4.39. (in the context of Definition 4.38) Let ~P be a definable rectan-
gular partition of V1× . . .×Vk. If there is A ⊆ V1× . . .×Vk, an E⊗-definable set
compatible with ~P with µ(A∆E) < ε2, then ~P is ε-regular with 0− 1-densities.

Proof. Let
Σ = {X ∈ ~P : µ(X ∩ (A∆E)) ≥ εµ(X)}.

Since µ(A∆E) < ε2 and µ is finitely additive we obtain that∑
X∈Σ

µ(X) ≤ ε.

Let X = X1× . . .×Xk ∈ ~P \ Σ. We have

µ(X ∩ (A∆E)) < εµ(X).

Since A is compatible with ~P either X ⊆ A or X ∩A = ∅.
Assume first X ⊆ A. Let Yi ⊆ Xi be fromBi, i = 1, . . . , k, and let Y =

Y1× . . .×Yk. Since Y ⊆ X, by monotonicity of µ we have

µ(Y ∩ (A∆E)) < εµ(X).

As Y ⊆ A we have Y ∩ (A∆E) = Y \ E(Y1, . . . , Yk). Since E(Y1, . . . , Yk) ⊆ Y we
also have

µ(Y \ E(Y1, . . . , Yk)) = µ(Y )− µ(E(Y1, . . . , Yk)),

hence
µ(Y1× . . .×Yk)− µ(E(Y1, . . . , Yk)) ≤ εµ(X1× . . .×Xk).

If X ∩A = ∅ similar arguments show that

µ(E(Y1, . . . , Yk)) < εµ(X1, . . . , Xk).

for all Yi ⊆ Xi from Bi, i = 1, . . . , k. �

Combining this observation with Theorem 4.36, we obtain a regularity lemma
for hypergraphs of finite VC dimension.

Theorem 4.40. Let V1, . . . , Vk and E ⊆ V1× . . .×Vk be given, and let µ1, . . . , µk
be measures on V1, . . . , Vk which are all fin.app. on E. Let µ = µ1 n . . .nµk.

For any ε > 0 there is an E-definable ε-regular partition ~P with 0− 1-densities.
In addition, if E has VC dimension at most d we can choose ~P with ‖~P‖ ≤

Cd(Ck,d)
d
(

1
ε

)2(k−1)d2 , where Cd and Ck,d are constants from Fact 4.8 and Theorem
4.36.

Proof. Using Theorem 4.36 there is an E⊗-definable A with µ(A∆E) < ε2. Say
A = ∪j∈[m]A

j
1× . . .×A

j
k where each Aji ⊆ Vi is E-definable. �

For each I ∈ [k] let Pi be the set of all atoms in the Boolean algebra generated
by A1

i , . . . , A
m
i . Obviously each Pi consists of E-definable sets partitioning Vi, and

A is compatible with ~P = (P1, . . . ,Pk). By Proposition 4.39, ~P is ε-regular with
0− 1-densities.

Assume in addition that E has VC-dimension at most d. Then using Theorem
4.36 we can assume that A is E⊗-definable over ~D = (D1, . . . , Dk) with |Di| ≤
Ck,d

(
1
ε

)2(k−1)d for i ∈ [k]. For each i ∈ [k] let Pi be the set of all atoms in
the Boolean algebra generated by E-definable over Di subsets of Vi. Obviously
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each Pi consists of E-definable subsets partitioning Vi and A is compatible with
~P = (P1, . . . ,Pk). Also, by Sauer-Shelah (Fact 4.8),

| Pi | ≤ Cd|Di|d ≤ Cd
(
Ck,d

(
1
ε

)2(k−1)d
)d

= Cd(Ck,d)
d
(

1
ε

)2(k−1)d2

Remark 4.41. In the case when V[k] is finite the above theorem without the VC part
is trivial, since we can take Pi to be the set of all atoms in the Boolean algebra of
all E-definable subsets of Vi.

Let E ⊆ V1, . . . , Vk be a finite k-hypergraph. For each i ∈ [k] let µi be the
counting measure on Vi, i.e. µi(X) = |X|

|Vi| and µ be the counting measure on
V1× . . .×Vk. Then all µi and µ are fin.app. measures with µ = µ1 n . . .nµk.
Hence all the results of the previous section can be applied to finite k-hypergraphs
with respect to counting measures.

Corollary 4.42. Assume E ⊆ V1 × . . .× Vk has VC-dimension at most d.
Then there are partitions Vi = Vi,1 t · · · t Vi,M for some M ≤ c

(
1
ε

)c′ , where
c = c (k, d) and c′ = c′ (k, d), numbers δ~i ∈ {0, 1} for ~i ∈ [M ]k, and an exceptional
set Σ ⊆ [M ]k such that∑

(i1,...,ik,)∈Σ

|V1,i1 | · · · |Vk,ik | ≤ ε|V1 × . . .× Vk|

and for each ~i = (i1, . . . , ik) ∈ [M ]k \ Σ we have

| |E(A1, . . . , Ak)| − δ~i|A1| · · · |Ak| | < ε|V1,i1 | · · · |Vk,ik |
for all A1 ⊆ V1,i1 , . . . , Ak ⊆ Vk,ik .

Exercise 4.43. Formulate and show a converse (that this regularity lemma implies
finiteness of the VC-dimension of the hypergraph).

4.6. References. *** TBA

5. Regularity lemma for stable hypergraphs

We work in the same setting as before. Let the sets V1, . . . , Vk and R ⊆ V1 . . .×
. . . Vk be given, let Bi be a b.a. on Vi, and let µi be a f.a.p. measure on Bi. Assume
moreover that for every i ∈ [k], Rb ∈ Bi for all b ∈ V[k]\{i}.

Definition 5.1. (1) A binary relation R(x, y) ⊆ V ×W is d-stable if there is
no tree of parameters (bη : η ∈ 2<d) in W such that for any η ∈ 2d there
is some aη ∈ V such that aη ∈ Rbν ⇐⇒ ν _ 1 E η (where E is the tree
order).

(2) A relation R ⊆ V1 × . . . × Vk is d-stable if for every I ⊆ [k], viewed as a
binary relation on VI × V[k]\I it is d-stable.

(3) A relation R is stable if it is d-stable for some d.

Exercise 5.2. (1) Alternatively, stability of a relation can be defined in terms
of the so called order property. Namely, R ⊆ V × W has the d-order
property if there are some elements ai in V and bi in W , i = 1, . . . , d, such
that ai ∈ Rbj ⇐⇒ i ≤ j for all 1 ≤ i, j ≤ d. Show that R is stable (in the
sense of Definition 5.1) if and only if it does not have the d-order property
for some d.
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(2) Show that if R is d-stable, then VC (R) ≤ d.

Lemma 5.3. Let R be a stable relation. Then any measure µi on Bi is fin.app. on
R.

Proof. Fix i ∈ [k] and assume that R is d-stable.
Claim 1. For any ε > 0 there is some m = m(ε, E) and some 0-1 measures

δ1, . . . , δm on Bi (possibly with repetitions) such that µi(Rc) ≈ε 1
m

∑m
j=1 δj(Rc) for

all c ∈ V[k]\{i}.
Proof. By Exercise 5.2, VC (R) ≤ d. Then the claim follows from the VC-

theorem applied on the compact space of 0-1 measures on Bi. See [9, Lemma 4.8]
for the details (*** TBA).

Claim 2. Every 0− 1 measure δ on Bi is fin.app. on E.
Proof. This is a straightforward consequence of the explicit form of the defin-

ability of types in local stability. See e.g. the proof of [14, Lemma 2.2]: identifying
our measure δ restricted to E with a complete E-type, an ε-approximation of δ on
E is given by the c1, . . . , cm constructed in that proof, for any m large enough so
that N

m < ε (*** TBA).
Now, let ε > 0 be arbitrary, and let δ1, . . . , δm be as given by Claim 1. By Claim

2, let Aj be a multiset in Vi giving an ε-approximation for δj . It is straightforward
to verify that A =

⋃m
j=1Aj is a 2ε-approximation for µi. �

In view of this lemma, for I = {i1, . . . , in} ⊆ [k] we have a semi-direct product
measure µI = µi1 n . . .nµin on BI = Bi1 × . . .×Bin (see Definition 4.32) which is
fin.app. on R (Proposition 4.30).

Definition 5.4. A set A ∈ BI is ε-good if for any b ∈ V[k]\I , either µI(A ∩ Rb) <
εµI(A) or µI(A ∩Rb) > (1− ε)µI(A).

Remark 5.5. Notice that if a set is ε-good then it has measure greater than 0.

Lemma 5.6. Assume that µ[k]\I is fin.app. on R. For any ε > 0, consider the set

A = {a ∈ VI : µ[k]\I(Ra) < ε}.
Then there is an R-definable set A′ ⊇ A such that µ[k]\I(Ra) < 2ε for all a ∈ A′.

Proof. Let b1, . . . , bn ∈ V[k]\I be such that µ[k]\I(Ra) ≈ ε
2 Av(b1, . . . , bn;Ra) for all

a ∈ VI . Let J = {J ⊆ [n] : |J|n < 3
2ε}, and let A′ =

⋃
J∈J

(⋂
j∈J Rbj ∩

⋂
j /∈J Rbj

)
.

It is easy to check that A′ satisfies the requirements. �

Lemma 5.7. Fix some I ⊆ [k] and some J ⊆ [k] \ I. Let B ∈ BJ be an ε-good
set, and let A ∈ BI and c ∈ V[k]\(I∪J) be arbitrary, such that both A and B are of
positive measure. Then (by Definition 5.4) A is a disjoint union of the sets

A0
B,c = {a ∈ A : µJ(Ra,c ∩B) < εµJ(B)}

and
A1
B,c = {a ∈ A : µJ(Ra,c ∩B) > (1− ε)µJ(B)}.

Assume that ε < 1
4 . Then A0

B,c, A
1
B,c ∈ BI .

Proof. Indeed, let µ′I be the restriction of µI to A and let µ′J be the restriction of
µJ to B. As R is stable, by Lemma 5.3 both µ′I , µ

′
J are fin.app. on R. Hence, by

Lemma 5.6 applied to µ′I , µ
′
J we can find some R-definable A′0 ⊇ A0

B,c, A
′
1 ⊃ A1

B,c

such that µ′J(Ra,c) < 2ε for all a ∈ A′0 and µ′J(Ra,c) > (1− 2ε) for all a ∈ A′1 (here
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we have applied it to the complement ¬R, which is also d-stable). As ε < 1
4 , it

follows that in fact A0
B,c = A′0 ∩A,A1

B,c = A′1 ∩A. �

In particular, it makes sense to speak of the µI -measure of A0
B,c, A

1
B,c.

Definition 5.8. Let 0 < ε < 1
4 be arbitrary, and let I ⊆ [k]. We say that a set

A ∈ BI is ε-excellent if it is ε-good and for every J ⊆ [k] \ I, every ε-good B ∈ BJ
and every c ∈ V[k]\(I∪J), either µI(A0

B,c) < εµI(A) or µI(A1
B,c) < εµI(A) (in the

notation from Lemma 5.7).

Lemma 5.9. Let R ⊆ V1 × . . . × Vk be d-stable, 1 ≤ n ≤ k and let 0 < ε < 1
2d

be arbitrary. Assume that A ∈ Bn and µn(A) > 0. Then there is an ε-excellent
R-definable set A′ ∈ Bn with µn(A′ ∩A) ≥ εdµn(A).

Proof. We will need the following claim.
Claim. Assume that 0 < ε < 1

4 and A ∈ Bn is not ε-excellent. Then there are
disjoint A0, A1 ⊆ A with Ai ∈ Bn and µ(Ai) ≥ εµ(A) for i ∈ {0, 1}, and such that
for any finite S0 ⊆ A0, S1 ⊆ A1 with |S0|+ |S1| ≤ 1

ε there is some c ∈ V[k]\{n} such
that a ∈ Rc for all a ∈ S1 and a /∈ Rc for all a ∈ S0.

Proof. If A is not ε-good, there is some c ∈ V[k]\{n} such that µn(A ∩ Rc) ≥
εµn(A) and µn(A ∩ ¬Rc) ≥ εµn(A). We let A1 = A ∩Rc and A0 = A ∩ (¬Rc).

If A is ε-good, as it is not ε-excellent, there are some J ⊆ [k] \ {n}, some set
B ∈ BJ which is ε-good, and some c′ ∈ V[k]\({n}∪J) such that A is a disjoint
union of the sets A0 := A0

B,c′ , A
1 := A1

B,c′ (in the notation from Lemma 5.7) and
µn(At) ≥ εµn(A) for both t ∈ {0, 1}. Now given S0, S1 as in the claim, we have
µJ(B ∩ Ra,c′) ≤ εµJ(B) for all a ∈ S0 and µJ(B ∩ ¬(Ra,c′)) ≤ εµJ(B) for all
a ∈ S1. Let

B′ = B ∩ (
⋃
a∈S0

Ra,c′ ∪
⋃
a∈S1

¬(Ra,c′)).

As |S0|+ |S1| < 1
ε , it follows that µJ(B′) ≤ 1

εεµJ(B) < µJ(B). In particular there
is some b′ ∈ B \B′, and taking c = b′ _ c′ satisfies the claim.

Assume now that the conclusion of the lemma fails. By induction we choose
sets (Aη : η ∈ 2≤d) in Bn such that A∅ = A and given η ∈ 2<d, we take Aη_0 :=
(Aη)0, Aη_1 := (Aη)1 as given by the claim applied to Aη. For every η ∈ 2d, pick
some aη ∈ Aη (possible as µn(Aη) ≥ εdµn(A) > 0). For every ν ∈ 2<d there is
some cν ∈ V[k]\{n} such that aη ∈ Rcν if and only if ν _ 1 E η – which gives
contradiction to the d-stability of R. Namely we can take c given by the claim for
S0 = {aη : η ∈ 2d, ν _ 0 E η} and S1 = {aη : η ∈ 2d, ν _ 1 E η} (note that
|S0|+ |S1| ≤ 2d < 1

ε by assumption). �

Lemma 5.10. Let R ⊆ V1 × . . .× Vk be d-stable, and let 0 < ε < 1
2d

be arbitrary.
For any n ∈ [k], there is a partition of Vn into ε-excellent sets from Bn, and the
size of the partition can be bounded by a polynomial of degree d+ 1 in 1

ε .

Proof. Repeatedly applying Lemma 5.9, we let Am+1 be an ε
2 -excellent subset

of Bm := Vn \ (
⋃

1≤i≤mAi) with µn(Am+1) ≥ ( ε2 )dµn(Bm). Then µn(Bm+1) ≤
µn(Bm)− ( ε2 )dµn(Bm) ≤ (1− ( ε2 )d)µn(Bm), hence µn(Bm) ≤ (1− ( ε2 )d)m−1 for all

m. Thus µn(Bm) ≤ ε
2µn(A1) after m =

log( ε2 )d+1

log(1−( ε2 )d)
steps. Letting A′1 = A1 ∪ Bm,

it is easy to check that A′1 is an ε-excellent set, and A′1, A2, . . . , Am is a partition
of Vn.
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Finally, for the size of the partition we have an estimate

m = − (d+ 1) log 2

log(1− ( ε2 )d)
log(

1

ε
) ≤ − c

ln(1− ( ε2 )d)
ln(

1

ε
)

for some constant c ∈ N depending just on d. And as − ln(1− x) ≥ x for all x, this
gives

m ≤ c
(ε

2

)d
ln

(
1

ε

)
≤ c′

(
1

ε

)d+1

for some c′ = c′(d) ∈ N. �

Finally we can use the partition in Lemma 5.10 to obtain a regular partition for
R ⊆ V1× . . .×Vk.

Lemma 5.11. If A ⊆ Vn is ε-excellent and B ⊆ V[n−1] is ε-good then B × A is
2ε-good.

Proof. Let c ∈ V[k]\[n] be arbitrary. As B is ε-good and A is ε-excellent, by Defini-
tion \ref{def: epsilon excellent} we have A = A0

B,c ∪ A1
B,c and either µn(A0

B,c) <

εµn(A) or µn(A1
B,c) < εµn(A). Assume we are in the first case. Then, using the

definition of µ[n] and Lemma 4.31, we have

µ[n]((B ×A) ∩Rc) =

∫
A

(
µ[n−1](Ra,c ∩B)

)
dµn ≥∫

A1
B,c

(
µ[n−1](Ra,c ∩B)

)
dµn ≥

∫
A1
B,c

(1− ε)µ[n−1](B)dµn ≥

(1− ε)2µn(A)µ[n−1](B) > (1− 2ε)µ[n](A×B).

Similarly, in the second case we obtain that µ[n]((B×A)∩Rc) ≤ 2εµ[n](A×B). �

Theorem 5.12. Let R ⊆ V1× . . .×Vk be d-stable, and let 0 < ε < 1
2d

be arbitrary.
Then there is an R-definable ε-regular partition ~P of V1×. . .×Vk with 0−1-densities
(see Definition 4.38) without any bad k-tuples in the partition (i.e. Σ = ∅) and such
that the size of the partition ‖~P‖ is bounded by a polynomial of degree d+ 1 in 1

ε .

Proof. For each n ≤ k, let Pn be a partition of Vn into ε
2k+1 -excellent sets as

given by Lemma 5.10, and let ~P := {X1 × . . . × Xk : Xn ∈ Pn}. We claim that
Pn is ε-regular with Σ = ∅. Indeed, let X = X1 × . . . × Xk ∈ ~P be arbitrary,
and let Y = Y1 × . . . × Yk, where Yn ⊆ Xn, Yn ∈ Bn are arbitrary. Let X ′ :=
X1 × . . .×Xk−1, Y

′ := Y1 × . . .× Yk−1. Applying Lemma 5.11 k times, the set X ′
is ε

2 -good, and Xk is ε
2 -excellent. Then, by Definition \ref{def: epsilon excellent},

Xk is a disjoint union of the sets (Xk)0
X′ , (Xk)1

X′ ∈ Bk and µk((Xk)tX′) <
ε
2µk(Xk)

for one of t ∈ {0, 1}. Let Y 0
k := (Xk)0

X′ ∩ Yk and Y 1
k := (Xk)1

X′ ∩ Yk. We have

µ[k](R ∩ Y ) =

∫
Yk

µ[k−1](Rc ∩ Y ′)dµk(c).

As Yk is a disjoint union of Y 0
k , Y

1
k and µ(Y tk ) ≤ ε

2µk(Xk) for some t ∈ {0, 1}, we
have

|µ[k](R ∩ Y )−
∫
Y tk

µ[k−1](Rc ∩ Y ′)dµk(c)| ≤

ε

2
µk(Xk)µ[k−1](Y1 × . . . Yk−1) ≤ ε

2
µ[k](X1 × . . .×Xk)
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for some t ∈ {0, 1}.
Assume that t = 0. Then for all c ∈ Y 0

k we have µ[k−1](Rc ∩X ′) < ε
2µ[k−1](X

′).
Hence∫

Y 0
k

µ[k−1](Rc ∩ Y ′)dµk(c) ≤ µ(Y 0
k )
ε

2
µ[k−1](X

′) ≤ ε

2
µ[k](X1 × . . .×Xk),

and so µ[k](R ∩ Y ) ≤ εµ[k](X).
If t = 1, applying the same argument to ¬R we obtain µ[k](¬R∩Y ) ≤ εµ[k](X),

hence |µ[k](¬R ∩ Y )− µ[k](Y )| ≤ εµ[k](X). �

References. Regularity lemma for stable graphs was proved in \cite{ms} for
counting measures. Later, \cite{malliaris2016stable} provides a proof for gen-
eral measures. However, the proof in \cite{malliaris2016stable} does not give any
bounds on the size of the partition. Here we present a proof from *** combining
these two approaches and prove a regularity lemma for stable hypergraphs rela-
tively to arbitrary measures, bounding the size of the partition by a polynomial in
$\frac{1}{\varepsilon}$.

6. Tame hypergraph removal

Fact 6.1. (Conant) Let (Z,+, 0, A) be stable, with A ⊆ N. Then A doesn’t contain
an infinite arithmetic progression.

Problem 6.2. Can still contain arbitrary long finite arithmetic progressions?

Fact 6.3. What about the NIP case?

Remark 6.4. (Z, P rimes) is simple by Kaplan-Shelah. Does it mean that there is
no improved simple regularity lemma? Can Gower’s lower bound be carried out
here?

6.1. Graph removal in stable/NIP. seems we get δ = εt for some t = t (VC (E)).
By Ricardo Bello Aguirre,

∏
k∈N Z/pkZ/U is NIP. Does it imply anything for

Szemeredi’s theorem on progressions? Maybe by Chebycheff’s density of primes,
gives smth...

In fact, maybe only use additive structure? Then the ultraproduct is just an
abelian group? Hence stable.

Brr, definition uses A.
Hence, assume (Z,+, A) is stable/NIP. Then hopefully something happens. If A

is definable in an NIP exapnsion of Z with order, then all these initial pieces are
uniformly definable, so the ultraproduct is NIP as well?
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