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1. Vapnik–Chervonenkis dimension

1.1. Basic properties and examples. Let X be a set (finite or infinite), and let
F be a family of subsets of X. A pair (X,F) is called a set system.

Given A ⊆ X, we say that the family F shatters A if for every A′ ⊆ A, there is
a set S ∈ F such that S ∩A = A′.

The family F has VC-dimension at most n (written as VC (F) ≤ n), if there
is no A ⊆ X of cardinality n + 1 such that F shatters A. We say that F is of
VC-dimension n if it is of VC-dimension at most n and shatters some subset of size
n.

If for every n ∈ N we can find a subset of X of cardinality n shattered by F ,
then we say that F has infinite VC-dimension (VC (F) = ∞). If VC (F) is finite,
we say that F is a VC-family. Note that if F ′ ⊆ F then VC (F ′) ≤ VC (F).

Example 1.1. Let X = R and let F be the family of all unbounded intervals.
Then F has VC-dimension 2. Clearly any two-element set can be shattered by F .
However, if we take any a < b < c, then {a, b, c} cannot be shattered by F .
Exercise 1.2. Let X = R2, and let F be the set of all half-spaces. Show that
VC (F) = 3.

Exercise 1.3. Let X = R2 and let F be the set of all convex polygons. Show that
VC (F) =∞.

Exercise 1.4. Show that for every d ∈ N, there is a convex set on the real plane
such that the family of all of its isometric copies has VC-dimension at least d.

For a finer analysis, we define the shatter function πF : N→ N associated to the
family F as follows. For a set A ⊆ X we let F ∩ A := {S ∩A : S ∈ F}. Then we
define πF (n) := max {|F ∩A| : A ⊆ X, |A| = n}.

Note that πF (n) ≤ 2n, and that VC (F) < n ⇐⇒ πF (m) < 2m for all m ≥ n.
The following fundamental lemma states that either πF (n) = 2n for all n ∈ N, or
πF (n) has polynomial growth.

Lemma 1.5. (Sauer-Shelah lemma) Let (X,F) be a set system of VC-dimension
at most k. Then, for all n ≥ k, we have πF (n) ≤

∑k
i=0

(
n
i

)
.

In particular, πF (n) ≤
(
en
k

)k
= O

(
nk
)
.

There are numerous proofs and generalizations, we give a proof using the so-
called “shifting” technique. Notice that the bound is tight: take F to be the family
of all subsets of X of cardinality ≤ k, then F has VC-dimension exactly k and
its shatter function is equal to the bound in the statement of the lemma. The
idea of the proof is to reduce the general situation to this case by modifying the
elements of F making them as small as possible without changing the cardinality
or VC-dimension of F .

Proof. Fix an integer n ≥ k. If F contradicts the bound, then this is also true
for some finite subfamily of F , so for the proof we may assume that F is finite.
Similarly we may assume that X is finite, say, X = {x1, . . . , xn}, and πF (n) = |F|.

We define recursively families F0, . . . ,Fn of subsets of X. Set F0 = F .
Let l < n and assume that Fl has been defined. Go through the sets in Fl one

by one. For each S ∈ Fl, if xl+1 ∈ S and S \ {xl+1} is not in Fl, replace S by
S \ {xl+1}. If not, leave S as it is. Let Fl+1 be the resulting family.

The following is straightforward by construction:
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(1) for each l, |Fl+1| = |Fl|;
(2) let S ∈ Fl and A = S ∩ {x1, . . . , xl}, then for every A0 ⊆ A, the set

A0 ∪ (S \A) is in Fl;
(3) any A ⊆ X shattered by Fl+1 is also shattered by Fl.

It follows from (2) that if S ∈ Fn, then S is shattered by Fn. It follows from (3)
that the VC (Fn) ≤ VC (F). Therefore no set in Fn can have cardinality greater
than k. Hence, by (3) we have

∑k
i=0

(
n
i

)
≥ |Fn| = |F| = πF (n). �

Exercise 1.6. Prove a more general fact, due to Pajor: every finite set system
(X,F) shatters at least |F| subsets of X. Deduce Sauer-Shelah lemma from it.

We consider some general ways of producing VC-families.

Exercise 1.7. (Boolean operations preserve finite VC-dimension) Let F1,F2 be
two families of subsets of X of finite VC-dimension. Show that all of the following
families have finite VC-dimension:

(1) F := F1 ∪ F2,
(2) F∩ := {S1 ∩ S2 : Si ∈ Fi, i = 1, 2},
(3) F∪ := {S1 ∪ S2 : Si ∈ Fi, i = 1, 2} ,Fc1 := {X \ S1 : S1 ∈ F1},
(4) F1 ×F2 := {S1 × S2 : S1 ∈ F1, S2 ∈ F2} — a family of subsets of X ×X.
(5) Besides, if X ′ is an infinite set and f : X ′ → X is a map, let f−1 (F1) :={

f−1 (S) : S ∈ F1

}
. Then VC

(
f−1 (F1)

)
≤ VC (F1).

(Hint: bound the shattering functions of the corresponding families in terms of
πF1

, πF2
and use Lemma 1.5.)

Definition 1.8. Given a set system (X,F), we define the dual set system (X∗,F∗),
where X∗ = F and F∗ = {Fa : a ∈ X} with Fa = {S ∈ F : a ∈ S}. We then define
the dual VC-dimension of F (written as VC∗ (F)) as the VC-dimension of F∗, and
the dual shatter function π∗F as the shatter function of F∗.

Given a set system (X,F), we can consider its incidence matrix M defined as
an |X| × |F|-matrix such that rows are identified with the elements of x, columns
with the elements of F and for any x ∈ X,S ∈ F the corresponding entry Mx,S is
1 if x ∈ S and 0 otherwise. Note that if M is the incidence matrix for (X,F) then
the transposed matrix MT is the incidence matrix of the dual system (X∗,F∗).

Exercise 1.9. Let X = R2 and let F be the family of all open half-planes. Then
π∗F (n) is the maximal number of regions into which n lines can partition the plane.
Show by induction that this number is equal to n(n+1)

2 + 1.

Lemma 1.10. (VC duality) We have VC∗ (F) < 2VC(F)+1 and VC (F) < 2VC∗(F)+1.

Proof. Assume that VC (F) ≥ 2n. Then there is some subset B ⊆ X of size 2n

shattered by F . Write B = {bJ : J ⊆ n}, and we have {SI : I ⊆ P (n)} ⊆ F such
that bJ ∈ SI ⇐⇒ J ∈ I. For each k < n, let Ik = {J ⊆ n : k ∈ J}. Then
J ∈ Ik ⇐⇒ k ∈ J , hence we have bJ ∈ SIk ⇐⇒ k ∈ J . This shows that the set
{SIk : k < n} ⊆ X∗ is shattered by {FbJ : J ⊆ n} ⊆ F∗, so VC∗ (F) ≥ n.

This proves the second inequality, the first one is proved similarly. �

Exercise 1.11. Show that this bound is optimal.
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1.2. Definable families and Shelah’s reduction to one variable. We describe
a large source of examples of VC-families coming from model theory.

A (first-order) structureM = (M,R1, R2, . . . , f1, f2, . . . , c1, c2, . . .) consists of an
underlying set M , together with some distinguished relations Ri (subsets of Mni ,
ni ∈ N), functions fi : Mni →M , and constants ci (distinguished elements of M).
We refer to the collection of all these relations, function symbols and constants as the
signature ofM. For example, a group is naturally viewed as a structure

(
G, ·,−1 , 1

)
,

as well as a ring (R,+, ·, 0, 1), ordered set (X,<), graph (X,E), etc. A formula is
an expression of the form ψ (y1, . . . , ym) = Q1x1 . . . Qnxnφ (x1, . . . , xn; y1, . . . , yn),
where Qi ∈ {∀,∃} and φ is given by a boolean combination of (superpositions of)
the basic relations and functions (and y1, . . . , yn are the free variables of ψ). We
denote the set of all formulas by L. By a partitioned formula φ (x̄, ȳ) we mean a
formula with its free variables partitioned into two groups x̄ (object variables) and
ȳ (parameter variables). Given a partitioned formula φ (x̄, ȳ) and b̄ ∈ M |ȳ|, we let
φ
(
M |x̄|, b̄

)
be the set of all ā ∈ M |x̄| such that M |= φ

(
ā, b̄
)
. Sets of this form

are called definable (or φ-definable, in this case). We consider the family Fφ(x̄,ȳ) of
subsets of M |x̄| defined by Fφ(x̄,ȳ) =

{
φ
(
M |x̄|, b̄

)
: b̄ ∈M |ȳ|

}
.

Example 1.12. Let G = (V,E) be a graph. Then we can consider the formula
E (x, y), and for every v ∈ V , then set E (V, v) is the set of all elements connected
to v, and the family FE(x,y) is the family of all neighborhoods of vertices in G.
Similarly, for any k ∈ N let

dk (x, y) := ∃z0 . . . ∃zk−1

z0 = x ∧ zk−1 = y ∧
∧

1≤i≤k

E (zi−1, zi)

 .

Let Dk (x, y) :=
∨
l≤k dl (x, y). Then for every v ∈ V , Dk (V, v) is the set of all

vertices at distance at most k from v. But there is no first-order formula expressing
that x is in the connected component of y (Exercise).

Theorem 1.13. (Reduction to formulas in a single variable, Shelah) Let M be a
first-order structure. Assume that for every partitioned formula φ (x, ȳ) with x a
singleton, the family Fφ has finite VC dimension. Then for any φ (x̄, ȳ) ∈ L, the
corresponding family Fφ has finite VC dimension.

Before proving it, we point out some examples of VC-families that it easily
applies to.

Example 1.14. (Semialgebraic sets of bounded complexity) Recall that a set X ⊆
Rn is semialgebraic if it is given by a Boolean combination of polynomial equalities
and inequalities.

We say that the description complexity of a semialgebraic set X ⊆ Rd is bounded
by t ∈ N if d ≤ t and X can be defined as a Boolean combination of at most t
polynomial equalities and inequalities, such that all of the polynomials involved
have degree at most t. For example, consider the family of all spheres in Rn, or all
cubes in Rn, etc.

We claim that for any t, the family Ft of all semialgebraic sets of complexity
≤ t has finite VC-dimension. To see this, consider the field of real numbers as a
first-order structureM = (R,+,×, 0, 1, <). Note that Ft is contained in the union
of finitely many families of the form

{
Fφi(x̄,ȳ) : i < t′

}
where t′ only depends on t

(since there are only finitely many different polynomials of degree ≤ t, up to varying
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coefficients, and only finitely many different Boolean combinations of size ≤ t). So
it is enough to show that every such family has finite VC-dimension (by Exercise
1.7).

By the classical result of Tarski, this structureM eliminates quantifiers, and so
definable sets are precisely the semialgebraic ones. In particular, if we are given a
formula of the form φ (x, ȳ), for every b ∈ M |ȳ| the set φ (M, b) is just a union of
at most nφ intervals and points, where nφ only depends on φ. As the collection of
all intervals has finite VC-dimension, in view of Exercise 1.7 we have that for all
formulas φ (x, ȳ) with |x| = 1, Fφ has finite VC-dimension. By Theorem 1.13 this
implies that the same is true for all formulas.

Remark 1.15. In particular, let X = R and let F be the family of all convex n-gons.
Then F has finite VC-dimension (one can verify that VC (F) = 2n+1) — compare
this to Exercise 1.3.

Example 1.16. More generally, definable families in arbitrary o-minimal struc-
tures have finite VC-dimension.

A structure M = (M,<, . . .) is o-minimal if every definable subset of M is a
finite union of singletons and intervals (with endpoints in M ∪ {±∞}). From this
assumption one obtains cell decomposition for definable subsets of Mn, for all (see
[43] for a detailed treatment of o-minimality, or [41, Section 3] and references there
for a quick introduction). Examples of o-minimal structures include (in each of these
cases it is a highly non-trivial theorem): (R,+,×, 0, 1, <), Rexp = (R,+,×, ex),
Ran =

(
R,+,×, f �[0,1]k

)
for f ranging over all functions real-analytic on some

neighborhood of [0, 1]k, or the combination of both Ran,exp.
The same argument as in the previous example shows that all definable families

in o-minimal structures have finite VC-dimension.

Exercise 1.17. Show that the family F = {Xλ : λ ∈ R} where

Xλ :=

{
x ∈ R : x ≥ 0, 0 ≤ xλ − 1

λ

}
has finite VC-dimension.

Example 1.18. Definable families in stable structures.
The class of stable structures is well studied in model theory, originating from

Morley’s theorem and Shelah’s work on classification theory. See e.g. [16] for more
details. Examples of stable structures:

• (C,×,+, 0, 1) (definable sets correspond to the constructible sets, i.e. Boolean
combinations of algebraic sets),

• separably closed and differentially closed fields,
• arbitrary planar graphs G = (V,E),
• abelian groups (viewed as structures in the pure group language (G, ·, 1)),
• [Z. Sela] non-commutative free groups (in the pure group language).

Example 1.19. [21] Let (G, ·, <) be an arbitrary ordered abelian group. Then
definable families of sets have finite VC-dimension. In particular, all definable
families in Presburger arithmetic (Z,+, <) have finite VC-dimension.

Example 1.20. Let (Qp,×,+, 0, 1) be the field of p-adics. Using quantifier elim-
ination results of Macintyre in this setting, one can show that again all definable
families have finite VC-dimension.
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Now we work towards a proof of Theorem 1.13. First recall a classical theorem
of Ramsey generalizing the pigeon-hole principle.

Theorem 1.21. (Ramsey) For any l, k, n ∈ N there is some N ∈ N such that
N → (n)

k
l holds, i.e. for any set A with |A| ≥ N and any coloring of k-subsets of

A in l colors, f :
(
A
k

)
→ l, there is a homogeneous subset B ⊆ A of size ≥ n, where

homogeneous means that the value of f is constant on all k-subsets of B.

Let us fix a first-order structureM. Given a formula φ (x̄1, . . . , x̄k) with |x̄i| = m
and a sequence (āi : i ∈ I) of elements of Mm, where I is an arbitrary linearly
ordered set, we say that this sequence is φ-indiscernible if for any i1 < . . . < ik and
j0 < . . . < jk from I we have that φ (āi1 , . . . , āik) ⇐⇒ φ (āj1 , . . . , ājk) holds inM.
Given a set of such formulas ∆, we say that (āi : i ∈ I) is ∆-indiscernible if it is
φ-indiscernible for every φ ∈ ∆ such that the arities of its variables are compatible
with the arities of the tuples in the sequence.

Note that if ∆ is a finite set of formulas, then its closure under arbitrary repar-
titions of the variables of formulas in it is also finite. Thus, in all the arguments
below we may assume that our finite sets of formulas are closed under choosing a
different partition of the variables.

Lemma 1.22. For every finite set of formulas ∆ and every n ∈ N there is some
N ∈ N such that every sequence (āi : i < N) of m-tuples from M of length ≥ N
contains a ∆-indiscernible subsequence of length ≥ n.

Proof. Follows by an iterated application of Ramsey theorem. Let n be fixed. Let’s
say ∆ = {φ1, . . . , φr} with φi (x̄1, . . . , x̄ki) for i = 1, . . . , r. Let k = max {ki : 1 ≤ i ≤ r}.
We find an N as wanted by induction on r.

Assume first that ∆ = {φ1}. Let N0 be as given by Theorem 1.21 such that
N0 → (n)

k
2 holds. Let (āi : i < N0) from Mm be arbitrary. Consider a coloring

of all increasing k-tuples from this sequence in two colors, such that the color of
the tuple (āi1 , . . . , āik) corresponds to the truth value of φ (āi1 , . . . , āik). Then by
Theorem 1.21 there is a homogeneous subset of size ≥ n, which corresponds to a
φ-indiscernible subsequence of length ≥ n.

Assume now that we have found a numberNr that works for {φ1, . . . , φr}, and let
∆ = {φ1, . . . , φr, φr+1} be given. Let Nr+1 be as given by Theorem 1.21 such that
Nr+1 → (Nr)

k
2 holds. Again, it follows that an arbitrary sequence (āi : i < Nt+1)

contains a φr+1-indiscernible subsequence (āi : i ∈ I) for some I ⊆ N, |I| ≥ Nr.
Applying the inductive assumption to the sequence (āi : i ∈ I) and {φ1, . . . φr}, we
find a ∆-indiscernible subsequence of length ≥ n. �

Remark 1.23. The dual set system for
(
M |x|,Fφ(x̄,ȳ)

)
is given by

(
M |y|,Fφ∗(ȳ,x̄)

)
and φ∗ (ȳ, x̄) = φ (x̄, ȳ), i.e. we exchange the roles of the object variables and the
parameter variables in the partitioned formula (see Definition 1.8).

From now on, by the VC-dimension of a formula VC (φ) we mean VC (Fφ) (and
the same for the dual VC-dimension, shatter function, etc.).

Lemma 1.24. Let φ (x̄, ȳ) be a partitioned formula, and assume that VC (φ) =∞.
Then for any finite set of formulas ∆ and every n ∈ N there is a ∆-indiscernible
sequence (āi : i < n) from M |ȳ| and a tuple b̄ ∈ M |x| so that M |= φ

(
b̄, āi

)
if and

only if i is even.
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Proof. Note that if VC (Fφ) = ∞, then also VC (Fφ∗) = ∞ (see Lemma 1.10 and
Remark 1.23). This means that for anyN ∈ N we can find some set A = (āi : i < N)
inM |ȳ| of size ≥ N which is shattered by the family Fφ∗ =

{
φ
(
b̄,M |ȳ|

)
: b̄ ∈M |x̄|

}
.

Then takingN sufficiently large, Lemma 1.22 ensures thatA contains a ∆-indiscernible
subsequence (āi : i < n) of length n, and this sequence is still shattered by Fφ∗ , in
particular there is some b̄ such that |= φ

(
b̄, āi

)
iff i is even. �

Now we give a converse to Lemma 1.24. The point is that a formula of finite
VC-dimension cannot cut out the set of even members from a sufficiently long and
indiscernible sequence. What does “sufficiently” mean here?

Given φ (x̄, ȳ) , n ∈ N and w ⊆ n, let

θφw (x̄, ȳ0, . . . , ȳn−1) :=
∧
i∈w

φ (x̄, ȳi) ∧
∧

i∈n\w

¬φ (x̄, ȳi) ,

ρφw (ȳ0, . . . , ȳn−1) := ∃x̄θφw (x̄, ȳ0, . . . , ȳn−1) ,

∆φ
n :=

{
ρφw : w ⊆ n

}
.

Lemma 1.25. Let φ (x̄, ȳ) be a formula with VC∗ (φ) ≤ d. Then if (āi : i < N) is
a ∆φ

d -indiscernible sequence from M |ȳ| and b̄ ∈ M |x̄|, there do not exist i0 < . . . <

i2d−1 < N so that φ
(
b̄, āij

)
holds if and only if j is even.

Proof. Assume that (āi : i < N) is a ∆φ
d -indiscernible sequence fromM |ȳ| and there

are i0 < . . . < i2d−1 and b̄ ∈ M |x̄| such that M |= φ
(
b̄, āij

)
iff j is even. We claim

that the sequence (āi : i < d) is shattered by the family
{
φ
(
b̄,Mk

)
: b̄ ∈M |x̄|

}
,

which would give a contradiction.
Indeed, for any w ⊆ d, define a function fw : {0, . . . , d− 1} → {i0, . . . , i2d−1} by

fw (j) := i2j if j ∈ w and fw (j) = i2j+1 if j /∈ w. Now θφw
(
b̄, āfw(0), . . . , āfw(d−1)

)
holds in M, so ρφw

(
āfw(0), . . . , āfw(d−1)

)
holds in M. However, as fw (0) < . . . <

fw (d− 1) and (āi : i < N) is ∆φ
n-indiscernible, so in particular ρφw-indiscernible,

this implies that ρφw (ā0, . . . , ād−1) holds as well, i.e. there is some b̄′ ∈ M |x̄| such
that for all i < d we have φ

(
b̄, āi

)
holds in M iff i ∈ w. Since this works for any

w ⊆ d, we conclude. �

Now we amplify this by finding a large chunk of our sequence that is indiscernible
“over b̄”.

Lemma 1.26. Let ∆ be a finite set of formulas such that for every φ (x̄, ȳ) ∈ ∆
with |x̄| ≤ l we have VC∗ (φ) ≤ d. Then for any n ∈ N there is a finite set of
formulas ∆′ and N ∈ N such that if (āi : i < N) is a ∆′-indiscernible sequence and
b̄ ∈ M |x| is an arbitrary tuple of length ≤ l, then for some interval I ⊆ N with
|I| ≥ n, the sequence of (|x|+ |y|)-tuples

(
āib̄ : i ∈ I

)
is ∆-indiscernible.

Proof. Let us take ∆′ =
⋃
φ∈∆ ∆φ

d , let N ′ = |∆| (2d− 1) and N = N ′n.
Let (āi : i < N) and b̄ ∈M |x| be arbitrary.
Let us partition N into N ′-many consecutive intervals (Ij : j < N ′), each of

length n. Assume that for each of those intervals, the conclusion of the lemma
does not hold. This means that for each j < N ′ there is some φj ∈ ∆ and some
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ij0 < . . . < ijmj−1, h
j
0 < . . . < hjmj−1 ∈ Ij such that M |= φj

(
b̄, āij0

, . . . , āijmj−1

)
∧

¬φj
(
b̄, āhj0

, . . . , āhjmj−1

)
.

By the choice of N ′, throwing away some intervals, we may assume that φj is
constant for all j < 2d− 1, say φj = φ′ and mj = m′.

For j < 2d− 1, we consider the sequence of (m′ |ȳ|)-tuples ā′j defined by taking
ā′j to be āij0 . . . āijm′−1

if j is even, and to be āhj0 . . . āhjm′−1

if j is odd.

Observe that the sequence
(
ā′j : j < 2d− 1

)
is still ∆φ′

d -indiscernible since the
original sequence was, and φ′

(
b̄, ā′j

)
holds iff j is even. By Lemma 1.25 this con-

tradicts the assumption that VC∗ (φ′) ≤ d. �

Iterating Lemma 1.26, we obtain:

Corollary 1.27. Assume that all formulas in M in a single object variable have
finite VC-dimension. Then for any ∆ a finite set of formulas and n, l ∈ N there is
a finite set of formulas ∆′ and N ∈ N such that if (āi : i < N) is a ∆′-indiscernible
sequence and b̄ ∈ M l is an arbitrary l-tuple, then for some interval I ⊆ N with
|I| ≥ n, the sequence of (l |āi|)-tuples

(
āib̄ : i ∈ I

)
is ∆-indiscernible.

Proof. Define recursively ∆0 = ∆, N0 = n and take Nj+1,∆j+1 to be the N and ∆′

given by Lemma 1.26 for n = Nj , ∆ = ∆j and d = max {VC∗ (φ (x, ȳ)) : φ (x, ȳ) ∈ ∆j}.
Let Ñ := Nl−1 and ∆̃ = ∆l−1.

Let now
(
āi : i < Ñ

)
be ∆̃-indiscernible and let b̄ ∈ M l be arbitrary, say

b̄ = b0 . . . bl−1. Applying Lemma 1.26 to
(
āi : i < Ñ

)
and b0 we find some in-

terval Il−1 ⊆ Ñ with |Il−1| ≥ Nl−1 such that the sequence (āib0 : i ∈ Il−1) is
∆l−1-indiscernible. Again applying Lemma 1.26 to this sequence of thicker tu-
ples (āib0 : i ∈ Il−1) and b1, we find some interval Il−2 ⊆ Il−1 with |Il−2| ≥ Nl−2

such that the sequence (āib0b1 : i ∈ Il−2) is ∆l−2-indiscernible. Continuing in this
fashion we finally find an interval I0 ⊆ N with |I0| ≥ n such that the sequence
(āib0 . . . bl−1 : i ∈ I0) is ∆-indiscernible, as wanted. �

Finally, to prove Theorem 1.13, assume that some formula φ (x̄, ȳ) has infinite
VC-dimension. Let ∆ be the finite collection of formulas given by taking arbitrary
partitions of the variables in φ. Let ∆′ and N be as given by Corollary 1.27 for ∆,
l = |x̄| and n = 2.

Now on the one hand, by Lemma 1.24 we can find a ∆-indiscernible sequence
(āi : i < N) and b̄ such that φ

(
b̄, āi

)
holds iff i is even. On the other hand, by

Corollary 1.27 we can find an interval I ⊆ N of length ≥ 2 such that the sequence{
āib̄ : i ∈ I

}
is ∆-indiscernible, so for all i, i′ ∈ I we have φ

(
b̄, ai

)
⇐⇒ φ

(
b̄, ai′

)
.

As I must contain both an even and an odd indices, we get a contradiction.

Remark 1.28. The bounds on the VC-dimension given by this proof are astronom-
ical as we have used Ramsey’s theorem iteratively. In most specific cases it is
possible to obtain much stronger bounds.

E.g., let Fk,m,n be the family of all semialgebraic subsets of Rn that can be repre-
sented as a Boolean combination of at most k sets of the form {x̄ ∈ Rn : fj (x̄) > 0}
where the functions fj are real polynomials of maximum degreem. Then VC (Fk,m,n) ≤
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2k
(
m+n
m

)
log
(
k (k + 1)

(
m+n
m

))
, and this differs only by a logarithmic factor from the

known lower bound (see [10] for the details).

1.3. Historic remarks. In model theory, a partitioned formula φ (x̄, ȳ) is called
NIP (No Independence Property) if the family Fφ has finite VC-dimension. A
structure M is NIP if all definable families in it are NIP. Such structures were
defined by Shelah around the same time as Vapnik and Chervonenkis have defined
their dimension for entirely different purposes, and are currently being actively
studied in model theory (see [42] for a survey). The original proof of Lemma
1.13 by Shelah used forcing and absoluteness (see [16] for some more details). It
was first finitized by Laskowski [29], and further simplified by Poizat, Adler and
others [2]. We avoid the use of compactness and give a purely combinatorial proof
which in principle gives explicit bounds, using compactness we could have avoided
micromanaging all the numerical parameters involved.

2. VC-density

2.1. Basic properties and fractional examples. Let (X,F) be a family of finite
VC-dimension. By Lemma 1.5 we know that πF (n) = O

(
nd
)
, but how exactly can

πF (n) grow?

Definition 2.1. We define theVC-density of F to be vc (F) = lim supn→∞
log(πF (n))

logn .
In other words, vc (F) is the infimum over all real numbers r ≥ 0 for which we have
πF (n) = O (nr). Similarly, we define the VC-codensity as vc∗ (F) = vc (F∗).

We have vc (F) < ∞ ⇐⇒ VC (F) < ∞ and by Lemma 1.5 we have vc (F) ≤
VC (F). Often they coincide.

Exercise 2.2. (1) Let F =
(
X
≤d
)
. Show that VC (F) = vc (F) = d.

(2) Let X = R, k ≥ 1 and let F be the collection whose members are the
unions of k disjoint open intervals in R. Show that VC (F) = vc (F) = 2k,
and in fact πF (n) =

(
n
≤2k

)
for each n.

In some sense, the VC-density is a more rigid version of the VC-dimension ig-
noring small noise.

Example 2.3. Let (X,F) be a set system with vc (F) < k. Let X ′ = X ∪Y where
Y is a set of size k disjoint from X. Let F ′ = F ∪ P (Y ). Then VC (F ′) = k, but
vc (F ′) = vc (F) < k.

Exercise 2.4. (Some properties of VC-density)
(1) Let (X,F) be a set system, let X ′ be an infinite set and f : X ′ → X be

a map. Let f−1 (F) :=
{
f−1 (S) : S ∈ F

}
. Then πf−1(F) ≤ πF for all n,

with equality if f is surjective. In particular, vc
(
f−1 (F)

)
≤ vc (F).

(2) If F =F1 ∪ F2 then vc (F) = max {vc (F1) , vc (F2)}, and vc (X \ F) =
vc (F) where X \ F := {X \ S : S ∈ F}.

(3) Given two set systems (X1,F1) , (X2,F2), consider the set system (X1 ×X2,F)
with F := (S1 × S2 : Si ∈ Fi). Then vc (F) ≤ vc (F1) + vc (F2).

(4) F is finite if and only if vc (F) = 0.

In fact, the last claim can be strengthened.

Proposition 2.5. If vc (F) < 1, then F is finite (and so VC-density never takes
values in the interval (0, 1)).
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Proof. I have originally presented a proof due to Assouad [8, Proposition 2.19], but
the following much simpler argument was pointed out to me by Pietro Kreitlon
Carolino.

It is enough to show that if F is infinite, then πF (n) ≥ n for all n ∈ N. This is
immediate by the following claim.

Claim. Let F1, . . . , Fm be pairwise distinct subsets of a set X. Then there exists
an m-subset A of X such that F1 ∩A, . . . , Fm ∩A are pairwise distinct.

Proof by induction on m. For m = 1 this is obvious. Let F1, . . . , Fm+1 ⊆ X
be given, by induction hypothesis there is an m-element set A ⊆ X such that
F1 ∩ A, . . . , Fm ∩ A are pairwise distinct. Then Fm+1 ∩ A can only be equal to
at most one of the other Fi ∩ A. If necessary, add an element of X to A that
distinguishes that Fi from Fm+1.

�

Are there any other restrictions on the possible values of the VC-density? It
is clear that for any natural r ∈ N, the family

(N
r

)
has VC-density r. First we

observe that there are some natural examples of families with non-integer rational
VC-density.

Let (P,Q,E) be a bipartite graph on a set X, i.e. X = P ∪Q is a partition, and
E ⊆ P × Q. For m,n ∈ N, by Km,n we denote the complete bipartite graph with
|P | = m and |Q| = n and E = P ×Q.

Fact 2.6. (Kővári-Sós-Turán, [27]) There is some constant c ∈ N such that any
bipartite graph on n vertices (i.e. |P | + |Q| = n) omitting K2,2 has at most cn

3
2

edges.

Example 2.7. (VC-density 3
2 ) Let Fq be a finite field on q elements, where q is

a power of a prime p. Let Pq be the set of points on the affine plane over Fq, i.e.
Pq = (Fq)

2. Let Lq be the set of lines (i.e. subsets of F 2
q given by y = ax + b,

a, b ∈ Fq). Finally let Eq be the incidence relation, i.e. Eq = {(p, q) : p ∈ l ∈ Lq}.
Consider the bipartite graph Gq = (Pq, Lq, Eq), note that it is K2,2-free (there is
only one line passing through a pair of points). We have |Pq| = q2, |Lq| = q2 and
|Eq| = q |Lq|, so |Eq| ≥ q3 and |Xq| ≤ 3q2.

Let G = (P,Q,E) be a bipartite graph given by the disjoint union of Gq for all
q. Let F := {{p, l} : (p, l) ∈ E} be a family of subsets of X = P ∪ Q. We claim
that vc (F) = 3

2 .
Let A be a subset of X, and consider the bipartite graph

G|A := (P ∩A,Q ∩A,E ∩A×A)

induced on A. As G|A omits K2,2, by Fact 2.6 it has at most c |A|
3
2 edges. Note

that for any S ∈ F , S ∩ A is either empty, has one element or appears as an edge
in G|A. We thus have |A ∩ F| ≤ 1 + |A|+ c |A|

3
2 ≤ (c+ 2) |A|

3
2 , so vc (F) ≤ 3

2 .
On the other hand, |Xq ∩ F| ≥ |Eq| > 1

8 |Xq|
3
2 for all q powers of p, i.e. vc (F) ≥

3
2 .

Example 2.8. (VC-density 4
3 ) Now we consider the incidence graph on a real plane,

i.e. let P be the set of points in R2, let L be the set of lines in R, and let E be the in-
cidence relation E = {(p, l) : p ∈ l ∈ L}. We consider the bipartite graph (E,P, L),
and as above we consider the set system X = P ∪Q,F = {{p, l} : (p, l) ∈ E}.

http://www.math.ucla.edu/~pietro/
http://www.math.ucla.edu/~pietro/
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By the famous Szemeredi-Trotter bound, there is some constant c such that for
any P0 ⊆ P with |P0| = n and L0 ⊆ L with L0 = m we have |E ∩ (P0 × L0)| ≤
c
(

(mn)
2
3 +m+ n

)
, which implies that for any finite A ⊆ X we have |A ∩ F| ≤

1 + |A|+ c
(
|A|

4
3 + 2 |A|

)
≤ (c+ 2) |A|

4
3 , so vc (F) ≤ 4

3 .
On the other hand, Szemeredi-Trotter bound is known to be optimal, as wit-

nessed by the following example due to Elekes [18]:
Let k be a positive integer, t = 4k3, and consider the subsets

P0 :=
{

(η, ξ) : η = 0, 1, . . . , k − 1, ξ = 0, 1, . . . , 4k2 − 1
}
,

L0 :=
{

(a, b) : a = 0, 1, . . . , 2k − 1, b = 0, 1, . . . , 2k2 − 1
}

of Z2. Let A := P0 ∪ L0 ⊆ X, note that |A| ≤ t. For each i = 0, 1, . . . , k − 1,
each line ξ = aη + b with (a, b) ∈ L0 contains a point (η, ξ) ∈ P0 with η = i, so
|F ∩A| ≥ |E ∩A| ≥ k |L0| ≥ 4k4 = 1

4
1
3
t
4
3 ≥ 1

4 |V |
4
3 , hence vc (F) ≥ 4

3 .

It turns out that for any real number r ∈ [1,∞), one can find a family Fr with
vc (Fr) = r.

Definition 2.9. Fix j ∈ N and let E ⊆ Nj . Let

ψE (n) := max {|E ∩ (A1 × . . .×Aj)| : Ai ⊆ N, |A1| = . . . = |Aj | = n} .

We define the Blei density of E to be the infimum of all real numbers α ≥ 0 for
which there is some c ∈ N with ψE (n) ≤ cnα for all n ∈ N. We denote it by
dens (E).

Theorem 2.10. [Blei, Körner] For every α ∈ (1, 2), there is some E ⊆ N2 with
dens (E) = α.

Corollary 2.11. For every s ∈ [1,∞) there is some set family (X,F) with vc (F) =
s.

Proof. If s is an integer, we can take
(N
s

)
. If not, we can write s = k+α with k ∈ N

and α ∈ (1, 2).
By Theorem 2.10, let E ⊆ N2 be a bipartite graph of Blei density α. Let us

consider F0 = {{a, b} : (a, b) ∈ E} ⊆
( N
≤2

)
. Then the set system (N,F0) has VC-

density α (same argument as in Example 2.7).
Let now

F =

{
S ∈

(
Z

k + 2

)
: S ∩ N ∈ F0 and |S \ N| = k

}
.

It’s easy to see that vc (F) = k + α = s. �

Remark 2.12. Later work [12, 11] generalizes Theorem 2.10 demonstrating the fol-
lowing.

Let 2 ≤ d ∈ N be arbitrary. Then for any α ∈ (1, d) and β ∈ [1, α] there exists
some E ⊆ Nd such that lim sups→∞

logψE(s)
log s = α and lim infs→∞

logψF (s)
log s = β.

Such sets are not exhibited explicitly, but rather their existence is proved using
the probabilistic method. We recall a couple of facts from probability theory that
we will need.



MODEL THEORY AND COMBINATORICS: CHAPTER 2 (DRAFT) 12

2.2. Interlude on probability theory. A probability space (Ω,B, µ) is a set Ω
equipped with a σ-algebra B and a σ-additive measure µ on B such that µ (Ω) = 1.

Example 2.13. (1) Let Ω be a finite set {ω1, . . . , ωn}, and for each point ωi
we assign a weight ri ∈ R such that

∑
1≤i≤n ri = 1. Then let B = 2Ω, and

for A ⊆ Ω, let µ (A) =
∑
ωi∈A ri .

(2) Let µ be the Lebesgue measure on Rn and let X ⊆ Rn be of finite positive
µ-measure. Then we obtain a probability measure µ′ on the algebra of
Borel subsets by restricting to X, i.e. we define µ′ (Y ) := µ(X∩Y )

µ(X) .

For each k ∈ N, the cartesian power Ωk is equipped with the product σ-algebra
B⊗k, i.e. the σ-algebra generated by the sets of the form B1 × . . . × Bk with
B1, . . . , Bk ∈ B. The product measure µk is defined as the unique probability
measure on

(
Ωk,B⊗k

)
such that µk (B1 × . . .×Bk) = µ (B1) . . . µ (Bk).

A µ-measurable subset A ⊆ Ω is called an event. If A is an event, we let 1A be its
characteristic function, and we write P (A) = µ (A). If f, g : Ω→ R are measurable
functions, we write P (f ≥ g) for the probability of the even {ω ∈ Ω : f (ω) ≥ g (ω)}.

A measurable function X : Ω→ R is called a (real-valued) random variable. The
probability distribution of X is the probability measure on R obtained by taking the
push-forward of µ by X. It is often convenient to define a random variable just by
specifying its distribution and assuming that there is some underlying probability
space Ω on which X is defined.

Definition 2.14. Let X be a random variable on (Ω,P).
(1) The expected value of X is defined as E (X) =

∫
Ω
X (ω) dP.

(2) The variance of X is defined as Var (X) = E
(

(X − E (X))
2
)

= E
(
X2
)
−

(E (X))
2.

Example 2.15. (Bernoulli random variable) By a Bernoulli random variable on
(Ω,P) we mean a {0, 1}-valued random variable X such that P (X = 1) = p and
P (X = 0) = 1− p for some real p ∈ [0, 1]. We have:

(1) E (X) = P (X = 1) · 1 + P (X = 0) · 0 = p.
(2) E

(
X2
)

= P (X = 1) · 12 + P (X = 0) · 02 = p.
(3) Var (X) = E

(
X2
)
− (E (X))

2
= p− p2 = p (1− p).

Random variables X1, . . . , Xn on Ω are mutually independent if for any Borel
sets B1, . . . , Bn ⊆ R we have P

(⋂
k≤n {Xk ∈ Bk}

)
=
∏
k≤n P (Xk ∈ Bk).

Example 2.16. Let Xi be a random variable on the space (Ωi,Bi, µi). Consider
the product probability space (Ω,B, µ), i.e. Ω = Ω1 × . . . ,×Ωn, B is the sigma
algebra generated by all sets of the form B1 × . . . × Bn with Bi ∈ Bi, and µ
is the product measure µ1 × . . . × µn. Let πi : Ω → Ωi be the projection map
onto the i’th coordinate. For each i, we can define a copy of Xi living on Ω
by taking X ′i (ω1, . . . , ωi, . . . , ωn) := Xi (ωi). Then for all i, Xi and X ′i have the
same probability distribution, and X ′1, . . . , X

′
n are mutually independent random

variables on Ω.

Fact 2.17. Let X1, . . . , Xk be some random variables on Ω.
(1) Expectation is linear: for any r1, . . . , rk ∈ R we have E (r1X1 + . . .+ rkXk) =

r1E (X1) + . . .+ rkE (Xk).
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(2) If X1, . . . , Xk are mutually independent, then E (X1 · . . . ·Xk) = E (X1) ·
. . . · E (Xk) and Var (X1 + . . .+Xk) = Var (X1) + . . .+ Var (Xk).

We recall some useful inequalities for estimating probabilities.

Fact 2.18. (Markov’s inequality) Let X be a random variable taking non-negative
values. Then for all r > 0 we have P (X ≥ r) ≤ E(X)

r .

Proof. Write E (X) ≥ E
(
X · 1{f≥r}

)
≥ rP (X ≥ r). �

Fact 2.19. (Chebyshev’s inequality) Let X be an R-valued random variable on
(Ω,P). Then for any k > 0 we have

P (|X − E (X)| ≥ k) ≤ Var (X)

k2
.

Proof. Consider the random variable (X − E (X))
2, by Markov’s inequality we have

P (|X − E (X)| ≥ k) = P
(

(X − E (X))
2 ≥ k2

)
≤ E((X−E(X))2)

k2 ≤ Var(X)
k2 . �

2.3. Blei-Körner example with irrational VC-density. Now we go back to
the proof of Theorem 2.10. The idea is basically to take a random bipartite graph
with the edge density α. But we will need a couple of auxiliary lemmas to show
that it actually works.

Lemma 2.20. Let α ∈ (1, 2) and 0 < M ∈ N be arbitrary. Then there exists
n = n (M) ≥M and F ⊆ [n]

2 so that:
(1) ψF (n) ≥ 1

2n
α,

(2) ψF (s) ≤ sα for all s ≥ L (α), where L (α) = min {s : (2− α) sα − 2s ≥ 1}.
Note that since α ∈ (1, 2), L (α) is well-defined.

Proof. Let k ≥M be an arbitrary integer, and let
(
X

(k)
ij : i, j ∈ N

)
be a collection

of independent Bernoulli {0, 1}-valued random variables on some probability space
(Ω,P) with P

(
X

(k)
ij = 1

)
= kα−2 (so P

(
X

(k)
ij = 0

)
= 1− kα−2).

Suppose that L (α) ≤ s ≤M and A,B ∈
(N
s

)
. Clearly we have

P

 ∑
i∈A,j∈B

X
(k)
ij ≥ s

α

 ≤ s2∑
m=sα

(
s2

m

)
k(α−2)m

(
1− kα−2

)s2−m ≤ k(α−2)sα2s
2

.

Summing over allA,B ∈
(

[k]
s

)
we deduce from it (as L (α) = min {s : 2s− sα (2− α) ≤ −1})

that

(a)P

 ∑
i∈A,j∈B

X
(k)
ij ≥ s for some A,B ∈

(
[k]

s

) ≤ k2sk(α−2)sα2s
2

≤ 2M
2

k
.

By the mutual independence of
(
X

(k)
ij : i, j ∈ [k]

)
, Example 2.15 and Fact 2.17

we have:
• E

(∑
i,j∈[k]X

(k)
ij

)
=
∑
i,j∈[k] E

(
X

(k)
ij

)
= k2kα−2 = kα,

• Var
(∑

i,j∈[k]X
(k)
ij

)
=
∑
i,j∈[k] Var

(
X

(k)
ij

)
=
∑
i,j∈[k] k

α−2
(
1− kα−2

)
=

kα
(
1− kα−2

)
≤ kα.
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By Chebyshev’s inequality (Fact 2.19) we have

(b)P

∣∣∣∣∣∣
∑
i,j∈[k]

X
(k)
ij − k

α

∣∣∣∣∣∣ ≥ k
 ≤ Var

(∑
i,j∈[k]X

(k)
ij

)
k2

≤ kα

k2
= kα−2.

Note that the probabilities of the events in (a) and (b) → 0 as k → ∞ (and all
the other parameters are fixed). Thus fixing k ∈ N sufficiently large we obtain with
high probability an element ω ∈ Ω such that

(c)
∑
i,j∈[k]

X
(k)
ij (ω) ≥ 1

2
kα and

∑
i∈A,j∈B

X
(k)
ij (ω) ≤ sα for all A,B ∈

(
[k]

s

)
, L (α) ≤ s ≤M .

Let Fω :=
{

(i, j) ∈ [k]
2

: X
(k)
ij (ω) = 1

}
. By (c) we have:

(d)ψFω (k) ≥ 1

2
kα,

(e)ψFω (s) ≤ sα for all L (α) ≤ s ≤M .
Let n = min

{
j ≥M : ψFω (j) ≥ 1

2j
α
}
. By (d) we have M ≤ n ≤ k. Now we

have ψFω (s) ≤ sα for all L (α) ≤ s ≤M by (c) and ψFω (s) ≤ sα for all M < s < n
by the choice of n. Taking F = Fω|[n]2 , possibly with some

(
ψFω (n)− 1

2n
α − 1

)
edges removed to ensure that the upper bound holds for ψF (n) as well (while still
keeping the lower bound), satisfies all the assumptions. �

Two sets F1, F2 ⊆ N2 are bi-disjoint if π1 (F1) ∩ π1 (F2) = π2 (F1) ∩ π2 (F2) = ∅,
where π1 (n,m) = n and π2 (n,m) = m are the canonical projections from N2 onto
N.

Lemma 2.21. Let {Fj : j ∈ N} be a collection of mutually bi-disjoint sets so that
for each j we have ψFj (s) ≤ Ksα for all s ∈ N. Let F =

⋃
j∈N Fj. Then ψF (s) ≤

2Ksα for all s ∈ N.

Proof. By assumption we can choose I(1)
j , I

(2)
j for j ∈ N such that Fj ⊆ I(1)

j × I
(2)
j

and I(l)
j ∩ I

(l)
j = ∅ for all j 6= k ∈ N and l ∈ {1, 2}. Let A,B ∈

(N
s

)
be arbitrary,

and let Aj := A ∩ I(1)
j , Bj := B ∩ I(2)

j . Then we have

|F ∩ (A×B)| =
∑
j∈N
|F ∩ (Aj ×Bj)| ≤ K

∑
j∈N

(max {|Aj | , |Bj |})α ≤

≤ K

∑
j∈N
|Aj |

α

+

∑
j∈N
|Bj |

α ≤ 2Ksα.

�

Finally we can establish Theorem 2.10.

Proof. Fix α ∈ (1, 2). For each 1 ≤ j ∈ N, let n (j) be as in Lemma 2.20. Let
{Ij : j ∈ N} be a collection of mutually disjoint subsets of N with |Ij | = n (j). By
Lemma 2.20, we find Fi ⊆ Ij × Ij such that ψFj (s) ≤ Ksα for all s ≥ 1, where
K := (L (α))

2, and ψFj (n (j)) ≥ 1
2n (j)

α. By Lemma 2.21, F =
⋃
j Fj has Blei

density α. �
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So far we were only evaluating the exponent of the growth, the VC-density —
this is the important parameter that we will need in the future.

But let us point out that πF (n) need not grow as a power function in general.
Again, an example comes from a rare case of a known tight bound in incidence
geometry.

Fact 2.22. (Pach, Sharir [38]) Let α ∈ (0, π) be a real number. The maximum
number of times that α occurs as an angle among the ordered triples of t points in
the plane is O

(
t2 log t

)
.

Furthermore, suppose tanα ∈ Q
√
d where d ∈ N is not a square. Then there

exists a constant C = C (α) > 0 and, for every t > 3, a t-element set St ⊆ R2 such
that at least Ct2 log t ordered triples of points from St determine the angle α.

Thus we can consider the family

F =

{
{a, b, c} ∈

(
R2

3

)
: the vectors b− a, c− a are non-zero and ∠ (b, a, c) =

π

3

}
of subsets of R2. As tan π

3 =
√

3, both parts of the theorem apply. Then for any

A ⊆ R2 we have F ∩A =
(
A
≤2

)
∪
{
{a, b, c} ∈

(
A
3

)
: the condition above holds

}
, and

so there are some constants C1, C2 > 0 such that C1t
2 log t ≤ πF (t) ≤ C2t

2 log t
for every t > 0. That is, πF (t) = Θ

(
t2 log t

)
as t→∞.

2.4. Growth of VC-density in first-order structures. VC-density for defin-
able families of sets is studied in [32, 7]. That is, we are back in the context of
Theorem 1.13, i.e. we fix a structure M with some distinguished functions and
relations, and we consider families of the form Fφ where φ (x̄, ȳ) is a partitioned
formula.

For n ∈ N, define vcM (n) := max {vc (Fφ) : φ (x̄, ȳ) is a formula with |ȳ| ≤ n}.
Note that we are bounding the size of the parameter variables ȳ, but not of the
object variables.

Note that even if all definable families Fφ inM have finite VC-dimension, it is
still possible that vcM (1) =∞ (due to the allowed growth of |x̄|).

Exercise 2.23. Construct an example with this property.

However, it is not known if the analog of Shelah’s theorem 1.13 holds for VC-
density instead of VC-dimension.

Problem 2.24. Assume that vcM (1) < ∞. Does it imply that vcM (n) < ∞ for
all n ∈ N?

In all known examples this is true, and moreover vcM (n) grows linearly with n.

Example 2.25. [32, Section 6.2] Let M be quasi-o-minimal (i.e. every definable
subset of M is a finite Boolean combination of singletons, intervals in M and ∅-
definable sets). Then vcM (n) = n for all n.

This applies in particular to all o-minimal structures (including semialgebraic
families) and to Presburger arithmetic (Z,+, 0, 1, <), as well as variations such as
(Zn, <,+) with < the lexicographic ordering on Zn.

Problem 2.26. Assume that all definable families Fφ in M have finite VC-
dimension. Is it true then that vc (Fφ) is rational for all formulas φ?
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2.5. Historic remarks. The notion of VC density was studied by Assouad and
others, Lemma 2.5 and Example 2.7 are from [8]. This article contains many other
examples of calculations of VC-density, in particular in the metric setting, and the
connection between Blei’s density and VC-density is also due to him. In the context
of model theory, VC-density was studied in [32, 7].

3. The VC theorem

3.1. VC theorem in finite probability spaces. Recall the classical fact from
probability theory.

Fact 3.1. (Weak law of large numbers) Let (Ω,B,P) be a probability space. Let
A ⊆ Ω be an event and let ε > 0 be fixed. Then for any n ∈ N we have:

Pn
(

(ω1, . . . , ωn) ∈ Ωn :

∣∣∣∣∣ 1n
n∑
i=1

1A (ωi)− P (A)

∣∣∣∣∣ ≥ ε
)
≤ 1

4nε2
.

Note that this probability → 0 as n → ∞. In particular this means that fixing
an arbitrary error ε, we can take n large enough so that with high probability the
measure of A can be determined up to ε by picking n points at random and counting
the proportion of them in A.

Proof. Fix n ∈ N. For i ≤ n, the Bernoulli random variable 1A (ωi) : Ωn → R
has expectation P (A) and variance P (A) (1− P (A)) ≤ 1

4 . Also the variables
1A (ωi), i = 1, . . . , n are mutually independent. Hence E

(
1
n

∑n
i=1 1A (ωi)

)
=

1
n

∑n
i=1 E (1A (ωi)) = 1

nnP (A) = P (A) and Var
(

1
n

∑n
i=1 1A (ωi)

)
=
∑n
i=1 Var

(
1A(ωi)
n

)
=∑n

i=1

(
P(A)(1−P(A))

n2

)
≤ 1

4n . We can then conclude by Chebyshev’s inequality (Fact
2.19). �

The key result in VC-theory is the theorem of Vapnik and Chervonenkis [44]
demonstrating that a uniform version of the weak law of large numbers holds for
families of events of finite VC-dimension. That is, with high probability sampling
on a sufficiently long random tuple gives a good estimate for the measure of all
sets in the family F simultaneously. To prove it, we will need a finer (exponential
decay) estimate for the tail distribution of a sum of independent random variables
than the one provided by Markov’s or Chebyshev’s inequalities.

Fact 3.2. (Chernoff’s bound, special case, see e.g. [6, Appendix A]) Let X1, . . . , Xn

be independent {−1, 1}-valued random variables such that P (Xk = 1) = P (Xk = −1) =
1
2 for all k. Then for any ε > 0 we have

P

(∣∣∣∣∣ 1n
n∑
k=1

Xk

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−nε

2

2

)
.

Remark 3.3. Chernoff’s bound also applies to a slightly more general situation when
we have random variables X1, . . . , Xn such that X1, . . . , Xm satisfy the hypothesis
of Fact 3.2 and Xm+1, . . . Xn are equal to 0. Let Y = 1

n

∑n
k=1Xk and let Y ′ =

1
m

∑m
k=1Xk. Indeed, we have

P (|Y | ≥ ε) = P
(
|Y ′| ≥ n

m
ε
)
≤ 2 exp

(
−
m
(
nε
m

)2
2

)
≤ 2 exp

(
−nε

2

2

)
.
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Let us fix some notation. For S ∈ F and (x1, . . . , xn) ∈ Xn we define

Av (x1, . . . , xn;S) :=
1

n
|{1 ≤ i ≤ n : xi ∈ S}| .

Theorem 3.4. (VC-theorem) Let (X,µ) be a finite probability space, and F ⊆P (X)
a family of subsets of X. Then for every ε > 0 we have

µn
(

sup
S∈F
|Av (x1, . . . , xn;S)− µ (S)| > ε

)
≤ 8πF (n) exp

(
−nε

2

32

)
.

Remark 3.5. Note that if VC (F) = d, then πF (n) = O
(
nd
)
and so the right part

converges to 0 as n grows. Thus, as long as the VC-dimension of F is bounded,
starting with F of arbitrary large finite size and an arbitrary measure, we still get
an approximation up to an error ε for all sets in F by sampling on a random tuple
of length depending just on d, ε.

Proof. Fix some integer n. For x̄ = (x1, . . . , xn) , x̄′ = (x′1, . . . , x
′
n) and S ∈ F , let

f (x̄, x̄′;S) := |Av (x1, . . . , xn;S)−Av (x′1, . . . , x
′
n;S)| .

Let x1, . . . , xn, x
′
1, . . . , x

′
n be mutually independent random elements from X,

each with distribution µ (i.e. we have some probability space (Ω,B,P) and mea-
surable functions xi, x′i : Ω→ X such that µ is the push-forward of the probability
measure P according to xi). Let also σ1, . . . , σn be random variables independent
from each other and from the previous ones such that P (σi = 1) = P (σi = −1) = 1

2 .
They will play an auxiliary role allowing us to apply Chernoff’s bound.

Claim 1. We have

P
(

sup
S∈F

f (x̄, x̄′;S) >
ε

2

)
≤ 2P

(
sup
S∈F

1

n

∣∣∣∣∣
n∑
i=1

σi1S (xi)

∣∣∣∣∣ > ε

4

)
.

Note that for a fixed i and S, the random variable 1S (xi)−1S (x′i) has expecta-
tion 0 and a symmetric distribution around 0 (i.e. it takes the values 1 and −1 with
the same probability). Therefore its distribution does not change if we multiply it
by σi (check!). We then have:

P
(

sup
S∈F

f (x̄, x̄′;S) >
ε

2

)
=

P

(
sup
S∈F

1

n

∣∣∣∣∣
n∑
i=1

(1S (xi)− 1S (x′i))

∣∣∣∣∣ > ε

2

)
=

P

(
sup
S∈F

1

n

∣∣∣∣∣
n∑
i=1

σi (1S (xi)− 1S (x′i))

∣∣∣∣∣ > ε

2

)
≤

P

(
sup
S∈F

1

n

∣∣∣∣∣
n∑
i=1

σi1S (xi)

∣∣∣∣∣ > ε

4
or sup

S∈F

1

n

∣∣∣∣∣
n∑
i=1

σi1S (x′i)

∣∣∣∣∣ > ε

4

)
≤

2P
(

sup
S∈F

1

n

∣∣∣∑σi1S (xi)
∣∣∣ > ε

4

)
,

where the last inequality comes from the obvious union bound and the fact that
x̄ and x̄′ have the same distribution.
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Claim 2. We have

P
(

sup
S∈F

f (x̄, x̄′;S) >
ε

2

)
≤ 4πF (n) exp

(
−nε

2

32

)
.

First let us fix a tuple ā = (a1, . . . , an) ∈ Xn and S ∈ F . Let AS (ā) be the event
“ 1
n |
∑n
i=1 σi1S (ai)| > ε

4 ” (so the only randomness left is in the σi’s). By Remark
3.3 we can apply Chernoff’s bound to this situation, obtaining

P (AS (ā)) ≤ 2 exp

(
−nε

2

32

)
.

Note that the event AS (ā) depends only on the set of those elements in the
tuple ā that are in S. As S varies in F , there are at most πF (n) different possible
values for that set (if there are repetitions among a1, . . . , an, this can only reduce
the number of possibilities). Hence also at most πF (n) events AS to consider. Thus
the union bound shows that the disjunction

⋃
S∈F AS (ā) has probability at most

2πF (n) exp
(
−nε

2

32

)
. By Claim 1 we have

P
(

sup
S∈F

f (x̄, x̄′;S) >
ε

2

)
≤ 2P

(
sup
S∈F

1

n

∣∣∣∣∣
n∑
i=1

σi1S (xi)

∣∣∣∣∣ > ε

4

)

= 2P
(

sup
S∈F

AS (x̄)

)
≤ 2P

( ⋃
S∈F

AS (x̄)

)
≤ 4πF (n) exp

(
−nε

2

32

)
.

To conclude the proof of the theorem, we may assume that n > 2
ε2 (since other-

wise the right hand side is larger than 1, and so theorem obviously holds).
Let X0 ⊆ Xn be the set of all b̄ ∈ Xn such that P

(
supS∈F f

(
x̄, b̄;S

)
> ε

2

)
≥ 1

2 .

By Claim 2 we have µn (X0) ≤ 8πF (n) exp
(
−nε

2

32

)
(recalling the assumptions on

the random variables x̄, x̄′).
Fix ā ∈ Xn \X0 and S ∈ F . By the weak law of large numbers (Fact 3.1) we

have
P
(
|Av (x1, . . . , xn;S)− µ (S)| > ε

2

)
≤ 1

nε2
<

1

2
by the assumption on n. It follows that there is some x̄ ∈ Xn satisfying simultane-
ously

• f (x̄, ā;S) ≤ ε
2 ,

• |Av (x̄;S)− µ (S)| ≤ ε
2 .

Unwinding the definition of f , together this implies that |Av (ā;S)− µ (S)| ≤
ε. As S ∈ F was arbitrary, we conclude that for any ā ∈ Xn \ X0 we have
supS∈F |Av (x̄;S)− µ (S)| ≤ ε, and the theorem follows. �

Corollary 3.6. Let d ∈ N and ε > 0 be arbitrary. Then there is some N =
N (d, ε) ∈ N such that any set system (X,F) on a finite probability space (X,µ)
with VC (F) ≤ d admits an ε-approximation of size at most N .

That is, there is a multi-set {x1, . . . , xN} of elements from X (repetitions are
allowed) such that for all S ∈ F we have

|Av (x1, . . . , xN ;S)− µ (S)| ≤ ε.
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Proof. By Remark 3.5, it follows from Theorem 3.4 that for N large enough (with
respect to d and ε), with high probability any N -tuple from X works as a ε-
approximation (so in particular that is at least one N -tuple with this property). �

Remark 3.7. Note that repetitions among the points x1, . . . , xn are necessary —
think of a measure on a finite set, giving certain different weights to different points.

Proposition 3.8. One can take N = C d
ε2 ln d

ε , where C is an absolute constant
independent of d or ε.

Proof. Fix some δ ∈ [0, 1], we want to find an n such that

µn
(

sup
S∈F
|Av (x1, . . . , xn;S)− µ (S)| > ε

)
≤ δ.

By Theorem 3.4, enough to show that 8πF (n) exp
(
−nε

2

32

)
≤ δ. As VC (F) ≤ d

by assumption, by Lemma 1.5 there is some C ′ = C ′ (d) so that πF (n) ≤ C ′nd

for all n. Hence enough to show that 8C ′nd exp
(
−nε

2

32

)
≤ δ. Taking ln and

rearranging, this is equivalent to nε2

32 ≥ d lnn+ ln 8C′

δ .

Assume n ≥ max
{

64
ε2 ln 8C′

δ , 128d
ε2 ln 128d

ε2

}
. Then nε2

64 ≥ ln 8C′

δ , hence we only

need to show that nε2

64 ≥ d lnn.
Substituting n = 128d

ε2 ln 128d
ε2 and calculating, this is equivalent to 2d ln 128d

ε2 ≥
d ln

(
128d
ε2 ln 128d

ε2

)
, which is equivalent to

(
128d
ε2

)2 ≥ 128d
ε2 ln 128d

ε2 , which is equivalent
to 128d

ε2 ≥ ln 128d
ε2 . But this is true for all ε ∈ [0, 1] and d ≥ 1. Clearly this argument

works for all n ≥ 128d
ε2 ln 128d

ε2 as well.
Hence we can take N to be any n which works some for δ < 1, say for δ = 1

2 .
Recall that C ′ (d) ≤

(
e
d

)d ≤ ed. Hence 64
ε2 ln 8C′

δ ≤
64
ε2 (ln 16 + d) ≤ 384 1

ε2 d for
any ε ∈ [0, 1] and d ≥ 1.

On the other hand, 128d
ε2 ln 128d

ε2 = 128d 1
ε2

(
ln 128 + ln d+ 2 ln 1

ε

)
≤ 256d 1

ε2

(
ln 128 + ln d

ε

)
≤

1283 d
ε2 ln d

ε for any ε ∈ [0, 1] and d ≥ 1. Hence taking N := 1283 d
ε2 ln d

ε works. �

Remark 3.9. (1) Proposition 3.8 immediately implies that for every d there is
some C (d) so that N = C (d)

(
1
ε

)2
ln 1

ε works for any ε > 0.
(2) Using different methods from discrepancy theory, a slightly better bound

is proved in [36, Theorem 1.3]: for every d there is some C (d) so that for
every finite family of VC-dimension d and ε > 0, there is an ε-approximation
of size at most C (d)

(
1
ε

)2− 2
d+1
(
ln 1

ε

)2− 1
d+1 if d > 1 and C (d) 1

ε

(
ln 1

ε

) 5
2 if

d = 1, for all ε > 0. This bound is known to be optimal, see [36, Section 3]
and [3].

3.2. Generalizations to arbitrary probability spaces. The assumption of finite-
ness of the space (X,µ) can be relaxed. In fact it is easy to see that the proof goes
through verbatim for an arbitrary probability space (X,µ) and an arbitrary family
F of subsets of X as long as the following assumptions are satisfied:

(1) Every set S ∈ F is measurable;
(2) For each n, the function

(x1, . . . , xn) 7→ sup
S∈F
|Av (x1, . . . , xn;S)− µ (S)|

from Xn to R is measurable;
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(3) For each n, the function

(x1, . . . , xn, x
′
1, . . . , x

′
n) 7→ sup

S∈F
|Av (x1, . . . , xn;S)−Av (x′1, . . . , x

′
n;S)|

from X2n to R is measurable.

By basic measure theory, the first condition implies the other two when the family
F is countable (and of course all the conditions hold when X is finite). However,
this conditions are necessary in general.

Exercise 3.10. Let X = ω1 (i.e X is of uncountable size, and on it we have a total
linear order without infinite decreasing chains). Let B be the σ-algebra generated
by the intervals. Let µ be defined on B by µ (A) = 1 if A contains an end-segment
of X and µ (A) = 0 otherwise. This defines a σ-additive measure on (X,B). Let
F be the family of all intervals in X. Check that it has VC-dimension 2, but the
conclusion of the VC-theorem does not hold for F . Namely, one checks that there
are no finite ε-approximations for ε < 1 with respect to F and µ.

Under an additional set-theoretic assumption (continuum hypothesis) we can
turn this into an example showing that assumption (1) alone is not enough even on
a standard probability space.

Example 3.11. [Durst, Dudley] Let (X,B) be an uncountable standard Borel
space, e.g. a Borel space associated to the unit interval X = [0, 1]. Continuum
Hypothesis is equivalent to the existence of a total order ≺ on X with the property
that every half-open initial segment Iy = {x ∈ X : x ≺ y}, y ∈ X, is countable and
≺ is a well-ordering (i.e. every non-empty subset of X has the ≺-smallest element).

Let F consist of all half-open initial segments Iy, y ∈ X as above. Clearly the
VC-dimension of F is one.

Now let µ be the Lebesgue measure on [0, 1]. As described above, under the
Continuum Hypothesis every element of F is a countable set, therefore Borel mea-
surable of measure 0. At the same time, for every finite set x1, . . . , xn of elements
from X, there is a countable initial segment Iy ∈ F containing all of x1, . . . , xn, so
Av (x1, . . . , xn; Iy) = 1. Thus, no finite set of points works as an ε-approximation
for µ,F with ε < 1.

However, there are also natural uncountable families satisfying all the necessary
measurability assumptions.

Exercise 3.12. Let G be a (locally) compact Polish group. Let S be a Borel subset
of G, and consider the family F = {gS : g ∈ G}. In general this is an uncountable
family of subsets of G, however all of the assumptions (1)–(3) above are satisfied
with respect to the (left) G-invariant Haar measure on G. (Hint: use absolute
measurability of analytic sets in Polish spaces.)

Definition 3.13. Let (X,F) be a set system, let µ be a probability measure on X
and let ε > 0 be given. We say that a set A ⊆ X is an ε-net with respect to µ if
for every S ∈ F with µ (S) ≥ ε we have S ∩A 6= ∅.

Proposition 3.14. For any ε > 0 and d ∈ N there is some N = N (ε, d) such that:
if (X,F) is a set-system with VC (F) ≤ d and µ is a probability measure on X,

then there is an ε-net A ⊆ X with respect to µ and F of size ≤ N .
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Proof. Note that every ε-approximation is an ε-net (every set of measure ≥ ε must
contain at least one point from an ε-approximation) and apply Corollary 3.6 to find
an ε-approximation of size C 1

ε log 1
ε , with C depending just on d. �

Remark 3.15. One can achieve a better bound on the size of ε-nets than on the size
of ε-approximations (morally because we can get rid of all the possible repeated
elements required in an ε-approximation in general). In fact one has upper bound
C 1
ε log 1

ε [23], and even (1 + o (1))
(
d
ε log 1

ε

)
[26]. It is also demonstrated in [39]

that there is a matching lower bound already for d = 2, even in natural geometric
families.

Exercise 3.16. Note that if (X,F) is a set system with VC (F) ≤ d and Y ⊆ X
is arbitrary, then for the set system (Y,F ∩ Y ) with F ∩ Y = {S ∩ Y : S ∈ F} we
again have VC (F ∩ Y ) ≤ d. Thus for every such subsystem (Y,F ∩ Y ) we can find
an ε-net A ⊆ Y of size ≤ N = N (ε, d).

Show that this property characterizes set families of finite VC-dimension. Namely,
if the VC-dimension of F is infinite, then for every n ∈ N we can find a finite set
Y ⊆ X of size n such that the smallest ε-net for (Y,F ∩ Y ) with respect to the
uniform counting measure µ (S) = |S∩Y |

|Y | is of size at least (1− ε)n.

3.3. Historic remarks. Theorem 3.4 was established in [44] and started the whole
area of VC-theory, there are many versions and generalizations of this result (for
example, a version of the VC-inequality holds not only for the case of i.i.d. random
processes as presented here, but for arbitrary ergodic processes [1]). Our presenta-
tion of the VC-theorem is from [42].

4. Finding small transversals (ε-nets and Helly-type theorems)

4.1. Transversals and packing numbers. Let (X,F) be a set system, with F
and X possibly infinite.

Definition 4.1. (1) A subset T ⊆ X is a transversal of F if T ∩ S 6= ∅ for all
S ∈ F .
The transversal number of F , denoted τ (F), is the smallest possible cardi-
nality of a transversal of F .

(2) A subsystem G ⊆ F of pairwise-disjoint sets is called a packing. The packing
number of F , denoted ν (F), is the maximum cardinality of a packing
G ⊆ F .

Remark 4.2. When F is the system of edges of a graph, this corresponds to the
vertex cover and the matching number.

Any transversal of F is at least as large as any packing, so we always have
ν (F) ≤ τ (F). Very little can be said in the reverse direction in general.

Example 4.3. Let X be the real plane, and let Fn be the set of n lines on the plane
in general position. Then ν (F) = 1 since every two lines intersect, but τ (F) ≥ 1

2n
because no point is contained in more than two of the lines.

Exercise 4.4. Let F be a system of finitely many closed intervals on the real line.
Prove that ν (F) = τ (F).

Remark 4.5. If F is the family of hyper-edges in a uniform r-hypergraph then
τ ≤ rν (the union of the edges of a maximal matching gives a transversal). For a
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bipartite graph we have ν (F) = τ (F) (König’s theorem), and in general Ryser’s
conjecture says that τ ≤ (r − 1) ν (only known for r = 2).

Exercise 4.6. Recall Hall’s matching theorem: if G is a bipartite graph with parts
A and B such that every subset S ⊆ A has at least |S| neighbors in B, then there
is a matching in G containing all vertices of A. Derive König’s theorem from Hall’s
theorem (and reversely)

Now we introduce another parameter of a set system that always lies between ν
and τ , and which is useful in estimating their values. For this we first restrict to
set systems with a finite underlying set X.

Definition 4.7. Let (X,F) be a set system with X finite. A fractional transversal
for F is a function φ : X → [0, 1] such that for each S ∈ F we have

∑
x∈S φ (x) ≥ 1.

The size of a fractional transversal φ is
∑
x∈X φ (x), and the fractional transversal

number τ∗ (F) is the infimum of the sizes of fractional transversals for F .

So, intuitively, in a fractional transversal we can take one-third of one point,
one-fifth of another, etc., but we must put a total weight of at least one full point
into every set in the family.

Similarly:

Definition 4.8. A fractional packing for F is a function ψ : F → [0, 1] such that
for each x ∈ X we have

∑
{S∈F :x∈S} ψ (S) ≤ 1.

The size of a fractional packing ψ is
∑
S∈F ψ (S), and the fractional packing

number ν∗ (F) is the supremum of the sizes of all fractional packings for F .

So in a fractional packing, each set in the family is assigned a weight, and the
total weight of all sets in F containing any given point in X must not exceed 1.

Example 4.9. Consider the “triangle” set system with X = {a1, a2, a3} and F =
{{a1, a2} , {a2, a3} , {a3, a1}}. Check that ν = 1, τ = 2 and ν∗ = τ∗ = 3

2 .

Clearly τ∗ (F) ≤ τ (F) and ν ≤ ν∗ (by assigning weight 1 to every point in the
transversal, resp. to every set in a packing). In general the gap between τ∗ and τ
can be arbitrarily large:

Exercise 4.10. (1) Let X = [m] and let F =
(

[m]
n

)
. Then τ∗ = m

n while
τ = m− n+ 1. Thus, when m = 2n we get τ∗ = 2 and τ = n+ 1 .

(2) Similarly, find a set system with ν bounded by a constant and ν∗ arbitrarily
large.

(3) Show that τ (F) ≤ τ∗ (F) ln (|F|+ 1) for all finite set systems F (hint:
choose a transversal as a random sample).

Theorem 4.11. For every set system (X,F) with X finite we have ν∗ (F) =
τ∗ (F).
Moreover, the common value is a rational number, and there exists an optimal frac-
tional transversal and an optimal fractional packing attaining only rational values.

The proof relies on the duality of linear programming (see e.g. [33, Proposition
10.1.2]).

Fact 4.12. (“Strong duality of linear programming”) Let A be an m × n real
matrix, b ∈ Rm a (column) vector and c ∈ Rn a (column) vector. Let P =
{x ∈ Rn : x ≥ 0, Ax ≥ b} and D =

{
y ∈ Rm : y ≥ 0, yTA ≤ cT

}
(the inequalities
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should hold in every component). If both P 6= ∅ and D 6= ∅ then min
{
cTx : x ∈ P

}
=

max
{
yT b : y ∈ D

}
. In particular, both the minimum and the maximum are well-

defined and attained.

Proof. (of Theorem 4.11) Set n = |X| ,m = |F| and let A be the m × n incidence
matrix of the set system F : rows correspond to sets, columns correspond to points,
and the entry corresponding to a point p and a set S is 1S (p). It is easy to check
that:

τ∗ (F) = min
{
1Tnx : x ≥ 0, Ax ≥ 1m

}
,

ν∗ (F) = max
{
yT1m : y ≥ 0, yTA ≤ 1Tn

}
,

where 1n ∈ Rn denotes the (column) vector of all 1’s of length n. Indeed, the
vectors x ∈ Rn satisfying x ≥ 0 and Ax ≥ 1m correspond precisely to the fractional
transversals of F , and similarly, the y ∈ Rn with y ≥ 0 and yTA ≤ 1Tn correspond
to the fractional packings. There is at least one fractional transversal (e.g. x = 1n),
and at least one fractional packing (y = 0), so Fact 4.12 applies and shows that
ν∗ (F) = τ∗ (F).

At the same time, τ∗ (F) is the minimum of the linear function x 7→ 1Tn x over
a polyhedron, and such a minimum, since it is finite, is attained at a vertex. The
inequalities describing the polyhedron have rational coefficients, and so all vertices
have rational coordinates as well. �

So the moral is that it is easy to calculate or bound the fractional transversal
number of a set system (linear programming is in P), while it is difficult to calculate
the actual transversal number (integer programming in NP-hard). Thus it is often
very useful when one can obtain some bounds for τ in terms of τ∗ (and independent
of the size of F).

Such a bound can easily be obtained using ε-nets.

Corollary 4.13. Let F be a finite set system on a (possible infinite) set X with
VC (F) ≤ d. Then we have τ (F) ≤ Cdτ∗ (F) ln τ∗ (F).

Proof. Let r := τ∗ (F). Since F is finite, we may assume that an optimal fractional
transversal φ : X → [0, 1] is concentrated on a finite set Y (we can pick a single
point from each class in the Venn diagram in our family and work with this finite
set instead of X). This φ, after rescaling, defines a probability measure µ on X,
by taking µ ({y}) = 1

rφ (y) for all y ∈ Y . Then each S ∈ F has µ (S) ≥ 1
r by

the definition of a fractional transversal (Definition 4.7), and so a 1
r -net for F with

respect to µ is a transversal. By Remark 3.14 it follows that there is a transversal
of size O (dr ln r). �

4.2. “Weak ε-nets” and convex sets. By Exercise 3.16 we know that existence
of ε-nets for all subsystems (Y,F ∩ Y ) of (X,F) of size depending just on εimplies
finite VC dimension. However, there are some very important examples of families
admitting ε-nets, yet without all of their subsystems admitting ε-nets. Somewhat
confusingly, this is called “admitting weak ε-nets” in the literature.

Fact 4.14. (“Weak ε-net theorem for convex sets”) For every d ≥ 1, ε > 0 there is
some N = N (d, ε) such that:
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for every finite X ⊆ Rd, if µ is a probability measure concentrated on X, then
there exists an ε-net of size ≤ N for the family of all convex subsets of Rd, with
respect to µ.

Remark 4.15. Best known upper bounds are N
(
2, 1

r

)
= O

(
r2
)
in the plane and

O
(
rd (log r)

c(d)
)
for all d, with a fixed constant c = c (d) > 0. Slightly super-linear

lower bounds are known, there are examples with Ω
(
r logd−1 r

)
[15].

Example 4.16. Let X = R2 and let Y be the set of points on the unit circle. Let
F be the family of convex polygons. Now considering the sets system (Y,F ∩ Y ), it
seems conceivable that to choose an ε-net of points on Y we should put sufficiently
many points equidistantly on the circle. Since any finite set of points on the unit
circle can be shattered by convex polygons inscribed into the circle, the smallest size
of an ε-net is forced to depend on the choice of a probability measure µ (Exercise
3.16). However, for the original system (X,F) this is not the case since we can
choose an ε-net of bounded size using points inside the unit disk.

There are some striking and mutually enriching similarities between the convex
and the finite VC-dimension worlds when one is concerned with packings, transver-
sals, etc. In our proofs we will try to work at the maximal level of generality,
concentrating on the finite VC-dimension setting (and commenting on the convex
counterparts of the results).

4.3. Fractional Helly property. Now we investigate further methods of bound-
ing τ∗ (F). Recall classical theorem of Helly about convex sets.

Fact 4.17. (Helly’s theorem) Let F be a finite family of convex sets in Rd. Assume
that any d+ 1 sets from F have a point in common. Then the whole family F has
a non-empty intersection.

Exercise 4.18. Helly’s theorem does not hold for families of finite VC dimension.
Namely, for every d ∈ N, find an example of a finite family F of VC-dimension 2
such that it does not satisfy the conclusion of Fact 4.17 with respect to d.

What if in the setting of Helly’s theorem, not all (d+ 1)-tuples of sets from F
have non-empty intersections, but only a large fraction of them?

Fact 4.19. (Fractional Helly theorem for convex sets) For every dimension d ≥ 1,
for every α > 0 there exists β = β (d, α) > 0 with the following property.

If S1, . . . , Sn are convex sets in Rd, n ≥ d + 1, and for at least α
(
n
d+1

)
of the

(d+ 1)-subsets I of [n] we have ∩i∈ISi 6= ∅, then there is a point contained in at
least βn sets among the Fi’s.

Remark 4.20. Fact 4.19 was established by Katchalski and Liu in [25], the optimal
bound is known to be β = 1− (1− α)

1
d+1 [24].

Definition 4.21. Let (X,F) be a set system. We say that F has fractional Helly
number k if for every α > 0 there exists a β > 0 such that if S1, . . . , Sn ∈ F are
such that

⋂
i∈I Si 6= ∅ for at least α

(
n
k

)
sets I ∈

(
[n]
k

)
, then there is some J ⊆ [n]

such that |J | ≥ βn and
⋂
i∈J Si 6= ∅.

By the fractional Helly number of F we mean the smallest k with this property,
and we say that F satisfies fractional Helly property if it has a finite fractional Helly
number.
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Remark 4.22. Again, turns out that this fractional Helly property is more robust
and better behaved than the original Helly property.

(1) For convex lattice sets in Zd (i.e., intersections of convex sets in Rd with the
d-dimensional integer lattice), the Helly number is 2d, while the fractional
Helly number is only d+ 1 [9].

(2) If F has fractional Helly number k then the family {S1 ∪ S2 : S1, S2 ∈ F}
also has fractional Helly number k. This fails badly for Helly numbers.

Besides, it turns out that fractional Helly property holds for families of finite
VC-dimension.

Theorem 4.23. (Matousek, [34]) Let (X,F) be a set system with π∗F (n) = o
(
nk
)

as n → ∞ (in particular this holds if vc∗ (F) < k, e.g. when VC∗ (F) ≤ k − 1).
Then F has fractional Helly number k.

Proof. Let F and k satisfy the assumption, and let α > 0 be arbitrary.
Let S1, . . . , Sn ∈ F be arbitrary. Given I ⊆ [n] we write SI for

⋂
i∈I Si.

So assume now that SI 6= ∅ for at least α
(
n
k

)
-many I ∈

(
[n]
k

)
. It is enough to prove

the conclusion of the theorem for all n large enough (as otherwise for β sufficiently
small it is enough to have a point in a single Si).

Using the assumption π∗ (m) = o
(
mk
)
, we may thus fix m so that π∗F (m) <

1
4α
(
m
k

)
and set β = 1

2m . Finally, by the previous paragraph we may assume that n
is so large that βn ≥ m.

For contradiction, suppose that no point in X is common to βn of the Si’s. Let
us fix J ∈

(
[n]
m

)
and I ∈

(
J
k

)
. We call the pair (J, I) good if there is a point x ∈ X

with x ∈ Si for all i ∈ I and x /∈ Sj for all j ∈ J \ I. We bound from below the
probability that a pair (J, I) chosen uniformly at random is good.

We first choose a random I ∈
(

[n]
k

)
, and then we choose m− k elements of J \ I

at random from [n] \ I. By assumption the probability that SI 6= ∅ is at least α. If
SI 6= ∅, we fix one point x ∈ SI . By the assumption x is contained in fewer than βn
of the Si’s, and so the probability that none of the sets Sj with j ∈ J \ I contains
x is at least(d(1−β)ne

m−k
)(

n−k
m−k

) ≥
m−k−1∏
i=0

(1− β)n− i
n− i

≥
m−1∏
i=0

(1− β)n−m
n−m

≥
(

(1− β)n−m
n−m

)m
.

Since we assumed that m ≤ βn and β = 1
2m , the above expression is at least(

n−βn−m
n−m

)m
=
(

1− n
n−mβ

)m
≥ (1− 2β)

m
=
(
1− 1

m

)m ≥ 1
4 . Therefore the

probability of a random pair (J, I) being good is at least 1
4α.

If we choose a random J ∈
(

[n]
m

)
, the expected number of I ∈

(
J
k

)
with (J, I)

good is at least N = 1
4α
(
m
k

)
, and so there exists a J with at least this many I’s.

But this violates the assumption π∗F (m) < N since the sets indexed by J have
at least N non-empty fields in their Venn diagram. �

Remark 4.24. I don’t know if the assumption πF (n) = o
(
nk
)
as n→∞ is strictly

weaker than the assumption vc (F) < k. It is conceivable that there are set systems
(X,F) with πF (n) ∼ n2

logn , which would give a counterexample, however I don’t
know any such example (Fact 2.22 gives an example with πF (n) = n2 log n).
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4.4. (p, q)-theorems.

Definition 4.25. For integers p ≥ q we say that a set system (X,F) satisfies the
(p, q)-property if out of any p sets from F , there are at least q of sets among them
with a non-empty intersection.

Example 4.26. Let µ be a probability measure on Rd and consider all convex
sets with measure at least δ. If δ > q

p then this family satisfies the (p, q)-property.
We’ll see that in some sense all families with the (p, q)-property of this form (with
possibly a much smaller δ).

With this terminology, Helly’s theorem (Fact 4.17) says that any finite family of
convex sets in Rd satisfying the (d+ 1, d+ 1)-property has a non-empty intersec-
tion, i.e. admits a transversal of size 1.

A generalization of this was conjectured by Hadwiger and Debrunner, and many
years later proved by Alon and Kleitman.

Fact 4.27. (Alon, Kleitman [5]) Let p, q, d be integers with p ≥ q ≥ d + 1. Then
there exists a number N = N (d, p, q) such that: if F is a finite family of convex
sets in Rd satisfying the (p, q)-property then τ (F) ≤ N .

The proof has a modular structure combining all of the ideas considered so far
in this section and admits certain generalizations. We prove that an analog holds
for families of finite VC-dimension (it does not formally imply the Alon-Kleitman
theorem for convex sets).

Theorem 4.28. [Alon, Kleitman + Matousek] Let p ≥ q ≥ d + 1 be arbitrary
natural numbers. Then there is some N = N (d, p, q) such that if (X,F) is a finite
set system of VC-codensity ≤ d, then τ (F) ≤ N .

Proof. Let (X,F) be a finite set system with n = |F|. Since we are not trying to
optimize N , it is enough to prove the theorem for q = d+ 1.

(1) By Corollary 4.13 we know that τ (F) is bounded by a function of τ∗ (F)
(due to the existence of ε-nets), so it is enough to bound τ∗ (F). By Theorem 4.11
we know that τ∗ (F) = ν∗ (F), so it is enough to bound ν∗ (F).

(2) The first observation is that if F satisfies the (p, d+ 1) condition, then many
(d+ 1)-tuples from F have a non-empty intersection. This can be seen by double
counting. Every p-tuple of sets from F contains at least one (d+ 1)-tuple with a
non-empty intersection, and a single (d+ 1)-tuple is contained in

(
n−d+1
p−d+1

)
p-tuples.

Therefore there are at least (
n
p

)(
n−(d+1)
p−(d+1)

) ≥ α( n

d+ 1

)
intersecting (d+ 1)-tuples, with α = α (p, d) > 0. The fractional Helly theorem
(Theorem 4.23) then implies that there is some β = β (d, α) > 0 such that at least
βn sets from F have a point in common.

By removing this βn sets from F and iterating, we would get that τ (F) ≤
O (log n). However, to get rid of this log n factor needs some more work.

(3) How is this related to the fractional packing number ν∗ (F)? This shows
that a factional packing ψ : F → [0, 1] that has the same value on all sets of F
cannot have size larger than 1

β , as otherwise a point lying in βn sets would receive
weight greater than 1, contradicting the definition of fractional packing. The trick
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for handling other fractional packings is to consider the sets in F with appropriate
multiplicities.

(4) Let ψ : F → [0, 1] be an optimal fractional packing (
∑
S∈F,x∈S ψ (S) ≤ 1

for all x ∈ X). As noted in Theorem 4.11 we may assume that the values of ψ are
rational numbers. Write ψ (S) = m(S)

D , where D and m (S) are integers (D is a
common denominator). Let us form a new collection Fm of sets, by putting m (S)
copies of each S ∈ F into Fm — so Fm is a multiset of sets.

Let N = |Fm| =
∑
S∈F m (S) = Dν∗ (F). Suppose that we could conclude the

existence of a point a lying in at least βN sets in Fm (counted with multiplicity).
Then

1 ≥
∑

S∈F :a∈S
ψ (S) =

∑
S∈F :a∈S

m (S)

D
=

1

D
βN = βν∗ (F) ,

and so ν∗ (F) ≤ 1
β .

(5) So we would like to apply Helly’s theorem to Fm. If F is a family of finite
VC dimension, then the fractional Helly theorem holds for finite multisets of sets
from F (Exercise).

The new family Fm does not have to satisfy the (p, d+ 1)-condition, since the
(p, d+ 1)-condition for F speak only of p-tuples of distinct sets from F , while a
p-tuple of sets from Fm may contain multiple copies of the same set.

Fortunately, Fm does satisfy the (p′, d+ 1)-condition with p′ = d (p− 1) + 1.
Indeed, a p′-tuple of sets of Fm contains at least d+ 1 copies of the same set, or it
contains p distinct sets, in the first case those d+1 copies clearly have a non-empty
intersection, and in the second case the (p, d+ 1)-condition for F applies.

Using the fractional Helly theorem as before, we find a point a in common to at
least βN sets of Fm for some β = β (p, d). By (4) this gives an upper bound on ν∗,
and by (1) we can conclude. �

4.5. Another sufficient condition for bounded transversals. So the two main
assumptions on the set system used in the proof of the Alon-Kleitman theorem
are the fractional Helly property and the existence of ε-nets. We show that the
second assumption can be omitted at the price of strengthening the first one (we
are following [4]).

We generalize the notion of the packing number first.

Definition 4.29. Let νd (F) denote the largest size ofM⊆F such that any point
in x ∈ X belongs at most to d sets fromM.

Remark 4.30. (1) ν1 (F) = ν (F),
(2) F satisfies the (p, q)-property iff νq−1 (F) < p,
(3) νd(F)

d ≤ ν∗ (F).

Definition 4.31. For (X,F) a set system, the set-cover number ρ (F) is the min-
imal number of sets from F required to cover all the points in X. Note that
ρ (F) = τ (F∗), where F∗ is the dual set system (see Definition 1.8). Similarly, the
fractional set-cover number is defined by ρ∗ (F) = τ∗ (F∗).

Exercise 4.32. The following are equivalent for F (with g (x) = f
(

1
x

)
):

(1) There is a function g such that τ (G) ≤ g (τ∗ (G)) for every G ⊆ F .
(2) There is a function f such that for every ε and every multiset Y ⊆ X

there is an ε-net of size at most f (ε) with respect to the uniform counting
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measure (i.e. there is Z ⊆ X with |Z| ≤ f (ε) such that Z ∩S 6= ∅ for every
S ∈ F with |S ∩ Y | ≥ ε |Y |).

Definition 4.33. We write that F satisfies FH (k, α, β) if for every S1, . . . , Sn ∈ F
(possibly with repetitions) such that the number of k-subsets I ⊆ [n] with

⋂
i∈I Si 6=

∅ is at least α
(
n
k

)
, then there exists J ⊆ [n] such that |J | ≥ βn and

⋂
j∈J Sj 6= ∅.

So k ∈ N is a fractional Helly number for F if ∀α > 0∃β = β (α) > 0 such that
FH (k, α, β) holds. It may happen that we cannot find a β > 0 for all α > 0 but
there are some α and β > 0 with FH (k, α, β). Then we speak of the weak fractional
Helly property.

First we generalize the first part of the proof of Alon and Kleitman.

Theorem 4.34. (1) For every d and p there exists an α > 0 such that the
following holds.
For any finite family F satisfying FH (d+ 1, α, β) with some β > 0 and
with νd (F) < p we have τ∗ (F) ≤ T for some T = T (p, d, β).

(2) For every d and p, k ≥ d + 1, and β0 > 0 there exists α > 0 such that the
following holds.
For any finite family F satisfying FH (d+ 1, 1, β0), FH (k, α, β) for some
β > 0 and νd (F) < p we have τ∗ (F) ≤ T for some T = T (p, d, k, β0, β).

Proof. (1) The proof of the first part is the same as in Theorem 4.28, let us recall
it briefly.

Namely, to bound τ∗ by T we need to bound ν∗ by T . For that we take a
fractional packing ψ : F → [0, 1] with rational coefficients attaining the maximum
4.11, say ψ (S) = nS

D . Then we take a new family {S1, . . . , Sn} containing nS
copies of S for each S ∈ F . This family satisfies the (p′, d+ 1)-property with
p′ = (p− 1) d+1. By double counting we get that there are at least

(
n
p′

)
/
(
n−d−1
p′−d−1

)
≥

α
(
n
d+1

)
index sets I ∈

(
[n]
p′

)
with

⋂
i∈I Si 6= ∅, for a suitable α = α (p, d). By

FH (d+ 1, α, β) there is a point x in at least βn of the Si’s. On the other hand,
since the multiset {S1, . . . , Sn} was defined using a fractional matching, no point is
in more than n/ν∗ (F) of the sets Si, and we conclude that τ ∗ (F) = ν∗ (F) ≤ 1/β.

(2) We assume that F satisfies FH (d+ 1, 1, β0) and FH (k, α, β) with a suitable
α > 0 and some β > 0, and has the (p, d+ 1)-property. We define S1, . . . , Sn using
an optimal fractional packing as above, and again it suffices to show that there is
a point common to at least βn of the Si’s.

We want to show that there are at least α
(
n
k

)
good index sets K ∈

(
[n]
k

)
with α =

α (p, d, k, β0) > 0, as then we can use FH (k, α, β) (where K is good if
⋂
i∈K Si 6= ∅).

To this end, let m = m (p, d, k, β0) be a sufficiently large integer (independent
of n). It suffices to prove that each index set M ∈

(
[n]
m

)
contains at least one

good k-element subindex K, since then the total number of good k-tuples is at
least

(
n
m

)
/
(
n−k
m−k

)
≥ α

(
n
k

)
. To exhibit a good k-tuple in a given m-tuple M we use

Ramsey’s theorem.
For each I ∈

(
M
p′

)
, we choose a good (d+ 1)-element J = J (I) ⊂ I (we use the

(p′, d+ 1)-property where p′ is as in the proof of (1)). This J (I) has one of
(
p′

d+1

)
types, where the type is given by the relative positions of the elements of J (I)
among the elements of I (in the natural ordering of I). By Ramsey’s theorem, if m
is sufficiently large, there exists an r-element N ⊆ M , with r still large, such that
all I ∈

(
N
p′

)
have the same type of J (I). Let i1 < i2 < . . . < ir be the elements of
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N in the increasing order, let s =
⌊
r
p′

⌋
and let L = {ip′ , i2p′ , . . . , isp′}. Now all the

J ∈
(
L
d+1

)
are good, since for each of them we can find an I ∈

(
N
p′

)
with J (I) = J

(as we have enough space between the elements of J , we can choose the remaining
elements of I such that J has the order type of J (I), and so is good).

By FH (d+ 1, 1, β0) applied to {Si : i ∈ L}, there are at least β0s sets among
{Si : i ∈ L} sharing a common point. If β0s ≥ k, which can be guaranteed by
setting m sufficiently large, we have obtained a good k-tuple contained in M . This
allows to conclude as explained above. �

Then the second part is an abstraction of the proof of the existence of weak
ε-nets for convex sets.

Theorem 4.35. For every integer d ≥ 1 there exists α > 0 such that the following
holds.

Let F be a finite family of sets and let F∩ = {
⋂
H : H ⊆ F} be the family of all

intersections of the sets in F . If F∩ satisfies FH (d+ 1, α, β) with some β > 0 then
we have τ (F) ≤ c1τ∗ (F)

c2 , where c1 and c2 depend only on d and β.

Remark 4.36. The proof gives c2 exponential in d, in the known examples τ is only
slightly super-linear in τ∗.

The proof is an abstraction of one of the proofs in the convex case. Even though
we are guided by the geometric example, somewhat amusingly the proof proceeds
just by counting.

Recall Tverberg’s theorem.

Fact 4.37. (Tverberg’s theorem) Let d and r be given natural numbers. Then for
any set A ⊆ Rd of at least (d+ 1) (r − 1) + 1 points there exist r pairwise disjoint
subsets A1, . . . , Ar ⊆ A such that

⋂r
i=1 Conv (Ai) 6= ∅.

Let c : 2X → 2X denote the closure operation induced by F given by c (A) =⋂
{S ∈ F : A ⊆ S} and c (A) = X if no S ∈ F contains A. This is an abstract

analogue of the convex hull. For a multiset {x1, . . . , xm} ⊆ X and I ⊆ [m] put
GI = c ({xi : i ∈ I}).

Proposition 4.38. (A Tverberg-type theorem) Let F be a finite family and suppose
that F∩ satisfies FH

(
d+ 1, 1

4 , β
)
for some β > 0. Then there exist integers a =

a (d, β) and b = b (d, β) such that:
for every multiset {x1, . . . , xab} ⊆ X there are d + 1 pairwise disjoint subsets

I1, . . . , Id+1 ∈
(

[ab]
a

)
with

d+1⋂
i=1

GIi 6= ∅.

That is, a sufficiently large (multi-)set can be partitioned into d + 1 parts whose
closures have a common point.

Remark 4.39. Here α = 1
4 can be replaced by any other constant < 1, if a and b

are chosen suitably.

Proof. Let b =
⌈
d
β

⌉
+ 1 and a = bd. Let m =

(
ab
a

)
and consider the multiset

S =
{
GI : I ∈

(
[ab]
a

)}
, its sets are members of F∩. We want to apply fractional
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Helly to S, so we need to show that at least 1
4 of the (d+ 1)-tuples of sets in S

intersect.
We check that at least 1

4 of all (d+ 1)-tuples (I1, . . . , Id+1) of pairwise distinct
a-element index sets Ii ⊂ [ab] satisfy

⋂d+1
i=1 Ii 6= ∅ (this is more than necessary, and

definitely implies that
⋂d+1
i=1 GIi 6= ∅). Intuitively this is because d+ 1 independent

random a-element subsets of [ab] are very likely to be all distinct and to have a
point in common, since a is very large compared to b.

The relative fraction of intersecting (d+ 1)-tuples of distinct a-element subsets
of [ab] is ∣∣∣{(I1, . . . , Id+1) ∈

(
[ab]
a

)d+1
: Ii 6= Ij for i 6= j and

⋂d+1
i=1 Ii 6= ∅

}∣∣∣
m (m− 1) . . . (m− d)

≥

∣∣∣{(I1, . . . , Id+1) ∈
(

[ab]
a

)d+1
:
⋂d+1
i=1 Ii 6= ∅

}∣∣∣
m (m− 1) . . . (m− d)

− md+1 −m (m− 1) . . . (m− d)

m (m− 1) . . . (m− d)
≥

ab
(
ab−1
a−1

)d+1 −
(
ab
2

)(
ab−2
a−2

)d+1

md+1
− 1

4
≥

a

bd
− a2

2b2d
− 1

4
= 1− 1

2
− 1

4
=

1

4

Here the second line is obtained by considering “(intersecting (d+ 1)-tuples)
- ((d+ 1)-tuples - (d+ 1)-sets, i.e. tuples with repetitions)”, and the third line is
obtained by “pick an element in the intersection, pick the rest of the tuples) -(tuples
with 2 points in common)”.

By FH
(
d+ 1, 1

4 , β
)
applied to S, there exists an H ⊆

(
[ab]
a

)
such that

⋂
I∈HGI 6=

∅ and
|H| ≥ bβmc > d

b

(
ab

a

)
.

Thus H contains a significant fraction of all possible a-tuples of indices, and such
a large system has to contain d+ 1 disjoint a-tuples. With our parameters, we can
use the following.

Fact 4.40. (Frankl, [20, Theorem 10.3]) Suppose that F ⊆
(
X
k

)
, |X| = n ≥ ks and

F contains no s pairwise disjoint sets. Then |F| ≤ (s− 1)
(
n−1
k−1

)
holds. (For s = 2

this is the Erdős-Ko-Rado theorem).

It implies that there are pairwise disjoint I1, . . . , Id+1 ∈ H. This proves the
proposition. �

Barany proved the following selection lemma:

Fact 4.41. If P ⊂ Rd is an n-point multiset, then there exists a point x contained
in the convex hulls of at least c

(
n
d+1

)
subsets of P of cardinality d + 1, where c =

c (d) > 0 .

The following is an abstract analogue.

Proposition 4.42. (Selection lemma) Let F be a finite family such that F∩ sat-
isfies FH (d+ 1, α, β) with a suitable α = α (d) > 0 and some β > 0. Then for any
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multiset {x1, . . . , xn} ⊆ X there exists a family H ⊆
(

[n]
a

)
such that |H| ≥ λ

(
n
a

)
and⋂

I∈HGI 6= ∅, where a = a (d, β) is as in Proposition 4.38 and λ = λ (d, β) > 0.

Proof. Let S =
{
GI : I ∈

(
[n]
a

)}
, we want to show that a significant fraction of the

(d+ 1)-tuples from S intersect, in order to apply fractional Helly. Let

T =

{
{I1, . . . , Id+1} : Ii ∈

(
[n]

a

)
, Ii ∩ Ij = ∅ for i 6= j and

d+1⋂
i=1

GIi 6= ∅

}
.

Proposition 4.38 implies that for each subset J ∈
(

[n]
ab

)
, there exist pairwise disjoint

I1, . . . , Id+1 ∈
(
J
a

)
such that

⋂d+1
i=1 GIi 6= ∅, and so each J contributes a (d+ 1)-tuple

in T . On the other hand, for any given {I1, . . . , Id+1} ∈ T , the a (d+ 1) indices in
I1 ∪ . . . ∪ Id+1 are contained in

(
n−a(d+1)
ab−a(d+1)

)
of the (ab)-tuples J . Therefore

|T | ≥
(
n
ab

)(
n−a(d+1)
ab−a(d+1)

) ≥ ( n
ab

)a(d+1)

≥ 1

(ab)
a(d+1)

( (n
a

)
d+ 1

)
and we can conclude by FH (d+ 1, α, β) applied to S with α = 1

(ab)a(d+1) . �

Proof. (of Theorem 4.35) Again by Theorem 4.11, we know that the value of τ∗ (F)
is attained on some rational-valued f : X → [0, 1] which is non-zero only on finitely
many points, say x1, . . . , xr. We write f (xi) = ni

D with integers ni and D, and
we let Y = {y1, . . . , yn} be the multiset obtained from X by taking each xi with
multiplicity ni. We have |Y | = n =

∑r
i=1 ni = τ∗ (F)D and |Y ∩ S| ≥ D = n

τ∗(F)

for all S ∈ F .
(We are following an argument of the existence of “weak ε-nets” in the convex

case).
We choose a transversal Z for F by the following greedy algorithm.
Initially Z = ∅. Having already put z1, . . . , zk into Z, we check if there is a

D-element subset J ⊆ [n] such that GJ = c ({yi : i ∈ J}) contains none of the
z1, . . . , zk.

• If there is no such J then the current Z intersects the closures of all D-
element subsets of Y and, in particular, it is a transversal for F (as by
above |Y ∩ S| ≥ D for all S ∈ F).

• If such a J exists, we apply selection lemma (Proposition 4.42) to the set
{yi : i ∈ J}. This yields some point zk+1 that is contained in GI for at
least λ

(
D
a

)
a-tuples I ⊆ J . (We may assume D ≥ a and thus λ

(
D
a

)
> 0, for

otherwise Y will work as a small transversal).
Call an a-tuple I ⊆ [n] alive if GI ∩ {z1, . . . , zk} = ∅ and dead otherwise.

Initially, all the
(
n
a

)
of a-tuples are alive, and on each step adding zk+1 to Z kills

at least λ
(
D
a

)
of the a-tuples currently alive. As F is finite, after finitely many steps

all tuples will be dead. So the size of the transversal found by the algorithm is at
most (

n
a

)
λ
(
D
a

) ≤ 1

λ

(en
D

)a
≤ ea

λ
(τ∗ (F))

a ,

as wanted. �

Combining, we obtain an abstract (p, q)-theorem.
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Theorem 4.43. For every p ≥ d ≥ 1 there is some α > 0 such that the following
holds.

if F is a finite set system such that F∩ satisfies FH (d+ 1, α, β) and F satisfies
the (d+ 1, p)-property, then τ (F) ≤ T for some T = T (d, p, β).

4.6. Complementary examples. First we discuss a general construction.
Let G = (V,E) be a graph, and let Ξ denote the system of all non-empty anti-

cliques (independent sets) in G. We define a family F with Ξ as the ground set and
with the sets Sv = {A ∈ Ξ : v ∈ A} for v ∈ V . The following properties are easy to
check:

• F , as well as F∩, have Helly number 2 (i.e. satisfy FH (2, 1, 1)).
• If G contains no clique of size p as a subgraph, then F has the (p, 2)-

property.
• τ (F) = χ (G) (the chromatic number of G, i.e. the smallest number of

colors needed to color the vertices of G so that no two adjacent vertices
have the same color).

• τ∗ (F) = χf (G) (the fractional chromatic number; say that a graph has
an a/b-coloring if to each vertex of G one can assign a b-element subset
of {1, 2, . . . , a} in such a way that adjacent vertices are assigned disjoint
subsets; define χf (G) = inf

{
a
b : G can be a/b-colored

}
).

Example 4.44. There exists a family F such that F∩ has Helly number 2 and
with ν (F) ≤ 2 (i.e. satisfying the (3, 2)-property) for which τ∗ (F) is arbitrarily
large.

In the above construction, it suffices to choose a triangle-free graph G with arbi-
trarily large fractional chromatic number. It is known that χf (G) ≥ |V (G)| /α (G),
where α (G) is the independence number (i.e. the cardinality of the largest indepen-
dent set). So it suffices that |V (G)| /α (G) is arbitrarily large. Many constructions
of such graphs are known, for example the well-known probabilistic construction of
Erdős of graphs with large girth (i.e. the length of the shortest cycle in the graph)
and large chromatic number works here.

Example 4.45. There exists a family F satisfying the (3, 2)-property and FH
(
2, 0, 1

3

)
(i.e. among any n-sets from F , at least n

3 have a common point), such that F∩ has
Helly number 2, with τ∗ (F) ≤ 3 and with τ (F) arbitrarily large.

We start with G a Kneser graph with the vertex set
(

[m]
k

)
and with two k-tuples

connected by an edge if and only if they are disjoint. It is well-known that the
chromatic number is m− 2k+ 2 [31]. If we set m = 3k− 1, it is easy to see that G
is triangle-free and χf < 3.

To verify FH
(
2, 0, 1

3

)
we need to check that for every multiset {S1, . . . , Sn} , Si ∈(

[3k−1]
k

)
, there is a subsystem of at least n

3 k-tuples with a common intersection.
This is because the sum of the sizes of the Si’s is nk > nm

3 and so some point is
contained in at least n

3 of the Si’s.

Problem 4.46. Is Fractional Helly for distinct sets sufficient? (as opposed to sets
with repetitions).

5. Zarankiewicz’s problem

5.1. Zarankiewicz’s problem in finite VC-dimension. Let G = (P,Q,E) be
a bipartite graph, i.e. E ⊆ P ×Q and P,Q are disjoint.
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The following is a more general version of Fact 2.6.

Fact 5.1. (Kővári-Sós-Turán, [27]) Let G = (P,Q,E) be a bipartite graph with
|P | = m, |Q| = n. Then if G is Kk,k-free, we have

|E (G)| ≤ ck
(
mn1− 1

k + n
)
,

where ck only depends on k.

This bound is tight for k = 2, 3 and for k ≥ 5 and m = n the lower bound
Ω
(
n2− 2

k (log k)
1/(k2−1)

)
is known [14].

For any vertex q ∈ Q, let NG (q) denote the neighborhood of q in G, i.e. the set
of vertices in P connected to q.

Consider the set system (P,F), where F = {NG (q) ⊆ P : q ∈ Q}. The dual of
(P,F) is the set system (F ,F∗), where F∗ = {{A ∈ F : p ∈ A} : p ∈ P}.

Theorem 5.2. (Fox, Pach, Sheffer, Suk, Zahl [19]) Let G = (P,Q,E) be a bipartite
graph with |P | = m, |Q| = n and such that the set system F1 = {N (q) : q ∈ Q}
satisfies πF1

(z) = O
(
zd
)
. Then if G is Kk,k-free, we have

|E (G)| ≤ c
(
mn1− 1

d + n
)
,

where c = c (c, d, k).

So the exponent only depends on the VC-dimension of the graph, and k only
affects the constant.

We need some preparatory lemmas.
Let (P,F) be a set system on a ground set P . The distance between two sets

A1, A2 ∈ F is |A1∆A2|. The unit distance graph UD (F) is the graph with ver-
tex set F , and its edges are pairs of sets (A1, A2) from F that have distance 1.
(Equivalently, this corresponds to the edges of the Boolean cube).

Lemma 5.3. (Haussler [22, Lemma 2]) If F is a set system of VC-dimension d0

on a ground set P , then the unit distance graph UD (F) has at most d0 |F| edges.

Proof. This is a slight elaboration on the proof of the Sauer-Shelah lemma using
the shifting technique (Lemma 1.5), and we use it as an opportunity to recall the
details.

Let us identify P with [n], and let us view F as a subset of {0, 1}n, and UD (F) =
(V,E).

For each index i, 1 ≤ i ≤ n, and each v = (v1, . . . , vn) ∈ V , if vi = 1 and the
vector v′ = (v1, . . . , vi−1, 0, vi+1, . . . , vn) is not in V , then let Si,V (v) = v′ (we say
that v is shifted to v′), otherwise let Si,V (v) = v.

We define the shift of V on index i, denoted Si (V ), by Si (V ) = {Si,V (v) : v ∈ V }.
Let Si (E) denote the set of edges in the subgraph of the unit graph induced by

Si (V ). We claim that:
(1) |Si (V )| = |V |,
(2) |Si (E)| ≥ |E|,
(3) for any index set I, if I is shattered by Si (V ) then I is shattered by V .

Hence VC (Si (V )) ≤ VC (V ).
(1) is obvious.

To verify (2), we map the edges of E in a 1-1 manner into the edges of Si (E).
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Assume (u, v) ∈ E. If neither u nor v are shifted then this edge is unaffected by
the shift, so map it to itself.

If both u and v are shifted then this edge is mapped to the edge (Si,V (u) , Si,V (v)).
Finally, assume that v is shifted, but u is not. Then u and v must differ on

some index j 6= i, and we must have ui = vi = 1. Since u is not shifted, u′ =
(u1, . . . , ui−1, 0, ui+1, . . . , un) ∈ V . It follows that (u′, Si,V (v)) ∈ Si (E). Hence we
can map (u, v) to (u′, Si,V (v)). The resulting map is easily 1-1.

(3) Suppose that a sequence I of k indices is shattered by Si (V ). If i is not in
I, then clearly I is also shattered by V since V |I = Si (V ) |i in this case. So let
us assume that i ∈ I, without loss of generality i = 1 and I = (1, . . . , k). Since
I is shattered by Si (V ), for every u ∈ {0, 1}k there is a v ∈ Si (V ) with vj = uj ,
1 ≤ j ≤ k. However, if u1 = 1 then we must have v and v′ = (0, v2, . . . , vn) both in
V , otherwise v would have been shifted, and hence not be in Si (V ). This implies
that I is shattered by V .

Now beginning with V , shift V repeatedly on any sequence of (not necessarily
distinct) indices until no more non-trivial shifts are possible, i.e. until we obtain a
set W such that Si (W ) = W for all 1 ≤ i ≤ n. This must happen eventually since
each non-trivial shift reduces the total number of ones in the vectors of V . Let F
be the set of edges in the unit distance graph induced by W . By the above result
we have |W | = |V |, |F | ≥ |E| and VC (W ) ≤ d0.

Let us write u ≤ v if ui ≤ vi for all i, 1 ≤ i ≤ n. We claim that W is closed
downward under ≤, i.e. if v ∈ W and u ≤ v, then u ∈ W . It is clear that if
u ≤ v ∈ W and u differs from v on only one index i, then u ∈ W (otherwise one
more non-trivial shift of W would be possible). The claim follows by induction.

It follows that if v ∈ W , then the set of indices i for which vi = 1 is shattered
by W . Since VC (W ) ≤ d0, this implies that no vector in W contains more than d0

ones. Therefore

|V | = |W | ≤
d0∑
i=0

(
n

i

)
and

|E|
|V |
≤ |F |
|W |

≤ d0.

The last inequality is since a vector in {0, 1}n with at most d ones can have unit
edges to at most d vectors with fewer ones. �

We say that a set system F is (k, δ)-separated if for any k sets A1, . . . , Ak ∈ F
we have |(A1 ∪ . . . ∪Ak) \ (A1 ∩ . . . ∩Ak)| ≥ δ.

So e.g. if k = 2, then F is (2, δ)-separated if |A1∆A2| ≥ δ for all A1, A2 ∈ F .
We have the following upper bound on the number of sets in a separated VC-

family.

Lemma 5.4. (Packing lemma) Let (P,F) be a set system, |P | = m and πF (z) =

O
(
zd
)
. If F is (k, δ)-separated, then |F| ≤ c′

(
m
δ

)d, where c′ = c′ (c, d, k).

Before proving this lemma, we show how it can be used to prove Theorem 5.2.

Proof. (of Theorem 5.2). Let F1 = {N (q) : q ∈ Q} and F2 = {N (p) : p ∈ P}.
Notice that the dual set system of F2 is isomorphic to the set system F1.

Given a set of k points {q1, . . . , qk} ⊆ Q, we say that a set B ∈ F2 crosses
{q1, . . . , qk} if {q1, . . . , qk} ∩B 6= ∅ and {q1, . . . , qk} ∩ (Q \B) 6= ∅.
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Claim. There exist k points q1, . . . , qk ∈ Q such that at most 2c′ m
n

1
d

sets from
F2 cross {q1, . . . , qk}, where c′ is as defined in Lemma 5.4.

For the sake of contradiction, suppose that every set of k points has at least
2c′m/n1/d sets from F2 crossing it. Then the dual set system F∗2 is (k, δ)-separated
with δ = 2c′m/n1/d, and has the property that πF∗2 (z) = πF1

(z) ≤ czd for all z.
Then by Lemma 5.4 we have

n = |F∗2 | ≤ c′
(m
δ

)d
.

Hence δ ≤ (c′)
1/d

m/n1/d, a contradiction — and the claim is proved.

So let now q1, . . . , qk be the set of k points such that at most 2c′m/n1/d sets in F2

cross it. Since G is Kk,k-free, there are at most (k − 1) points p1, . . . , pk−1 ∈ P with
the property that the neighborhood NG (pi) contains {q1, . . . , qk} for 1 ≤ i ≤ k−1.
Therefore, the neighborhood of q1 contains at most 2c′m/n1/d+ (k − 1) points (i.e.
the sets that cross it, upper bound given by the lemma + the sets that don’t cross
it, of which there are k − 1). We remove q1, and repeat this argument until there
are less than k vertices remaining in Q and see that

|E (G)| ≤ (k − 1)m+

n∑
i=k

(
2c′

m

i1/d
+ (k − 1)

)
≤ c1

(
mn1− 1

d + n
)

for sufficiently large c1 = c1 (c, d, k). �

Exercise 5.5. Prove a weaker conclusion that |F| ≤ O
((

m
δ

)d
logd

(
m
δ

))
using

ε-nets to obtain a small set with few sets cutting it instead of Lemma 5.4.

Now we prove Lemma 5.4.

Proof. Assume for contradiction that |F| > c′
(
m
δ

)d (where the constant c′ depends
on c, d, k and is determined below).

Since, say, πF (z) ≤ czd for all z, we have 2VC(F) ≤ cVC (F)
d, which implies

VC (F) ≤ 4d log (cd) =: d0.
If δ ≤ 4k (k − 1) d0, then the statement is trivial for sufficiently large c′ (by the

assumption |F| ≤ cmd). Hence we may assume that δ > 4k (k − 1) d0.
Let S ⊆ P be a random s-element subset, for s = d4k (k − 1) d0m/δe. Let

T = {A ∩ S : A ∈ F}, and for each B ∈ T we define its weight w (B) as the
number of sets A ∈ F with A ∩ S = B. Notice that∑

B∈T
w (B) = |F| .

We let E be the edge set of the unit distance graph UD (T ), and define the weight
of an edge e = (B1, B2) in E as min {w (B1) , w (B2)}. Finally, let

W =
∑
e∈E

w (e) .

We estimate the expectation of W in two ways.
1) By Lemma 5.3 we know that UD (T ) has a vertex B ∈ T of degree at most

2d0. Since the weight of all edges containing B is at most w (B), by removing the
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vertex B ∈ T , the total edge weight drops by at most 2d0w (B). By repeating this
argument until there are no vertices left, we have

W ≤ 2d0

∑
B∈T

w (B) = 2d0 |F| ,

so in particular E (W ) ≤ 2d0 |F|.
2) Now we bound E (W ) from below. Suppose we first choose a random (s− 1)-

element subset S′ ⊆ P , and then choose a single element p ∈ P \ S′. Then the set
S = S′ ∪ {p} is a random s-element set. Let E1 ⊆ E be the edges in UD (T ) that
differ by the element p, and let

W1 =
∑
e∈E1

w (e) .

We have E (W ) = sE (W1). Hence we need to bound E (W1) from below.
To do so, we will estimate E (W1|S′) from below (the expected value ofW1 when

S′ ⊆ P is a fixed (s− 1)-element subset and we choose p at random from P \ S′.
Divide F into equivalence classes F1, . . . ,Fr where A1, A2 ∈ F are in the same

class iff A1 ∩ S′ = A2 ∩ S′. By assumption πF (z) ≤ czd for all z, we have r ≤
πF (s− 1) ≤ c0

(
m
δ

)d, where c0 = c0 (c, k, d).
Let Fi be one of the equivalence classes, such that |Fi| = b. If an element

p ∈ P \ S′ is chosen, such that b1 sets from Fi contain p and b2 = b− b1 sets from
Fi do not contain p, then Fi gives rise to an edge in E1 of weight min {b1, b2}.
Since min {b1, b2} ≥ b1b2

b , we will estimate E (b1b2) from below when picking p at
random. Notice that b1b2 is the number of ordered pairs of sets in Fi that differ on
point p. Hence

E (b1b2) ≥
∑

(A1,A2)∈Fi×Fi

P (p ∈ A1∆A2) =
∑

(A1,A2)∈Fi×Fi

|A1∆A2|
m− s+ 1

.(∗)

Now given any k sets A1, . . . , Ak ∈ Fi we have⋃
2≤i≤k

A1∆Aj = (A1 ∪ . . . ∪Ak) \ (A1 ∩ . . . ∩Ak) .

Since Fi is (k, δ)-separated, we have∑
2≤j≤k

|A1∆Aj | ≥ |(A1 ∪ . . . ∪Ak) \ (A1 ∩ . . . ∩Ak)| ≥ δ.

Therefore every k sets in Fi contain a pair of sets (A1, Aj) such that |A1∆Aj | ≥ δ
k−1 .

Define an auxiliary graph Gi = (Fi, Ei) whose vertices are the members in Fi
and two sets A1, A2 ∈ Fi are adjacent if and only if |A1∆A2| ≥ δ

k−1 .
Recall Turán’s theorem: If G is a graph on n vertices which is Kr+1-free, then

the number of edges in G is at most r−1
r

n2

2 .
Since Gi does not contain an independent set of size k, by Turán’s theorem we

have |Ei| ≥ b(b−k)
2k . (b2 − k−1

k
b2

2 = 2kb2−kb2+b2

2k = kb2+b2

2k ...). Therefore∑
(A1,A2)∈Fi×Fi

|A1∆A2| ≥ 2
b (b− k)

2k

δ

k − 1
=

δ

k (k − 1)
b (b− k) . (∗∗)
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By combining (∗) and (∗∗) , we have

E (b1b2) ≥ δ

k (k − 1)m
b (b− k) .

Since min {b1, b2} ≥ b1b2
b , the expected contribution of Fi to W1 is at least

δ
k(k−1)m (b− k). Summing over all classes, we have

E (W1) ≥ δ

k (k − 1)m

r∑
i=1

(|Fi| − k)

=
δ

k (k − 1)m
(|F| − kr)

≥ δ

k (k − 1)m

(
|F| − kc0

(m
δ

)d)
.

Finally, recall that we are assuming that |F| > c′
(
m
δ

)d and that we took s =
d4k (k − 1) d0m/δe. Taking c′ sufficiently large with respect to k and c0, we have:

2d0 |F| ≥ E (W ) = sE (W1) ≥ sδ
k(k−1)m

(
|F| − kc0

(
m
δ

)d) ≥ 4d0 |F|−k4d0c0
(
m
δ

)4,
which implies |F| ≤ c′

(
m
δ

)d, where c′ = c′ (c, d, k). �

This result can be used (along with other ideas) to obtain even stronger bounds
in the case of semialgebraic graphs (in particular giving a nice generalization of the
Szemeredi-Trotter theorem over the reals).

Theorem 5.6. (Fox, Pach, Sheffer, Suk, Zahl [19]) Let G = (P,Q,E) be a semi-
algebraic bipartite graph in (Rd1 ,Rd2) such that E has description complexity at
most t, |P | = m, |Q| = n. If G is Kk,k-free, then

(1) |E(G)| ≤ c1
(

(mn)
2
3 +m+ n

)
for d1 = d2 = 2,

(2) |E(G)| ≤ c2
(

(mn)
d
d+1 +ε +m+ n

)
for d1 = d2 = d,

(3) |E(G)| ≤ c3
(
m

d2(d1−1)
d1d2−1 n

d1(d2−1)
d1d2−1 +m+ n

)
for all d1, d2.

Here, ε is an arbitrarily small constant and c1 = c1(t, k), c2 = c2(d, t, k, ε), c3 =
c3(d1, d2, t, k, ε).

This theorem, in turn, admits certain model-theoretic generalizations (work in
progress with Sergei Starchenko).

5.2. Historic remarks. Packing lemma for (2, δ)-separated systems was originally
proved by Chazelle, see [35].

6. Compression schemes and PAC learning

6.1. Compression schemes. We stick to the situation with a finite underlying
set for now, to avoid any measurability issues, etc.

Definition 6.1. (Concept class) Let (X,F) be a set system, in the context of
learning theory the term concept class is used, and the elements of F are called
concepts. We will identify a concept with its indicator function, i.e. we identify
C ∈ F with the function 1S : X → {0, 1}. Given a sequence x̄ = (x1, . . . , xm) ∈
Xm, we write C (x̄) for the sequence (C (x1) , . . . , C (xm)) ∈ {0, 1}m.
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Definition 6.2. (Sample) The set Sm (X) of samples of size m contains all the
sequences in (X × {0, 1})m. Given a concept C and a sequence x̄ = (x1, . . . , xm) ∈
Xm, we denote by SC (x̄) the sample S = (xi, C (xi) : i = 1, . . .m). We let Sm (F) =
{SC (x̄) : x̄ ∈ Xn, n ≤ m,C ∈ F} be the set of F-labeled samples of size m, and let
S (F) =

⋃
m∈N Sm (F) be the set of all F-labeled samples of finite size.

Definition 6.3. (Compression scheme) Given a concept class (X,F), a k-compression
scheme with side information I consists of the following:

(1) A finite set I,
(2) The compression map κ : S (F) → Sk (F) × I taking SC (x̄) to some

(SC′ (x̄
′) , i) such that SC′ (x̄′) is a subsequence of SC (x̄) and i ∈ I.

(3) The reconstruction map ρ : Sk (F) × I → {0, 1}X so that for all SC (x̄) ∈
S (F) we have ρ (κ (SC (x̄))) �x̄= C (x̄), i.e. the reconstruction map is
invertible.

First we observe that if (X,F) admits a compression scheme, then it has bounded
VC-dimension.

Proposition 6.4. Assume that (X,F) admits a k-compression scheme. Then
vc (F) ≤ k.

Proof. Let A ⊆ X be an arbitrary finite set, say A = (a1, . . . , am). For every C ∈ F ,
consider the sample SC (A). We know that κ (SC (A)) is given by SC (A′) , i for some
A′ ⊆ A of size k and i ∈ I, and that SC (A) can be reconstructed from it. This
implies that |F ∩A| ≤ |A|k × |I|, and so πF (m) = O

(
mk
)
, which implies that F

is of finite VC-dimension by Sauer-Shelah. �

The converse was an open problem due to Warmuth which was very recently
solved by Moran and Yehudayoff [37]. That is, they show that every family of finite
VC-dimension d admits a k-compression scheme with k bounded by a function of
d. We present their proof.

Remark 6.5. A model-theoretic version of this problem is concerned with uniform
definability of types over finite sets, and for families definable in NIP structures it
was resolved in [17].

6.2. PAC learning.

Definition 6.6. (1) The concept class (X,F) is PAC learnable with d sam-
ples, error ε and probability of success 1 − δ if there is a learning map
H : Sd (F) → P (X) so that for every C ∈ F and for every probability
distribution µ on X,

µd
({
x̄ ∈ Xd : µ (H (SC (x̄)) ∆C) ≤ ε

})
≥ 1− δ.

(2) If moreover the image of H is contained in F then we say that F is properly
PAC learnable.

(3) We say that F is consistently PAC learnable with d samples if any map
H : Sd (F)→ P (X) such that H (SC (x̄)) |x̄ = C|x̄ for all x̄ ∈ Xd works.

We show that PAC learnability of F is equivalent to finite VC dimension, but
first let us recall ε-nets and ε-approximations.
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Fact 6.7. (VC theorem rephrased, with an improved bound due to Talagrand and
Yi, Long, Srinivasan, see [30]) Let d ∈ N and ε, δ > 0 be arbitrary. Then there is
some n = n (d, ε) ∈ N such that:

Any set system (X,F) on a finite probability space (X,µ) with VC (F) ≤ d
satisfies
µn ({(a1, . . . , an) ∈ Xn : supS∈F |µ (S)−Av (a1, . . . , an;S)| ≥ ε}) ≤ δ.
Moreover, n can by bounded by O

(
d
ε2δ

)
.

In particular, there is an ε-approximation of size at most O
(
d
ε2

)
.

Theorem 6.8. ([13], or see [45] for a very detailed exposition of the theory) The
following are equivalent:

(1) F is PAC learnable.
(2) VC (F) is finite.

Proof. (2) implies (1). Let F have a finite VC-dimension d. Then for any C ∈ F ,
the family FC := C∆F has the same VC-dimension (Exercise). Let µ be arbitrary.
By the ε-net theorem, a randomly chosen tuple x̄ of length n that is sufficiently
long compared to d is an ε-net for the family C∆F , with high probability. That is,
µn ({(a1, . . . , an) ∈ Xn : S ∈ F , µ (S∆C) > ε,

∧
ai /∈ S∆C}) ≤ δ.

But then any consistent function H : Sn (F)→ F such that H (SC (x̄)) |x̄ = C|x̄
for all x̄ ∈ Xn works.

(1) implies (2). Assume that VC (F) =∞, but that F is PAC learnable via H,
with ε = δ = 0.1 and with samples of length m. That is, for any measure µ, after
sampling on a sample of length m, H generates a hypothesis in F based on it such
that µ (error(H) < ε) > 1− δ.

By assumption there is an F-shattered set S of size 2m. Let µ be a uniform
measure concentrated on S, i.e. probability of every element in S is 1

2m .
We choose a concept C ∈ F that we will try to learn at random on S, i.e.

µ (C (xi) = 0) = 1
2 , ∀xi ∈ S.

Now if the learner selects an iid sample of m instances S̄, which by the choice of
the measure implies that S̄ ⊆ S and outputs some H = H

(
S̄
)
∈ F .

The probability of error for each xi /∈ S̄ is µ (C (xi) 6= H (xi)) = 1
2 (as S is

shattered, we can select the labels on the 2m − m elements of S not seen by S̄
arbitrarily). Regardless if H, the probability of the mistake is 0.5.

The expectation on the error of H is E (error (H)) = m · 0 · 1
2m +m · 1

2 ·
1

2m = 1
4 .

(this is because we have 2m points to sample, from which the error on half of
them is 0 as H is consistent on S̄ and the error on the remaining half is 0.5).

However, according to the choice of ε, δ and the learnability assumption we have
that with probability of at least 0.9 we have error (h) ≤ 0.1, and with probability
0.1 then error (h) = β where 0.1 < β ≤ 1. Taking the worst case β = 1 we have
E (error (h)) ≤ 0.9 · 0.1 + 0.1 · 1 < 1

4 . This is a contradiction. �

The following lemma can be thought of as an abstract “approximate” version of
the Caratheodory’s theorem (if X ⊆ Rd, then each point of Conv (X) is a convex
combination of at most d+ 1 points of X.)

6.3. Minimax theorem and the construction of compression schemes.

Lemma 6.9. Let (X,F) be given (as before X and F are finite), and let d∗ =
VC (F∗). Let µ be a probability measure on F (i.e. each set in F is assigned a
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weight) and let ε > 0. Then µ can be ε-approximated in L∞ by an average of at most
O
(
d∗

ε2

)
elements from F . That is, there is a multiset G ⊆ F of size |G| ≤ O

(
d∗

ε2

)
so that for every point x ∈ X we have∣∣∣∣µ ({S ∈ F : x ∈ S})− |{S ∈ G : x ∈ S}|

|G|

∣∣∣∣ ≤ ε.
Proof. Applying the VC-theorem to the dual system F∗. �

The following minimax theorem of Von Neumann is a seminal result in game
theory. Consider a zero-sum game with 2 players, a row player and a column player.
A pure strategy of the row player is r ∈ [m], and a pure strategy of the column
player is j ∈ [n]. A mixed strategy is a probability measure on pure strategies.

Let M be a binary matrix so that M (i, j) = 1 if and only if the row player wins
the game when the pure strategies r, j are played.

Then the minimax theorem says:

• if for every mixed strategy q of the column player, there is a mixed strategy
p of the row player that guarantees the row player wins with probability
at least V , then there is a mixed strategy p∗ of the row player so that
for all mixed strategies q of the column player, the row player wins with
probability at least V .

As a probability measure on [m] is determined by an assignment of weights to each
r ∈ [m], we can view it as a vector (x1, . . . , xm) of length m such that xi ≥ 0 and∑m
i=1 xi = 1 (and the same for columns).

Theorem 6.10. (Minimax) Let M ∈ Rm×n be a real matrix. Then

max
p∈∆m

min
q∈∆n

pTMq = min
q∈∆n

max
p∈∆m

pTMq,

where ∆l is the set of all probability measures on [l].

Proof. Note that the probability of the column player winning with mixed strategies
p and q can be computed as

∑m
i=1

∑n
j=1 piM (i, j) qj = ptMq.

Now the theorem is a corollary of the strong LP duality theorem 4.12. Consider
the following linear programs.

Primal.
Maximize t subject to the following conditions:

t−
n∑
j=1

M (i, j) qj ≤ 0 for all i, (xi)

n∑
j=1

qj ≤ 1, (s)

qj ≥ 0 for all j.

Dual.
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Minimize s subject to the following conditions:

s−
m∑
i=1

M (i, j) pi ≥ 0 for all j, (yj)

m∑
i=1

pi ≥ 1, (t)

pi ≥ 0 for all i.

Technically we require that
∑m
i=1 pi =

∑n
j=1 qj = 1 as both are probability mea-

sures, the relaxation to inequalities are sufficient since
∑
j qj < 1 and

∑
i pi corre-

spond to suboptimal values for their respective objective functions.
Maximizing t corresponds to the right hand side, and minimizing s corresponds

to the left hand side, and by the LP duality these values are equal. �

Finally, we are ready construct the compression scheme.

Theorem 6.11. (Moran, Yehudayoff [37]) If F ⊆ {0, 1}X satisfies VC (F) = d and
the dual set system F∗ satisfies VC (F∗) = d∗, then F has a compression scheme
of size O (dd∗).

In particular (as VC (F) ≤ d implies VC (F∗) < 2d+1), only assuming that
VC (F) ≤ d we get a compression scheme of size 2O(d).

Proof. First we describe roughly the compression scheme. Recall that by finite VC
dimension, F is PAC learnable.

Given a sample of the form (Y, y) (so Y is a subset of X, and y = S|Y for some
S ∈ F), the compression identifies T ≤ O (d∗) subsets Z1, . . . , ZT of Y , each of size
at most d. It then compresses (Y, y) ti (Z, z) with Z =

⋃
t∈[T ] Zt and z = y|Z . The

additional information i ∈ I allows to recover Z1, . . . , ZT from Z.
The reconstruction process uses the information i ∈ I to recover Z1, . . . , ZT from

Z, and then uses the PAC learning map H to generate T hypothesis h1, . . . , hT
defined as hT = H (Zt, z|Zt). The final reconstruction hypothesis h = ρ ((Z, z) , i)
is the majority vote over h1, . . . , hT .

Now we give the details.
Since the VC-dimension of F is d, by Theorem 6.8 there is s = O (d) and a

proper learning map H : Ss (F) → F so that for every c ∈ F and for every
probability measure µ on X, there is some Z ⊆ supp (µ) such that |Z| ≤ s and
µ ({x ∈ X : hZ (x) 6= c (x)}) ≤ 1

3 , where hZ = H (Z, c|Z).
We will define the compression map. Let (Y, y) ∈ S (F) be arbitrary. Let

H = HY,y = {H (Z, z) : Z ⊆ Y, |Z| ≤ s, z = y|Z} ⊆ F .

Claim. There are T ≤ O (d∗) sets Z1, . . . , ZT ⊆ Y , with |Zt| ≤ s, so that the
following holds.

For t ∈ [T ], let

ft = H (Zt, y|zt) . (∗)

Then, for every x ∈ Y , we have

|{t ∈ [T ] : ft (x) = y (x)}| > T

2
. (∗∗)
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Proof of the claim. By the choice of H, for every probability measure µ on Y ,
there is some h ∈ H so that

µ ({x : h (x) = y (x)}) ≥ 2

3
.

By the minimax theorem (Theorem 6.10), there is a probability measure ν on H
such that for every x ∈ Y ,

ν ({h ∈ H : h (x) = y (x)}) ≥ 2

3
.

By Lemma 6.9 applied to H and ν with ε = 1
8 , there is a multiset F =

{f1, . . . , fT } ⊆ H of size T ≤ O (d∗) so that for every x ∈ Y ,

|t ∈ T : ft (x) = y (x)|
T

≥ ν ({h ∈ H : h (x) = y (x)})− 1

8
>

1

2
.

For every t ∈ [T ], by the definition of H let Zt be a subset of Y of size |Zt| ≤ d
so that H (Zt, y|Zt) = ft.

Assuming the claim, the compression κ (Y, y) is defined as (Z, z) , i where Z =⋃
t∈[T ] Zt, z = y|Z , and the additional information i ∈ I allows to recover the

sets Z1, . . . , ZT from the set Z. Thus we can bound the size of I by kk with
k = O (d∗) s ≤ O (dd∗).

Now we define the reconstruction map.
Given ((Z, z) , i), i is interpreted as a list of T subsets Z1, . . . , ZT of Z, each of

size at most d. For t ∈ [T ], let ht = H (Zt, z|Zt).
Define h = ρ ((Z, z) , i) as follows. For every x ∈ X, let h (x) be an element of

{0, 1} that appears most in the list λx ((Z, z) , i) = (h1 (x) , . . . , hT (x))

Finally, we check that this reconstruction map is correct.
Fix (Y, y) ∈ S (F). Let ((Z, z) , i) = κ (Y, y) and h = ρ ((Z, z) , i). For x ∈ Y ,

consider the list
φx (Y, y) = (f1 (x) , . . . , fT (x))

defined in the compression process of (Y, y). The list φx (Y, y) is identical to the
list λx ((Z, z) , i) due to the following reasons:

• Equation (∗),
• The information i allows to correctly recover Z1, . . . , ZT ,
• y|Zt = z|Zt for all t ∈ [T ].

Finally, by (∗∗), for every x ∈ Y , the symbol y (x) appears in more than half of the
list λx ((Z, z) , i), so indeed h (x) = y (x). �

6.4. Set-theoretic issues around the equivalence of PAC learning and fi-
nite VC-dimension. This part is based on a paper of Pestov [40], and was pre-
sented in the Spencinar (http://www.math.ucla.edu/~sunger/seminars/index.
html).

We consider the more general situation when the underlying set X is infinite.
• Let (X,B) be a standard Borel space, i.e. a complete separable metric space

equipped with the σ-algebra of Borel subsets.

http://www.math.ucla.edu/~sunger/seminars/index.html
http://www.math.ucla.edu/~sunger/seminars/index.html
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• We consider Borel probability measures µ on X (and don’t distinguish
between µ and its Lebesgue completion, i.e. an extension of µ over a larger
σ-algebra of Lebesgue-measurable subsets of Ω).

• A set A ⊆ X is universally measurable if it is Lebesgue µ-measurable for
every probability measure on X.

• Recall that a subset N ⊆ X is universally null if for every non-atomic
probability measure µ on (X,B) we have µ (N ′) = 0 for some Borel set
N ′ ⊇ N . Universally null Borel sets are just countable sets.

• Let F be a family of universally measurable subsets of X (F is called
sometimes a concept class).

In the learning model, a set P of probability measures on X is fixed. Usually
P = P (X) is the set of all probability measures on X (distribution-free learning)
or P = {µ} is a single measure (learning under a fixed distribution).

A learning sample is a pair (A,B) of finite multisets of elements from X, where
B ⊆ A is thought of as the set of points belonging to an unknown set S ∈ F that
we want to learn by sampling.

The set of all samples of size n (i.e. with |A| = n) is usually identified with
(X × {0, 1})n (we pair each element b ∈ B with 1A (b)).

Definition 6.12. A learning rule (for F) is a mapping L :
⋃
n∈N (X × {0, 1})n → F

which satisfies the following measurability condition: for every S ∈ F , n ∈ N and
µ ∈ P, the function A 7→ µ (L (A,S ∩A) ∆S) from Xn to R is µ-measurable.
A learning rule is consistent (with F) if for all S ∈ F , n ∈ N and A ∈ Xn we have
L (A,S ∩A) ∩A = S ∩A.
A learning rule L is Probably Approximately Correct (PAC) under P if for every
ε > 0 we have

µn (A ∈ Xn : µ (L (A,S ∩A) ∆S) > ε)→ 0

as n→∞, uniformly over all S ∈ F and µ ∈ P (where µn is the product measure).
Rephrasing, a learning rule L is PAC with sample complexity function s (ε, δ),
where ε is the error and δ is confidence, such that for each S ∈ F and µ ∈ P, for
any n ≥ s (ε, δ) we have µn (A ∈ Xn : µ (L (A,S ∩A) ∆S) < ε) ≥ 1− δ.

So the idea is that by sampling on sufficiently long tuples, with high probability
our learning rule allows us to guess which set from F we are looking at.

A family F is PAC learnable under P if there exists a PAC learning rule L for F
under P. F is consistently learnable (under P) if every learning rule L consistent
with F is PAC under P. If P = P (X) then F is distribution-free PAC learnable.

For now we are not concerned with the (computational) complexity of our learn-
ing rule, but only with its existence.

Definition 6.13. F is uniform Glivenko-Cantelli, or UGC, with respect to a family
of measures P if for each ε > 0 we have

sup
µ∈P

µn
({

(a1, . . . , an) ∈ Xn : sup
S∈F
|µ (S)−Av (a1, . . . , an;S)| ≥ ε

})
→ 0 as n→∞.

From Theorem 3.4 (and Section 3.2) we have:

Fact 6.14. Let F be a countable family and VC (F) is finite. Then if P is a family
of measures such that each S ∈ F is measurable with respect to each µ ∈ P then F
is UGC with respect to P.
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Remark 6.15. The countability assumption can be somewhat relaxed, see Section
3.2 for a discussion. In particular, it is enough to assume that the family F is image
admissible Souslin (i.e. F can be parametrized as F = {Ct : t ∈ [0, 1]} so that the
set {(x, y) : x ∈ Ct, t ∈ [0, 1]} is an analytic subset of Ω × [0, 1]) or is universally
separable.

Proposition 6.16. Every UGC family F (with respect to P) is consistently PAC
learnable (with respect to P).

Theorem 6.17. Every distribution-free PAC learnable F has finite VC-dimension.

Proof. The same proof as in Theorem 6.8 goes through. �

Under the measurability assumptions, by the VC-theorem we have that finite
VC-dimension implies uniform Glivenko-Cantelli, so implies consistent learnability.
Still, to ensure PAC learnability from consistent learnability, we need to prove the
existence of a consistent learning rule satisfying the measurability assumptions.

So, for
We saw in Example 3.11 of Durst and Dudley that under CH, without any

additional assumptions there is an example of a family F of VC-dimension 1 on a
standard probability space which is not uniformly Glivenko-Cantelli. We consider
a slight modification of that example.

Example 6.18. (Blumer et. al.) Assume CH. Let (X,F) be as in the Example
3.11, and let F ′ := F ∪ {X}. We still have that VC (F ′) = 1. For a finite sample
(A,B) (recall B ⊆ A) define L (A,B) = Iz with z = min {y ∈ X : B ⊆ Iy}.

This learning rule L is consistent with F ′. At the same time, L is not PAC.
Indeed, for the set X ∈ F the value of the learning rule L (A.X ∩A) = L (A,A)
always returns a countable concept Iy for some y ∈ X, and if µ is a non-atomic
Borel probability measure on X, then µ (X∆Iy) = 1. Thus the set X ∈ F cannot
be learned with accuracy ε < 1 with a non-zero confidence.

It is important to note that, again under CH, the class F ′ is distribution-free
PAC learnable.

Indeed, redefine a well-ordering on F = {Ix : x ∈ X} ∪ {X} by making X the
smallest element (instead of the largest one) and keep the order relation between
the other elements the same. Denote the new order by ≺1, and define a learning
rule L1 similarly to L but with respect to ≺1:

L1 (A,B) = min
≺1

S ∈ F : S ∩A =
⋂

B⊆D∈F

D

 .

In essence, L1 examines all the sets in F following the transfinite order on them,
and returns the first encountered set consistent with sample, provided it exists. To
see the difference, let µ be again a non-atomic probability measure on Ω. If S = X,
then for every sample (A,B) consistent with S, the rule L1 will return S. If S 6= X,
then S is countable, and for µ-almost all samples A, A ∩ S will be empty, and the
set L1 (A, ∅) returned by L1 , while possibly different from S, will be countable,
meaning that µ (S∆L1 (A, ∅)) = 0.

We only used CH to ensure that every Iy, y ∈ X is a universally measurable set.
We’ll see that this can be achieved under a much weaker assumption of MA.
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Problem 6.19. Under CH (or MA), this gives an example of a PAC learnable class
which is not uniformly Glivenko-Cantelli (even if having finite VC dimension). Can
the same combination of properties be achieved without additional set-theoretic
assumptions?

To achieve PAC, we may relax the assumption of it being Glivenko-Cantelli.

Lemma 6.20. Let F be a class, and let P be a family of probability measures on
X. Suppose there exists a function s (ε, δ) and a learning rule L for F with the
property that for every S ∈ F , the set LS ∪ {S} is Glivenko-Cantelli with respect
to P with the sample complexity s (ε, δ), where LS = {L (S ∩A) : A ∈ Xn, n ∈ N}.
Then L is PAC under P with sample complexity s (ε, δ).

Proof. The proof of 6.8 works locally with respect to a fixed set S. �

We recall

Definition 6.21. Martin’s Axiom (MA) says that no compact Hausdorff topo-
logical space with the countable chain condition is a union of strictly less than
continuum many nowhere dense subsets.

Thus, it is a stronger statement than the Baire Category Theorem. In particular,
CH implies MA, but also MA is consistent with the negation of CH.

Fact 6.22. (Martin-Solovay, see e.g. [28, Theorem 2.21]) Let (X,µ) be a standard
Lebesgue non-atomic probability space. Under MA, the Lebesgue measure is 2ℵ0-
additive. That is, if κ < 2ℵ0 and Aα, α < κ is a family of pairwise-disjoint
measurable subsets of X, then

⋃
α<κAα is Lebesgue-measurable and µ

(⋃
α<κAα

)
=∑

α<κ µ (Aα).
In particular, the union of strictly less than continuum many null subsets of X

is a null set.

First we observe that under MA, if every countable subcollection of F is UGC,
then every subcollection of size < 2ℵ0 is UGC. Note that |F| ≤ 2ℵ0 as F consists
of Borel subsets of a standard Borel space.

Lemma 6.23. (MA) Let F be a set system and P a family of probability measures
on a standard Borel space (X,B). Then the following are equivalent:

(1) Every countable subclass of F is uniform Glivenko-Cantelli with regard to
P.

(2) There is a function s (ε, δ) so that every subclass F ′ ⊆ F of cardinality <
2ℵ0 is uniform Glivenko-Cantelli with regard to P, with sample complexity
s (ε, δ).

Proof. The implication (2) =⇒ (1) is obvious.
Assume (1) holds, and fix arbitrary ε, δ > 0. For each countable subclass F ′ ⊆ F

let s (F , ε, δ) be the smallest value of the sample complexity which works for all
measures in P (exists as all countable subclasses are uniformly GC). If there is
no uniform bound on it, we could choose F1 ⊆ F2 ⊆ . . . an increasing countable
sequence of countable classes such that s (Fn, ε, δ) > n. But then F =

⋃
n∈N Fn

is countable, and for every n ∈ N there is some measure µ ∈ P which requires
samples of size ≥ n with respect to F , i.e. F is not UGC with respect to P —
contradicting the assumption (1). So we obtain a uniform bound s (ε, δ) that works
for all countable subclasses of F .
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Now assume MA, and we prove that (2) holds for this s by transfinite induction
on κ = |F ′|, for κ < 2ℵ0 .

For κ = ℵ0 this is the assumption, otherwise write F ′ =
⋃
α<κ Fα where Fα is

an increasing chain and |Fα| < κ, so by inductive assumption (2) holds for each of
Fα.

For every ε and n ∈ N the set{
ā ∈ Xn : sup

S∈F ′
|Av (ā;S)− µ (S)| < ε

}
=
⋂
α<κ

{
ā ∈ Xn : sup

S∈Fα
|Av (ā;S)− µ (S)| < ε

}
is measurable by Fact 6.22. Given δ > 0 and n ≥ s (ε, δ), again by Fact 6.22 for
every µ ∈ P we have

µn
({

ā ∈ Xn : sup
S∈F ′

|Av (ā;S)− µ (S)| < ε

})
=

µn

(⋂
α<κ

{
ā ∈ Xn : sup

S∈Fα
|Av (ā;S)− µ (S)| < ε

})
=

inf
α<κ

µn
({

ā ∈ Xn : sup
S∈Fα

|Av (ā;S)− µ (S)| < ε

})
≥

1− δ,
as required. �

Next we observe that under MA, if in addition we have a learning rule L for F
such that L produces families of hypothesis of size smaller than continuum, then L
is PAC.

Lemma 6.24. (MA) Let F be a concept class such that all countable subclasses
are UGC with respect to P, and let L be a learning rule for F such that for every
S ∈ F , the family LS,n = {L (S ∩A) : A ∈ Xn} has cardinality strictly less than
continuum. Then L is PAC with respect to P.

Proof. Let LS =
⋃
n∈N LS,n, note that still

∣∣LS∣∣ < 2ℵ0 (as 2ℵ0 is a regular cardinal,
i.e. there are no countable cofinal subsets). By Lemma 6.23 LS is UGC with sample
complexity s (ε, δ). By Lemma 6.20 we conclude. �

Next, we show that a learning rule with this property always exists.

Lemma 6.25. Let F be a concept class on a Borel space X, let κ = |F|. There
exists a consistent learning rule L for F such that for every S ∈ F and each n, the
set LS,n has cardinality < κ.

Moreover, under MA this rule satisfies the measurability condition: for every
S ∈ F , n ∈ N and µ ∈ P, the function A 7→ µ (L (A,S ∩A) ∆S) from Xn to R is
µ-measurable.

Proof. Choose a minimal well-ordering of elements of F : F = {Sα : α < κ}, and for
every A ∈ Xn and B ⊆ A set L (A,B) = Sβ , where β = min {α < κ : Sα ∩A = B}
provided such a β exists.

Clearly for each α < κ we have L (A,Sα ∩A) ∈ {Sβ : β ≤ τ}, which ensures that∣∣LS,n∣∣ < κ . Besides, the learning rule L is clearly consistent.
It remains to check the moreover part. Fix S = Sα ∈ F , α < κ. For every β ≤ α

define Dβ = {A ∈ Xn : S ∩A = Sβ ∩A}. The sets Dβ are measurable, and the
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function A→ µ (L (S ∩A) ∆S) from Xn to R takes a constant value µ (S∆Sα) on
each set Dβ \

⋃
γ<β Dγ , β ≤ α. Such sets, as well as their unions, are measurable

under MA using Fact 6.22, and their union is Xn. This implies the measurability
condition from the moreover part. �

Combining, we obtain the following theorem.

Theorem 6.26. (Pestov [40]) Assuming MA, let F be a family consisting of Borel
measurable subsets of a standard Borel space X, and let P be a family of probability
measures on X. Assume that every countable subfamily of F is UGC with respect
to P. Then F is PAC learnable under P.

Corollary 6.27. Under MA, the following are equivalent for every family F con-
sisting of universally measurable subsets of a Borel space X.

(1) F is distribution-free PAC learnable,
(2) VC (F) <∞.

Proof. (1) =⇒ (2) always holds (Theorem 6.8). For the converse, as VC (F ′) ≤
VC (F) for every F ′ ⊆ F , by Fact every countable subfamily of F is UGC. Then
Theorem 6.26 applies with respect to P = P (X). �

7. Colorful versions of fractional Helly, (p, q)-theorem, etc.

8. Discrepancy
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