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Fig. 1. Our generalized diffusion solver allows for some of the most characteristic visual aspects of diffusion-driven physics. Large-scale particle-based snowfall
simulation, where the zoom-ins show the different snowflake patterns generated by our diffusion solver. These patterns include those that can be captured
using traditional Fourier-type diffusion as well as new ones that cannot be described with the traditional approach, but which are observed in the real world.

We introduce the C-F diffusion model [Anderson and Tamma 2006; Xue et al.
2018] to computer graphics for diffusion-driven problems that has several
attractive properties: (a) it fundamentally explains diffusion from the per-
spective of the non-equilibrium statistical mechanical Boltzmann Transport
Equation, (b) it allows for a finite propagation speed for diffusion, in contrast
to the widely employed Fick’s/Fourier’s law, and (c) it can capture some
of the most characteristic visual aspects of diffusion-driven physics, such
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as hydrogel swelling, limited diffusive domain for smoke flow, snowflake
and dendrite formation, that span from Fourier-type to non-Fourier-type
diffusive phenomena.We propose a unified convection-diffusion formulation
using this model that treats both the diffusive quantity and its associated
flux as the primary unknowns, and that recovers the traditional Fourier-type
diffusion as a limiting case. We design a novel semi-implicit discretization
for this formulation on staggered MAC grids and a geometric Multigrid-
preconditioned Conjugate Gradients solver for efficient numerical solution.
To highlight the efficacy of our method, we demonstrate end-to-end ex-
amples of elastic porous media simulated with the Material Point Method
(MPM), and diffusion-driven Eulerian incompressible fluids.

CCS Concepts: • Computing methodologies→ Physical simula-
tion.

ACM Reference Format:
Tao Xue, Haozhe Su, Chengguizi Han, Chenfanfu Jiang, and Mridul Aan-
janeya. 2020. A Novel Discretization and Numerical Solver for Non-Fourier
Diffusion. ACM Trans. Graph. 39, 6, Article 178 (December 2020), 14 pages.
https://doi.org/10.1145/3414685.3417863

ACM Trans. Graph., Vol. 39, No. 6, Article 178. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417863
https://doi.org/10.1145/3414685.3417863


178:2 • Tao Xue, Haozhe Su, Chengguizi Han, Chenfanfu Jiang, and Mridul Aanjaneya

Hydrogel with compliant material (Young’s modulus 40) using the Fick’s law (top) and the generalized C-F diffusion model (bottom).

Hydrogel with stiff material (Young’s modulus 200) using the Fick’s law (3rd row) and the generalized C-F diffusion model (4th row).
Fig. 2. Poroelastic material dynamics of a hydrogel driven by fluid absorption, simulated using our proposed method in combination with MPM (5123 grid
resolution). The hydrogel exhibits rich anisotropic deformations with the generalized C-F diffusion model, which qualitatively match real-world observations.

1 INTRODUCTION
Diffusion-driven phenomena such as smoke spreading in air, sponge
swelling in water, ink dispersing on paper, heat-induced material
expansion/shrinkage, and many more are integral parts of our daily
lives [Ding et al. 2019; Lenaerts et al. 2008; Yang et al. 2017] as well
as nature. In contrast to other physical processes, diffusion typically
affects material constitution, and can drive interesting dynamics as
a consequence, encompassing complex physical phenomena such as
heat and mass transfer, dynamics of porous mixtures, themo-fluid-
structural interaction, etc. Thus, to precisely describe such processes
and the like, the fundamental model of diffusion, specifically the
diffusive constitutive law, plays a vital role. The most popular model
for diffusion is based on Fick’s /Fourier’s law [Fick 1855; Fourier
1878]. This model has been acknowledged to be able to describe
most problems of interest. Not surprisingly, Fourier-type models
have been dominant in computer graphics for decades. However, it
can be shown via rigorous mathematical derivations that the speed
of diffusion in Fourier-based models is infinite [Baumeister and
Hamill 1969; Cattaneo 1948], and thus, non-physical.

In this paper, we introduce the C-F diffusion model [Anderson
and Tamma 2006; Xue et al. 2018] to computer graphics that (a) fun-
damentally explains diffusion from the perspective of the nonequi-
librium statistical mechanical Boltzmann Transport Equation (BTE),
(b) addresses the issue of infinite propagation speed of diffusion,
and (c) captures some of the most characteristic visual aspects of
diffusion-driven physics, such as hydrogel swelling, limited diffu-
sive domain for smoke flow, ink dispersing in water, dendrite and
snowflake growth, etc. To simulate the effects of this model on stag-
gered MAC grids, we propose a novel semi-implicit discretization
that leads to a better conditioned linear system than the Fourier
system. This allows iterative Krylov solvers, such as preconditioned
Conjugate Gradients (PCG) to converge in relatively fewer iterations
compared to traditional Fourier-type diffusion. For even faster con-
vergence, we design a tailored geometric Multigrid preconditioner
for Conjugate Gradients following [McAdams et al. 2010].

Our method uses a novel two-field convection-diffusion formula-
tion to simulate diffusion-driven effects using the generalized consti-
tutive model. In contrast to the traditional Fourier-type equation for
diffusion, which uses a single-field formulation where the primary
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Fig. 3. (a) A source emits diffusive matter in a medium (e.g. smoke flow) with uniform background velocity 𝒖. The propagation speed of diffusion is 𝑐 , and the
angle 𝛼 = sin−1 (1/𝐻𝑐 ) . (b-d) Density contours for diffusive matter in the critical regime (𝐻𝑐 = 0) (b), and super-critical regime with 𝐻𝑐 = 2/

√
3 and angle 60◦

(c), 𝐻𝑐 =
√
2 and angle 45◦ (d), and 𝐻𝑐 = 2 and angle 30◦ (e). As shown, in the super-critical regime, the diffusive matter only propagates in a limited diffusive

domain that assumes a “conical” shape.

unknown is only the diffusive quantity, both the diffusive quan-
tity and its associated flux are treated as primary unknowns in our
framework. This allows us to analyze the interaction/competition
between the diffusion process and background material dynamics.
Due to the finite propagation speed of diffusion, we define a specific
taxonomy of diffusion processes and provide a mathematical pre-
diction of the active and null regime of diffusive quantities. These
particular phenomena are illustrated via simulations of an ideal
example where a source emits diffusive matter in a medium with
uniform background velocity. The proposed diffusion taxonomy
also shows that our model can recover the traditional Fourier-type
diffusion. More realistic examples, including ink dispersion in water
and smoke flow, are presented to further demonstrate non-Fourier
effect on real-world diffusion processes.
We demonstrate the versatility of our method in simulations of

poroelastic material dynamics induced by change in fluid saturation.
We use the Material Point Method (MPM) [Jiang et al. 2016] to simu-
late the porous material. The solid continuum contains “voids” into
which the fluid diffuses, changing the local saturation and driving
the motion. As the saturation changes in a wave-like propagation,
the resulting motion is an interaction between a diffusive wave and
a stress wave. The resulting motion is more dynamic compared to
the one obtained using the traditional Fourier-type model. While
our poromechanical kinematic assumptions are similar to [Ding
et al. 2019; Lenaerts et al. 2008], these prior works only considered
Fourier-type diffusion models. We use the example of a hydrogel
swelling in water to highlight the benefits of our proposed method.

We also utilize our method to investigate various patterns of den-
drite and snowflake growth in nature, which is formulated as a phase
change (Stefan) problem [Kim et al. 2006; Ren et al. 2018; Stefan
1891; Voller and Swaminathan 1991]. We use phase-field modeling
to establish the governing equations for this problem. The classical
Fourier-based phase-field modeling is revised by introducing the
generalized C-F diffusion model; specifically, the phase equation and
the heat transfer equation are both reformulated in the generalized
form, which gives a strongly coupled non-Fourier system. Similar
studies regarding the phase-field modeling or Stefan problem can be

found in [Kim et al. 2006; Kim and Lin 2003; Yang et al. 2017]. How-
ever, these mathematical models are governed by the traditional
Fourier-type law and result in purely parabolic partial differential
equations. In contrast, our non-Fourier model involves hyperbolic
characteristics. We use this generalized model to simulate the for-
mation of dendrites (e.g., coral reef) and snowflakes. Moreover, our
proposed Multigrid solver for non-Fourier diffusion can be directly
utilized in both the phase parameter equation and the heat transfer
equation. To summarize, our main contributions are the following:

(1) introduction of Cattaneo-Fourier (C-F) diffusion model [Ander-
son and Tamma 2006; Xue et al. 2018] to computer graphics,

(2) a semi-implicit discretization for diffusion with the general-
ized constitutive law using a convection-diffusion approach,

(3) a geometric Multigrid-preconditioned Conjugate Gradients
solver to allow fast simulations of non-Fourier diffusion,

(4) a diffusion taxonomy using the C-F diffusion model that pre-
dicts a limited diffusion regime for convection-diffusion ef-
fects in a medium with uniform background flow, and

(5) high resolution simulations of poroelastic material dynam-
ics, generalized convection-diffusion problems, and Stefan
problems using the proposed non-Fourier diffusion solver.

2 RELATED WORK
Diffusion is ubiquitous in continuum physical systems such as
advection-diffusion and reaction-diffusion systems [Kim and Lin
2007]. While there are innumerable papers with the standard Fourier
diffusion equation, or slightly modified versions of Fourier-based
diffusion integrated, we only list some representative ones to define
the scope of applications and methods that we study in this work.

Diffusion of liquids in solids: Diffusion of liquids in solid structures
is common in everyday solid-fluid mixtures, and has stimulated
a lot of computational research in the graphics community, such
as watercolor painting on paper [Chu and Tai 2005; Curtis et al.
1997], wet shells [Chen et al. 2018; Um et al. 2013], wet cloth [Fei
et al. 2018], wet hair [Lin 2014, 2015; Rungjiratananon et al. 2012],
wet sand [Rungjiratananon et al. 2008], and sponges [Lenaerts et al.
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Fig. 4. Our proposed convection-diffusion formulation spans patterns from pure Fick’s diffusion (𝐹𝑇 = 1) (left) to pure Cattaneo’s diffusion (𝐹𝑇 = 0) (right).

2008; Patkar and Chaudhuri 2013]. When ignoring inertial effects,
these models reduce to the Fick’s law (Fourier-based diffusion) with
constant or saturation and porosity-dependent diffusivity [Fei et al.
2018; Huber et al. 2011].

Diffusion in multi-phase fluids: Miscible fluids, whose characteris-
tic behavior is largely driven by convection-diffusion effects, is a
key research area in multi-phase fluids and contributes to many
interesting visual effects. Ren et al. [2014] adopted concepts from
mixture theory and simulated the diffusion of multiple miscible
fluids into each other due to concentration difference. This work,
based on Smoothed Particle Hydrodynamics, was further extended
to multi-phase solid-fluid mixtures by Yan et al. [2016]. An Euler-
ian framework based on diffusing volume fractions was proposed
by Kang et al. [2010]. Recently, Canabal et al. [2020] proposed a
reaction-diffusion type dendritic painting growth model. With a
specifically designed nonlinear diffusion function by adding extra
exponents and noise functions to the density field, their model en-
ables rich sub-branching effects and thickness control. For modeling
liquid sprays, Nielsen and Østerby [2013] introduced a speed depen-
dent diffusion coefficient, evolving the Eulerian volume fraction and
velocity of fluid species to capture the mass flux of small droplets.

Heat solvers: Heat transport is also a popular application of the
diffusion equation and has its unique attractiveness in computer
graphics since the early days [Carlson et al. 2002; Stora et al. 1999]
for generating vivid melting and solidification effects. Impressive
simulations have been done for thermoelastic solid-liquid transi-
tions on locally remeshing Lagrangian meshes [Clausen et al. 2013],
particles [Iwasaki et al. 2010], and hybrid Lagrangian-Eulerian struc-
tures [Ding et al. 2019; Gao et al. 2018b; Stomakhin et al. 2014]. All
of these models are based on the Fourier’s law, having the heat flow
linearly dependent on the temperature gradient.

Phase-field modeling: We use phase-field theory to model snowflake
and dendrite formation as a phase change (Stefan) problem. Phase-
field modeling is advantageous in capturing material interfaces. In
computer graphics, it has been applied to ice crystal growth fromwa-
ter vapor [Kim et al. 2004] (aka diffusion-limited growth), two-phase
diffusive flow [He et al. 2015], multiple-phase fluid mixtures through
the Navier-Stokes-Cahn-Hilliard equations [Yang et al. 2015] or the
Allen-Cahn equations [Yang et al. 2017], damage evolution in solid
materials [Wolper et al. 2019], and controllable dendritic crystal

simulations by novel orientation field model [Ren et al. 2018]. Com-
pared to sharp interface approaches such as the level-set method
[Osher et al. 2004], the phase-field representation uses a regularized
scalar field to greatly simplify the interface treatment, while still
converging to the sharp result under grid refinement.

Material Point Method: MPM’s hybrid Lagrangian-Eulerian nature
provides a natural framework for discretizing the coupled Newto-
nian and non-Fourier diffusion dynamics efficiently on a grid with
the Lagrangian particle motion to handle the otherwise challeng-
ing conservative convection. Even though originally introduced
into graphics for snow animation [Stomakhin et al. 2013], MPM
has proven quite effective in systems where multi-physics with
multiple governing physical mechanisms take place. In addition
to conservations of mass and momentum, MPM was used for en-
abling coupled solve with heat propagation [Stomakhin et al. 2014],
porous media [Tampubolon et al. 2017], material crack [Wretborn
et al. 2017], continuum-discrete mixture [Gao et al. 2018a; Yue et al.
2018], chemical reaction [Yan et al. 2018], and phase-field damage
evolution [Wolper et al. 2019]. We draw inspirations from these
methods and propose a novel discretization scheme where the non-
Fourier diffusion mechanism is coupled with the velocity update in
a semi-implicit manner.

3 GOVERNING EQUATIONS
We first review the governing equations of diffusion, and subse-
quently describe the C-F diffusion model, as well as our two-field
convection-diffusion formulation using this constitutive law.

3.1 Classical Diffusion Equation
The classical equation for diffusion is given as follows:

𝜌𝑐𝑝
𝜕𝜙

𝜕𝑡
+ ∇ · 𝒒 =𝑊, (1)

where 𝜙 is the quantity being diffused, 𝒒 is the associated flux,𝑊
is the diffusive source/sink, 𝜌 is the material density, and 𝑐𝑝 is the
diffusive capacity. In this paper,𝜙 can be the temperature, saturation,
and/or phase-field value. For simplicity of exposition, we set 𝜌𝑐𝑝 = 1
in the remaining paper.
For most engineering applications, the flux 𝒒 has been typically

described by the Fick’s/Fourier’s law [Fick 1855; Fourier 1878]:

𝒒 = −𝑘∇𝜙, (2)
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(a) (b) (c) (d) (e) (f)
Fig. 5. (a-d) Simulation of ink diffusing in water using our generalized diffusion solver with 𝐹𝑇 = 0 and 𝜏 = 4 (2562 × 512 grid). Interestingly, the C-F diffusion
model produces a more vivid behavior, in contrast incompressible flow with no diffusion (e) and Fourier’s diffusion (f) that produces an overly diffuse profile.

where 𝑘 is the coefficient of diffusion. It can be rigorously proved
that the propagation speed of diffusion using this model is infi-
nite [Baumeister and Hamill 1969] and thus, non-physical. To ad-
dress this issue, the Cattaneo-Vernotte (CV) diffusion model [Cattaneo
1948] was developed that introduced a time-relaxation term to the
flux 𝒒 to ensure that the wave speed remained finite. Specifically,
the CV model is given as:

𝜏 ¤𝒒 + 𝒒 = −𝑘∇𝜙, (3)

where 𝜏 represents the relaxation time with respect to the flux. Note
that when 𝜏 = 0, the CV model recovers the classical Fourier’s law.

Substituting Fick’s law (2) into the classical diffusion equation (1)
yields the following parabolic partial differential equation:

𝜕𝜙

𝜕𝑡
= 𝑘∇ · ∇𝜙 +𝑊, (4)

while substituting the CV model (3) into the diffusion equation (1)
yields the following hyperbolic partial differential equation:

𝜏
𝜕2𝜙

𝜕𝑡2
+ 𝜕𝜙

𝜕𝑡
= 𝑘∇ · ∇𝜙 +𝑊 . (5)

Neither the Fick’s law [Fick 1855; Fourier 1878] nor the CVmodel [Cat-
taneo 1948] can thoroughly describe diffusion phenomena such as
ballistic and ballistic-diffusive processes [Chen 2001]. Being ob-
served from experiments, they are empirical in nature, without
a proper theoretical justification following from first principles
(see [Anderson and Tamma 2006; Tzou 2014] for more details).

3.2 Generalized C-F Diffusion Model
To describe diffusion and diffusion-driven processes from the per-
spective of the fundamental Boltzmann Transport Equation, the
generalized constitutive model, also known as the C-F diffusion
model, was proposed in [Anderson and Tamma 2006] in the con-
text of heat conduction processes. This model assumes that both
Cattaneo-type slow processes (or C-processes) and Fourier-type fast

processes (or F-processes) coexist individually and concurrently dur-
ing the diffusion process. The total flux 𝒒 is given as follows:

𝒒 =

∫ 𝜔𝐷

0
𝝊 𝑓 (𝒙, 𝜙, 𝜔, )ℏ𝜔𝐷 (𝜔)𝑑𝜔

=

∫ 𝜔𝑇

0
𝝊 𝑓 (𝒙, 𝜙, 𝜔, )ℏ𝜔𝐷 (𝜔)𝑑𝜔︸                                 ︷︷                                 ︸

𝒒𝐶

+
∫ 𝜔𝐷

𝜔𝑇

𝝊 𝑓 (𝒙, 𝜙, 𝜔, )ℏ𝜔𝐷 (𝜔)𝑑𝜔︸                                 ︷︷                                 ︸
𝒒𝐹

(6)

where 𝑓 represents concentration in the diffusion process, ℏ is the
reduced Planck’s constant, so ℏ𝜔 is the energy, 𝝊 is the particle
velocity, and 𝐷 (𝜔) is a density function. The assumption here is
that the first integral from zero up to a threshold frequency 𝜔𝑇
associates with the slow process (𝒒𝐶 ) of diffusion, and the second
integral from 𝜔𝑇 to the Debye frequency 𝜔𝐷 , associates with the
fast process (𝒒𝐹 ) of diffusion. The resulting constitutive model is:

𝒒 = 𝒒𝐶 + 𝒒𝐹 ,

𝒒𝐶 + 𝜏 ¤𝒒𝐶 = −(1 − 𝐹𝑇 )𝑘∇𝜙,
𝒒𝐹 = −𝐹𝑇𝑘∇𝜙,

(7)

and we refer the reader to [Anderson and Tamma 2006; Xue et al.
2018] for further details.
The non-dimensional parameter 𝐹𝑇 is defined as 𝐹𝑇 = 𝑘𝐹 /𝑘 ,

where 𝑘𝐹 is the diffusivity of fast propagation, 𝑘𝐶 is the diffusivity
of slow propagation, and 𝑘 = 𝑘𝐹 + 𝑘𝐶 is the total diffusivity. It
parametrizes diffusion and yields the following effects:

(1) Setting 𝐹𝑇 = 0 gives Cattaneo-type diffusion, which has a
finite speed of propagation for diffusion.

(2) Setting 𝐹𝑇 ∈ (0, 1) gives Jeffreys-type diffusion [Joseph and
Preziosi 1989], where discontinuities that arise due to the
C-process are smoothed by the F-process.

(3) Setting 𝐹𝑇 = 1 gives the familiar Fourier-type diffusion, which
has infinite speed of propagation for diffusion (see Figure 4).

3.3 Two-field Convection-Diffusion Formulation
Based on the C-F diffusion model [Anderson and Tamma 2006; Xue
et al. 2018], we derive a unified two-field convection-diffusion for-
mulation for diffusion in a medium (such as a fluid) moving with
background velocity 𝒖. From equation (1), the time rate of change
of the diffusive quantity (𝜕𝜙/𝜕𝑡) in a differential control volume is
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Fig. 6. Simulation of diffusion in a medium with horizontal background flow with uniform velocity. (Left) The traditional Fourier-type diffusion solver produces
an overly diffuse profile, since diffusion propagates both upstream and downstream. (Middle and Right) Our generalized diffusion solver produces realistic
spray patterns with a limited “conical” diffusive region, as predicted by our diffusion taxonomy for different values of 𝐻𝐶 in the super-critical diffusive regime.

determined by the flow (convection/advection) and diffusion into
and out of the system, along with any generation (source) or con-
sumption (sink) of 𝜙 inside the control volume. It follows that:

𝜕𝜙

𝜕𝑡
+ ∇ ·

(
𝒒diff + 𝒒con

)
=𝑊, (8)

where the flux 𝒒 has been decomposed into a convection part
𝒒con = 𝒖𝜙 and a diffusion part 𝒒diff. Substituting the C-F diffusion
model [Anderson and Tamma 2006; Xue et al. 2018] now gives:

𝜕𝜙

𝜕𝑡
+ ∇ · (𝒖𝜙) + ∇ · 𝒒diff =𝑊,

𝒒diff = 𝒒𝐹 + 𝒒𝐶 ,

𝒒𝐹 + 𝐹𝑇𝑘∇𝜙 = 0,

𝜏
𝜕𝒒𝐶
𝜕𝑡

+ 𝜏∇ · (𝒖 ⊗ 𝒒𝐶 ) + 𝒒𝐶 + (1 − 𝐹𝑇 )𝑘∇𝜙 = 0.

(9)

Note that equation (9) includes the influence of convection on the
time rate of change of 𝒒𝐶 . In this formulation, both 𝜙 and 𝒒 are
treated as primary unknowns, and the nonlinear coupling between
them prevents further reduction into a single-field formulation with
respect to 𝜙 , as is typical for Fourier-based diffusion. When the
background material is an incompressible fluid, equation (9) can be
further simplified by integrating the differential identities ∇· (𝒖𝜙) =
𝒖 · ∇𝜙 + (∇ · 𝒖)𝜙 and ∇ · (𝒖 ⊗ 𝒒𝐶 ) = 𝒖 · ∇𝒒𝐶 + (∇ · 𝒖)𝒒𝐶 along with
the incompressibility condition ∇ · 𝒖 = 0 to yield the relation:

𝜕𝜙

𝜕𝑡
+ 𝒖 · ∇𝜙 + ∇ · 𝒒 =𝑊,

𝒒 = 𝒒𝐹 + 𝒒𝐶 ,

𝒒𝐹 + 𝐹𝑇𝑘∇𝜙 = 0,

𝜏

(
𝜕𝒒𝐶
𝜕𝑡

+ 𝒖 · ∇𝒒𝐶
)
+ 𝒒𝐶 + (1 − 𝐹𝑇 )𝑘∇𝜙 = 0.

(10)

The above convection-diffusion formulation for incompressible me-
dia recovers the one proposed in [Xue et al. 2018], and is utilized
in Section 4 for designing a semi-implicit discretization scheme.
To further justify the novelty of our formulation and the necessity
of treating both 𝜙 and 𝒒 as primary unknowns, we highlight in
Appendix A the ‘pitfall’ of deriving a convection-diffusion formu-
lation using a single-field C-F diffusion model. We prove that this

formulation cannot maintain a consistent propagation speed for dif-
fusion, which is non-physical. In contrast, our proposed formulation
produces a material-invariant diffusive speed (see Section 5).

4 DISCRETIZATION
We discretize our two-field convection-diffusion formulation in
equation (10) on a Cartesian MAC grid [Harlow and Welch 1965] us-
ing the splitting method [Stam 1999]. Specifically, we first explicitly
update the convection terms

𝜙∗ − 𝜙𝑛

Δ𝑡
+ 𝒖𝑛 · ∇𝜙𝑛 = 𝑊 𝑛, (11)

𝒒∗
𝐶
− 𝒒𝑛

𝐶

Δ𝑡
+ 𝒖𝑛 · ∇𝒒𝑛𝐶 = 0, (12)

followed by an implicit projection solve:

𝜙𝑛+1 − 𝜙∗

Δ𝑡
+ ∇ ·

(
𝒒𝑛+1𝐶 + 𝒒𝑛+1𝐹

)
= 0, (13)

𝒒𝑛+1
𝐶

− 𝒒∗
𝐶

Δ𝑡
+
𝒒𝑛+1
𝐶

𝜏
+ (1 − 𝐹𝑇 )

𝑘

𝜏
∇𝜙𝑛+1 = 0. (14)

Taking the divergence of equation (14) and substituting the expres-
sion 𝒒𝐹 = −𝐹𝑇𝑘∇𝜙 from equation (7) gives the following relation:(

1 + Δ𝑡

𝜏

)
∇ · 𝒒𝑛+1𝐶 = ∇ · 𝒒∗𝐶 − (1 − 𝐹𝑇 )

Δ𝑡

𝜏
𝑘∇ · ∇𝜙𝑛+1 . (15)

Similarly, substituting the expression for 𝒒𝐹 from equation (7) in
equation (13) gives the following relation for ∇ · 𝒒𝐶 at time 𝑡𝑛+1:

∇ · 𝒒𝑛+1𝐶 = −𝜙
𝑛+1 − 𝜙∗

Δ𝑡
+ 𝐹𝑇𝑘∇ · ∇𝜙𝑛+1 . (16)

Finally, substituting equation (16) in equation (15) yields the follow-
ing implicit Poisson-style system for 𝜙 :[
(𝜏 + Δ𝑡) 𝑰 −

(
Δ𝑡2 + 𝐹𝑇Δ𝑡𝜏

)
𝑘∇ · ∇

]
𝜙𝑛+1 = (𝜏 + Δ𝑡) 𝜙∗ − 𝜏Δ𝑡∇ · 𝒒∗𝐶

(17)

which can be efficiently solved with PCG. After solving for 𝜙 , we
compute 𝒒𝐶 at time 𝑡𝑛+1 as follows:

𝒒𝑛+1𝐶 =
𝜏

𝜏 + Δ𝑡
𝒒∗𝐶 − Δ𝑡

𝜏 + Δ𝑡
(1 − 𝐹𝑇 )𝑘∇𝜙𝑛+1 . (18)

Note that our solver reduces to a Fourier solver when 𝐹𝑇 = 𝜏 = 0.
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Fig. 7. A coral reef simulated using our generalized phase-field modeling approach from Section 7 (average computation time is 0.338s per time step). A bump
map has been used on the right to mimic a life-like reef structure. The fishes are kinematically scripted to give the appearance of an underwater scenery.

4.1 Multigrid Solver
The implicit system in equation (17) is still elliptic [Trottenberg
et al. 2001], although better-conditioned than a traditional Poisson
system because of the presence of a scaled identity term on the
diagonal, which would allow iterative Krylov solvers such as PCG
to converge in relatively fewer iterations. For even faster conver-
gence rates, we design a geometric Multigrid preconditioner, closely
following [McAdams et al. 2010]. Our restriction and prolongation
operators are exactly the same as those described in [McAdams et al.
2010]. For implementing the smoother, we pass down the constants
𝜏,Δ𝑡, 𝐹𝑇 and 𝑘 to all levels in the Multigrid hierarchy to multiply
with the system matrix in equation (17). As shown in Section 9, our
non-Fourier solver achieves much better convergence on average,
in comparison to a Multigrid solver for Fourier-based diffusion.

5 DIFFUSION TAXONOMY
Consider our convection-diffusion formulation (9) using the C-F
constitutive model re-written in conservative flux form as follows:

𝜕𝑼

𝜕𝑡
+ ∇ · 𝑮 =𝑾 , (19)

where 𝑼 denotes the state vector, matrix 𝑮 denotes the flux, and𝑾
is the vector of source terms (see Appendix B for a derivation in 3D).
Defining 𝐺𝑖 , as the 𝑖th column of 𝑮 , and using the chain rule gives:

∇ · 𝑮 =
𝜕𝐺𝑖

𝜕𝑈

𝜕𝑈

𝜕𝑋𝑖
= 𝐴1

𝜕𝑼

𝜕𝑋1
+𝐴2

𝜕𝑼

𝜕𝑋2
+𝐴3

𝜕𝑼

𝜕𝑋3
, (20)

where𝑨 = [𝐴1, 𝐴2, 𝐴3]T is the Jacobian of 𝑮 with respect to 𝑼 (see
Appendix B for a derivation in 3D). Let 𝝑 = [𝜗1, 𝜗2, 𝜗3]T ∈ R3 be
an arbitrary vector, with ∥𝝑∥ = 1. Solving the eigenvalue problem:

det(𝜆𝑘 𝑰 −𝑨 · 𝝑) = 0 (21)

yields the following seven real eigenvalues 𝜆𝑘 for the 3D case:

𝜆1 = 𝜆2 = 𝜆3 = 0; 𝜆4 = 𝜆5 = 𝒖 · 𝝑;

𝜆6 = 𝒖 · 𝝑 +
√

(1 − 𝐹𝑇 )𝑘
𝜏

; 𝜆7 = 𝒖 · 𝝑 −
√

(1 − 𝐹𝑇 )𝑘
𝜏

.
(22)

This implies that there exist two characteristic speeds in our pro-
posed convection-diffusion model, one is the velocity of the back-
ground material (𝒖), and the other is the propagation speed of dif-
fusion (𝑐 =

√
(1 − 𝐹𝑇 )𝑘/𝜏), which is also referred to as the second

sound speed in the area of heat transfer [Chandrasekharaiah 1986;
Sellitto et al. 2020]. Moreover, when 𝐹𝑇 = 0, the diffusion speed 𝑐
reverts to the classical wave speed of hyperbolic diffusion.
In other words, we assume that the physics of diffusion in a

moving system, such as tea diffusing in water, is a competition
between the material speed (𝒖) and the diffusive speed (𝑐). To better
describe this, we define the following non-dimensional number:

𝐻𝑐 =
∥𝒖∥
𝑐

, (23)

which can be used to classify the various diffusion types. Specifically:

𝐻𝑐 < 1 ⇔ Sub-critical Diffusion,
𝐻𝑐 > 1 ⇔ Super-critical Diffusion,
𝐻𝑐 = 1 ⇔ Critical Diffusion.

(24)

The role of 𝐻𝑐 in diffusion is similar to the Mach number in com-
pressible fluid dynamics [Anderson 2002], which characterizes how
perturbations (or “shocks”) propagate in a medium. In particular, in
the absence of Fourier-type fast processes (i.e., 𝐹𝑇 = 0), the diffusive
quantity can travel both downstream and upstream, corresponding
to sub-critical diffusion. In contrast, under conditions of super-critical
diffusion, the diffusive quantity can only travel downstream since
the diffusive speed 𝑐 is slower than the material speed 𝒖. In the
general non-Fourier case (𝐹𝑇 < 1) with𝐻𝑐 > 1, the diffusive pattern
merges both Fourier-type and Cattaneo-type processes. That is to
say, the diffusive quantity exists both downstream and upstream,
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but a “conical regime” emerges with higher density concentration,
with cone angle 𝛼 = sin−1 (𝑐/∥𝒖∥) = sin−1 (1/𝐻𝑐 ) (see Figure 3).

6 COUPLING WITH CONTINUUM MECHANICS
For coupling our convection-diffusion formulation using the C-F
diffusion model to solid mechanics, or incompressible flow, we use
the following equation of motion along with equation (9):

𝜌
𝐷𝒖

𝐷𝑡
− ∇ · 𝝈 = 𝒃, (25)

where 𝐷/𝐷𝑡 is the material derivative. For coupling with incom-
pressible flow, we must also consider the divergence-free constraint
∇ · 𝒖 = 0, and the stress tensor is defined as 𝝈 = −𝑝𝑰 , where 𝑰 is
the second order identity tensor, and 𝑝 is the pressure (note that we
consider inviscid flow, omitting the term ∇ · 𝜇∇𝒖 from the stress).

For coupling diffusion-driven dynamics with solid mechanics, the
stress tensor is described by the elastic constitutive relation [Bonet
and Wood 1997]:

𝝈 =
1
𝐽

𝜕Ψ

𝜕𝑭𝐸
𝑭𝑇𝐸 , (26)

where Ψ is the hyperelastic potential energy density, 𝑭𝐸 is the
elastic part of the deformation gradient 𝑭 and 𝐽 = det(𝑭 ). We make
the assumption that the internal stress driven by the change in
saturation can be described by the simplified expression 𝛼𝜙 , where
𝜙 is the quantity being diffused, and 𝛼 is an amplification factor.

7 GENERALIZED PHASE-FIELD MODELING
Dendrite growth is a fascinating example of spontaneous pattern for-
mation in nature. Accurate modeling and simulation of this phenom-
enon requires careful attention to the associated non-equilibrium
dynamics. We first reformulate the classical phase-field theory for
modeling dendritic growth [Kobayashi 1994], such that it can be
integrated with our convection-diffusion formulation using the gen-
eralized C-F diffusionmodel. The governing equations are as follows:

𝜏𝜂
𝐷𝜂

𝐷𝑡
+ ∇ · 𝒒𝜂 = 𝜂 (1 − 𝜂) (𝜂 +𝜓 − 0.5),

𝒒𝜂 = 𝒒𝐶𝜂 + 𝒒𝐹𝜂 , 𝒒𝑇 = 𝒒𝐶𝑇 + 𝒒𝐹𝑇 ,

𝒒𝐹𝜂 + 𝐹𝜂𝜖
2∇𝜂 = 0, 𝒒𝐹𝑇 + 𝐹𝑇∇𝑇 = 0,

𝜏1
𝐷𝒒𝐶𝜂

𝐷𝑡
+ 𝒒𝐶𝜂 + (1 − 𝐹𝜂 )𝜖2∇𝜂 = 0,

𝐷𝑇

𝐷𝑡
+ ∇ · 𝒒𝑇 =𝑊 + 𝜕𝜂

𝜕𝑡
,

𝜏2
𝐷𝒒𝐶

𝑇

𝐷𝑡
+ 𝒒𝐶𝑇 + (1 − 𝐹𝑇 )∇𝑇 = 0,

(27)

where 𝜂 is the phase-field value, 𝒒𝜂 is the corresponding flux, 𝜖2 is
the coefficient of diffusion for the phase-field, 𝑇 is the temperature,
𝒒𝑇 is the temperature flux, 𝐹𝜂 and 𝐹𝑇 are the Fourier-type fast pro-
cess parameters for diffusing the phase-field and temperature, and
𝜏𝜂 , 𝜏1, 𝜏2 are phase-field and diffusion parameters. The variable𝜓 is
a function of 𝑇 and 𝑣 , defined as 𝜓 (𝑇, 𝑣) = −(𝛼/𝜋) tan−1 (𝛾𝛽 (𝑣)𝑇 ),
where 𝑣 = −∇𝜂, 𝛽 (𝑣) = 1 − 𝛿 (1 − 𝑎/𝑏), 𝛼 , 𝛿 and 𝛾 are user-defined

parameters, 𝑎 =
∑3
𝑖=1 𝑣

4
𝑖
, and 𝑏 =

(∑3
𝑖=1 𝑣

2
𝑖

)2
. Note that the tradi-

tional phase-field equation with Fick’s diffusion law is a parabolic

system. However, our proposed enhancement to the phase-field
equation with the generalized C-F diffusion model makes it a hy-
perbolic system for the specific case when 𝐹𝜂 = 𝐹𝑇 = 0, allowing
our formulation to generate a wider range of patterns for dendrites
than previously possible (see Figure 8 for examples).

7.1 Anisotropic Phase-field Modeling for Snowflakes
Motivated by the recent work of [Demange et al. 2017], we propose
the following model for simulating snowflakes using the generalized
C-F diffusion model, that also accommodates anisotopic growth:

𝜏𝜂
𝐷𝜂

𝐷𝑡
+ ∇★ · 𝒒𝜂 = 𝛿2∇★ ·

[
∥𝑣 ∥2𝐴(𝑣)𝑫

]
+ 𝜂 (1 − 𝜂) (𝜂 +𝜓 − 0.5),

𝒒𝜂 = 𝒒𝐶𝜂 + 𝒒𝐹𝜂 , 𝒒𝑇 = 𝒒𝐶𝑇 + 𝒒𝐹𝑇 ,

𝒒𝐹𝜂 + 𝐹𝜂𝐴
2 (𝒗)∇★𝜂 = 0, 𝒒𝐹𝑇 + 𝐹𝑇∇★𝑇 = 0,

𝜏1
𝐷𝒒𝜂

𝐷𝑡
+ 𝒒𝜂 + (1 − 𝐹𝜂 )𝐴(𝒗)2∇★𝜂 = 0,

𝐷𝑇

𝐷𝑡
+ ∇∗ · 𝒒𝑇 =𝑊 + 𝜕𝑝

𝜕𝑡
,

𝜏2
𝐷𝒒𝐶

𝑇

𝐷𝑡
+ 𝒒𝐶𝑇 + (1 − 𝐹𝑇 )∇★𝑇 = 0,

(28)

where 𝜂, 𝑇 , 𝒒𝜂 , 𝒒𝑇 , 𝜏𝜂 , 𝜏1, 𝜏2, 𝐹𝜂 , 𝐹𝑇 , 𝛿 and 𝑣 have the same defini-
tions as that in equation (27). The differential operator ∇★ is defined
as ∇★ = [𝜕/𝜕𝑥1, 𝜕/𝜕𝑥2, Γ𝜕/𝜕𝑥3]𝑇 , where Γ is a parameter that con-
trols the vertical/horizontal preference of diffusion. The variable
𝐴 determines the orientation of the snowflake and is a function of
𝑣𝑖 , defined as 𝐴(𝑣) = 1 + 𝜖𝑝 cos(𝜔𝜃 (𝑣)𝑝 ) + 𝜖𝑎 cos(𝜁𝜃 (𝑣)𝑎), where

𝜃 (𝑣)𝑝 = tan−1 (𝑣2/𝑣1) and 𝜃 (𝑣)𝑎 = − tan−1
(√

𝑣21 + 𝑣22/𝑣3
)
represent

the polar and azimuthal angles, respectively.𝐴(𝑣) accounts for both
the horizontal 𝜔-fold symmetry, and the vertical planar 𝜁 -fold sym-
metry of snowflakes, 𝜖𝑝 and 𝜖𝑎 are anisotropy constants, and𝜓 is a
function of 𝑇 , defined as𝜓 (𝑇 ) = −(𝛼/𝜋) tan−1 (𝛾𝑇 ), where 𝛼 and 𝛾
are user-defined parameters. The vector 𝑫 = 𝜕𝐴(𝑣)/𝜕𝑣 .

Particle Description Grid
𝒙𝑝 position 𝒙𝑖
𝒗𝑝 velocity 𝒗𝑖
𝑭𝑝 deformation gradient −−
−− force 𝒇 𝑖
𝑉𝑝 volume −−
𝑚𝑝 total mass 𝑚𝑖

𝑚
𝑓
𝑝 mass of fluid 𝑚

𝑓

𝑖

𝑚𝑠
𝑝 fully saturated mass of fluid 𝑚𝑠

𝑖

𝜙𝑝 porosity 𝜙𝑖
𝑆𝑝 saturation 𝑆𝑖

𝒒𝐶𝑝 C-process diffusion flux 𝒒𝐶
𝑖

Table 1. Physical quantities stored on particles and grid nodes.

8 INTEGRATION WITH MPM
We now describe the integration of our convection-diffusion for-
mulation (9) using the C-F diffusion model [Anderson and Tamma
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Fig. 8. Our generalized diffusion solver generates snowflake patterns that can be described by a traditional Fourier-type diffusion solver (top row), but can also
capture patterns that cannot be described by the traditional Fourier modeling approach (bottom row), as in this case the governing equations become purely
hyperbolic (corresponding to the case 𝐹𝑇 = 0) (2562 grid). However, as pointed out in Section 9, some of these patterns are indeed observed in the real world.

2006; Xue et al. 2018] with the Material Point Method (MPM) to sim-
ulate diffusion-driven poroelastic material dynamics. Our method
is inspired by the recent work of Ding et al. [2019], with new modi-
fications to accommodate our non-Fourier diffusion solver.
We reserve subscripts 𝑝, 𝑞, 𝑟 for quantities stored on particles,

and subscripts 𝑖, 𝑗, 𝑘 for quantities stored on grid nodes. Table 1
summarizes the various quantities stored on particles and grid nodes.
We treat each particle 𝑝 as porous, where the porosity 𝜙𝑝 is defined
as the volume fraction of the interconnected void space at 𝑝 . Thus,
𝜙𝑝𝑉𝑝 represents the void particle volume. Each particle can hold
an absorbed fluid mass𝑚𝑓

𝑝 ≤ 𝑚𝑠
𝑝 = 𝜌 𝑓 𝜙𝑝𝑉𝑝 , where 𝜌 𝑓 is the fluid

density. The particle saturation 𝑆𝑝 =𝑚
𝑓
𝑝 /𝑚𝑠

𝑝 .

8.1 Algorithm Description
We now describe our method in detail. Figure 9 gives a high-level
overview. At the beginning of each time step, we rasterize quantities
𝑚𝑝 , 𝜙𝑝 , ∇ · 𝒒𝐶𝑝 , 𝑆𝑝 , and 𝑉𝑝 from particles to the grid as follows:

𝜙𝑛𝑖 =
∑
𝑝

𝜙𝑛𝑝𝑤
𝑛
𝑖𝑝 , 𝑚𝑛

𝑖 =
∑
𝑝

(
𝑆𝑛𝑝𝑚

𝑠
𝑝𝜙

𝑛
𝑝 +𝑚𝑝 0

)
𝑤𝑛
𝑖𝑝 ,

𝒗𝑛𝑖 =
∑
𝑝

𝒗𝑛𝑝𝑚𝑝𝑤
𝑛
𝑖𝑝/𝑚

𝑛
𝑖 , (∇ · 𝒒𝐶 )𝑛𝑖 =

∑
𝑝

(∇ · 𝒒𝐶𝑝 )𝑛𝑤𝑛
𝑖𝑝 ,

(29)

where𝑤𝑖𝑝 is the quadratic B-spline weight of particle 𝑝 at grid node
𝑖 . Similar to the velocity normalization in equation (29) to conserve
momentum, following [Stomakhin et al. 2013], we rasterize the
saturation to conserve the fluid mass in particles, as follows:

𝑉𝑛
𝑖 =

∑
𝑝

𝑉𝑛
𝑝 𝐽𝑛𝑝𝑤

𝑛
𝑖𝑝 , (𝑚𝑓

𝑖
)𝑛 =

∑
𝑝

𝑆𝑛𝑝𝑚
𝑠
𝑝𝜙

𝑛
𝑝 𝐽

𝑛
𝑝𝑤

𝑛
𝑖𝑝 ,

(𝑚𝑠
𝑖 )
𝑛 =

∑
𝑝

(𝑚𝑠
𝑝 )𝑛 𝐽𝑛𝑝𝑤𝑛

𝑖𝑝 , 𝑆𝑛𝑖 = (𝑚𝑓

𝑖
)𝑛/(𝑚𝑠

𝑖 )
𝑛,

(30)

where 𝐽𝑝 denotes the change in the particle volume, i.e., 𝐽𝑝 = ∥𝑭𝑝 ∥,
and 𝑭𝑝 is the deformation gradient. The particle volumes 𝑉𝑝 are
computed in the very first time step, as described in [Stomakhin
et al. 2013]. After rasterizing the diffusive quantities, the saturation
and flux values are updated to time 𝑡∗ as follows:

𝑆∗𝑖 = 𝑆𝑛𝑖 − Δ𝑡𝒗𝑛𝑖 · ∇𝑆𝑛𝑖 ,

(𝒒𝐶𝑖 )
∗ = (𝒒𝐶𝑖 )

𝑛 − Δ𝑡𝒗𝑛𝑖 · ∇(𝒒𝐶𝑖 )
𝑛 .

(31)

Subsequently, the stress is computed as:

𝝈𝑝 = 2𝜇
(
𝑭𝑛𝐸𝑝 − 𝑹𝑛𝐸𝑝

) (
𝑭𝑛𝐸𝑝

)𝑇
+ 𝜆(𝐽𝐸 − 1) 𝐽𝐸 𝑰 − 𝜒𝑆𝑛𝑝 𝑰 , (32)

where 𝑭𝑛
𝐸𝑝

is the elastic part of the deformation gradient, and 𝑹𝐸𝑝
is obtained by the polar decomposition of 𝑭𝐸𝑝 = 𝑹𝐸𝑝 𝑺𝐸𝑝 . Follow-
ing [Stomakhin et al. 2014], 𝜇 and 𝜆 are defined as 𝜇 = 𝜇0𝑒

𝜉 (1−𝐽𝐸𝑝 ) ,
𝜆 = 𝜆0𝑒

𝜉 (1−𝐽𝑃𝑝 ) , 𝐽𝐸𝑝 = det 𝑭𝐸𝑝 , and 𝐽𝑃𝑝 = det 𝑭𝑃𝑝 , where 𝜇0 and
𝜆0 are the Lamé parameters, 𝜉 is a hardening parameter, and 𝜒 is
an amplification coefficient linking saturation and internal stress.
Then the internal stress-based force per grid node is computed as
𝒇𝑛𝑖 = −∑

𝑝 𝑉𝑝𝝈𝑝∇𝑤𝑛
𝑖𝑝
, and used to update the nodal velocity as

𝒗∗𝑖 = 𝒗𝑛𝑖 + Δ𝑡 (𝒇𝑛𝑖 + 𝒈)/𝑚𝑖 , (33)
where 𝒈 is the acceleration due to gravity. Collisions with objects
are treated as described in [Stomakhin et al. 2013]. For symplectic
Euler integration, we set 𝒗𝑛+1

𝑖
= 𝒗∗

𝑖
. We compute 𝑆𝑛+1

𝑖
and (𝒒𝐶

𝑖
)𝑛+1

using our non-Fourier solve in equations (17) and (18), as follows:[
(𝜏 + Δ𝑡) 𝑰 −

(
Δ𝑡2 + 𝐹𝑇Δ𝑡𝜏

)
𝑘∇ · ∇

]
𝑆𝑛+1𝑖 = (𝜏 + Δ𝑡) 𝑆∗𝑖 − 𝜏Δ𝑡∇ · (𝒒𝐶𝑖 )

∗,

(𝒒𝐶𝑖 )
𝑛+1 =

𝜏

𝜏 + Δ𝑡
(𝒒𝐶𝑖 )

∗ − (1 − 𝐹𝑇 )
Δ𝑡

𝜏 + Δ𝑡
𝑘∇𝑆𝑛+1𝑖 .

(34)
For semi-implicit time integration, 𝒗𝑛+1

𝑖
is computed as
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Particle Volumes

Grid velocities, mass, Grid force due to 
deformation and diffusion 
at = Explicit solved velocity Collided grid velocities Implicit solved velocity

Updated deformation 
gradient

Particle saturation, 
flux at =

Collided particles Updated position

Particle Simulation (Lagrangian)

Grid Simulation (Eulerian)

Particle State

Grid saturation, flux 

Grid saturation, 
flux at =

Semi-implicit solved 
saturation, flux  at =

Diffusion-driven force at =

Particle velocity 

Diffusion-driven force at =

1 3 4 5 6

2 7 8 9 10

Fig. 9. Overview of our proposed method in conjunction with the Material Point Method (MPM) for simulating diffusion-driven poroelastic material dynamics.
The short red and green arrows represent the velocity and force vectors at the nodes of the background grid. The blue boxes represent the different steps that
involve diffusion processes. The green boxes illustrate the particular interventions where we add diffusion-driven forces in the MPM simulation framework.

𝒗𝑛+1𝑖 = 𝒗∗ + Δ𝑡𝛽
(
𝒇𝑛+1𝑖 − 𝒇𝑛𝑖

)
/𝑚𝑖 , (35)

where 𝒇𝑛+1𝑖 = 𝒇𝑛+1
𝑑

+ 𝜒∇𝑆𝑖𝑛+1 and 𝒇𝑛+1𝑑
is the part of internal force

due to elasticity [Stomakhin et al. 2013]. The parameter 𝛽 ∈ [0, 1]
allows for transitioning between fully explicit and semi-implicit
integration. We update the deformation gradient 𝑭𝑛+1𝑝 and (∇ ·
𝒒𝐶𝑝 )𝑛+1 based on 𝒗𝑛+1𝑝 and (𝒒𝐶𝑝 )𝑛+1, and compute 𝑭𝑛+1

𝐸𝑝
and 𝑭𝑛+1

𝑃𝑝
.

Then 𝒗𝑛+1𝑝 , 𝑆𝑛+1𝑝 , and (𝒒𝐶𝑝 )𝑛+1 are updated considering the PIC and
FLIP components as follows:

𝜿𝑛+1 = (1 − 𝛼) 𝜿𝑛+1PIC + 𝛼𝜿𝑛+1FLIP ,

𝜿𝑛+1PIC =
∑
𝑖

𝜿𝑛+1𝑖 𝑤𝑛
𝑖𝑝 , 𝜿𝑛+1FLIP = 𝜿𝑛 +

∑
𝑖

(
𝜿𝑛+1𝑖 − 𝜿𝑛𝑖

)
𝑤𝑛
𝑖𝑝 ,

(36)

where 𝜿 is a generalized variable, and the parameter 𝛼 ∈ [0, 1]
allows for transitioning between fully PIC and fully FLIP update
formulas. Once post-collision velocities 𝒗𝑛+1𝑝 have been computed,
we use them to update the particle positions 𝒙𝑛+1𝑝 .

9 RESULTS
Timings for the simulations in Figures 2 and 5, including machine
specifications, are summarized in Table 2. The better conditioning
of our non-Fourier system in equation (17) allows the diffusion step
to be 1.04 − 5.62× faster, compared to the standard Fourier model.

When 𝐹𝑇 = 1, our model reduces to the standard Fourier model and
thus, has equivalent computational cost as Fourier-based diffusion.

9.1 Implementation Details
Accompanying this article, we open-source our code for running all
examples with our generalized diffusion solver. We use SPGrid [Se-
taluri et al. 2014] as the sparse grid structure in our simulator, with
16 channels for incompressible flow (Figure 5), and 32 channels for
MPM and phase-field examples (Figures 2, 7 and 8). Our Multigrid
solver only uses 4 channels. Since the background grid is used as a
scratchpad in MPM, we rasterize the grid within a slightly thickened
bounding box of the particles, saving memory overhead.

9.2 Diffusion Patterns in 2D
To demonstrate the effect of the parameters 𝐹𝑇 and 𝐻𝑐 in equations
(7) and (24), we simulated a point source that diffuses material in a
rectangular 2D domain with uniform background velocity 𝒖. Fig-
ure 4 shows the effect of varying the thermal parameter 𝐹𝑇 . When
𝐹𝑇 = 1, the diffusive quantity exists both upstream and downstream.
However, as 𝐹𝑇 decreases, Cattaneo’s diffusion process starts to dom-
inate and the diffusive regime is gradually constrained to a “conical”
region when 𝐹𝑇 = 0. To investigate this limited diffusive regime, we
set 𝐹𝑇 = 0 and vary 𝐻𝑐 from critical diffusion to super-critical diffu-
sion. As shown in Figure 3, the cone angle in the diffusive region is
consistent with the value sin−1 (1/𝐻𝑐 ), as proposed by our model.
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Smoke/Ink Simulations (256 × 512 × 256) Hydrogel Swelling (5123 + 4 × 105)
Intel®Xeon®Gold 6128

CPU @ 3.40GHz
Intel®Xeon®

CPU E5-1620 v4@ 3.50GHz
Figure 5 (a)-(f) Figure 6 Figure 2 (Top) Figure 2 (Bottom)

DM NF F NF F NF F NF F
𝐹𝑇 0 0.25 0.5 0.75 1 N/A 0 N/A 0 N/A 0 N/A

DiffQC 1.00 0.63 0.62 0.66 0.69 0.59 121.71 302.16 N/A N/A N/A N/A
VA 4.90 4.99 4.91 4.90 4.88 4.88 N/A N/A N/A N/A N/A N/A

CFluxAU 6.01 4.82 4.89 4.97 4.82 N/A 7.7 N/A N/A N/A N/A N/A
SM 0.14 0.14 0.14 0.14 0.14 0.13 0.15 0.15 N/A N/A N/A N/A

Projection 168.10 167.27 166.01 160.19 164.08 164.55 N/A N/A N/A N/A N/A N/A
Threads 8 8 8 8 8 8 8 8 8 8 8 8
MEM 3.456 3.456 3.456 3.456 3.456 3.456 0.576 0.576 0.192 0.224 0.192 0.192

MPMSol N/A N/A N/A N/A N/A N/A N/A N/A 5.43 13.2 7.21 16.3
TotDiffTIme 98.93 131.06 166.99 185.66 193.61 196.01 16.92 297.18 0.03997 0.224 0.03807 0.118552
PCG Iteration 8 28 38 43 45 45 8 42 1 5 1 5
TotTime 279.52 309.36 343.98 362.96 368.66 366.45 131.07 303.68 5.47 13.46 5.78 16.42

Table 2. Timing information for four cases. All run times cited are in seconds. Specific Notations: F: Fourier-based diffusion model, NF: non-Fourier diffusion
model,DM: Diffusion model, 𝑭𝑻 : Diffision parameters as described in equation (7),DiffQC: Diffusive quantities convection, VA: Velocity Advection,CFluxAU:
C-Flux (𝒒𝐶 ) advection & update, SM: Source modification, MEM: Memory usage in GB, MPMSol: MPM solver runtime, TotDiffTime: Total diffusion
time, PCG Iteration: Preconditioned Conjugate Gradients iterations, TotTime: Total compute time. For simplicity, we organize the CPU time for all the
computational procedures and show the major steps, particularly, the MPMSol time includes all the computational cost of pure evaluation of deformation,
and TotDiffTime sums up all the procedures that involve our proposed non-Fourier diffusion solver. In smoke/ink and hydrogel swelling simulations, our
proposed non-Fourier solver shows great computational performance (less PCG iterations and Total Time) in comparison to classical Fourier-based diffusion.

9.3 Ink Dispersion and Smoke Simulation
We simulated ink dispersing in water, as shown in Figure 5. Our
method produces a more vivid behavior, similar to the observed
behavior in the real world1, in contrast to incompressible flow with
no diffusion, and a traditional Fourier-type diffusion solver, which
produces an overly diffusive profile. To highlight differences in the
super-critical diffusive regime, Figure 6 shows smoke diffusion in a
medium with uniform background velocity. The traditional Fourier-
type solver propagates smoke both in the upstream and downstream
directions, dissipating significantly in the process. In contrast, our
generalized diffusion solver produces a limited “conical” diffusion
region, as predicted by our diffusion taxonomy derived in Section 5.

9.4 Hydrogel Swelling
We simulated poroelastic material dynamics of a hydrogel that are
driven by fluid absorption, by integrating our convection-diffusion
formulation using the generalized C-F diffusion model with MPM,
as described in Section 8. As fluid diffuses through the solid, its
saturation level affects material elasticity, making the resulting dy-
namics an interaction between the diffusion wave and stress wave.
As shown in Figure 2, our method produces rich anisotropic 3D
deformations that are not captured with Fick’s law. Moreover, our
method can qualitatively reproduce the characteristic folding be-
havior of the hydrogel that is observed in the real world, as shown
in Figure 10 (see here2 for a video of the real world experiment).

9.5 Snowflake Formation and Coral Reef Growth
Using our generalized diffusion solver, we simulated growth patterns
for snowflakes (256×256 grid) starting from an initial circular shape,
1https://www.youtube.com/watch?v=bWgGvANnO0U
2https://www.youtube.com/watch?v=dUEQ4lV0iyQ

Fig. 10. (Top) Time-lapse fluorescence micrographs of a hydrogel in poly-
merizing hairpins (reproduced with permission from [Cangialosi et al. 2017]).
(Bottom) Simulated hydrogel using our proposed convection-diffusion for-
mulation (9) using the generalized C-F diffusion model. Our method can
qualitatively reproduce the folding behavior observed in the real world, while
the standard Fourier model produces uniform expansion (see Figure 2(top)).

obtaining symmetric fern-like shapes that can also be described by
a traditional Fourier-type diffusion solver (see Figure 8 (top row)),
but also more vivid and asymmetric ones that cannot be described
by the traditional Fourier-based modeling approach (see Figure 8
(bottom)), as they correspond to the case 𝐹𝜂 = 𝐹𝑇 = 0, when the
governing equations become purely hyperbolic. However, as shown
in Figure 12, such kinds of simulated growth patterns are indeed
observed in the real world [Libbrecht 2005a] (see also here3 for the
real world snowflake photos). For this example, we set 𝜏1 = 1 and
𝜏2 = 10−4, obtaining significant non-Fourier effects in the phase-
field in comparison to the temperature. The 6-fold branch pattern
that is preset in our formulation (and obtainedwith standard Fourier-
type diffusion, see Figure 11(far right)) degenerates to 4 branches.

In our simulations, we have observed that such large differences
in the values of 𝜏1 and 𝜏2 can result in various anisotropies. To
empirically verify this hypothesis, we conducted a parameter study

3http://snowcrystals.com/
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Fig. 11. The first three patterns use 𝐹𝜂 = 𝐹𝑇 = 0 and 𝜏1 = 𝜏2 ∈ {10−3, 10−4, 10−5 } in Eq. (28). The last pattern was obtained with the standard Fourier model.

for this example. We set 𝐹𝜂 = 𝐹𝑇 = 0 and ran simulations where
𝜏1 = 𝜏2 and also where 𝜏1 ≠ 𝜏2. In the former case, particularly
when these values are small, the deviations from standard Fourier-
based diffusion are minor (see Figure 11). This observation is also in
agreement with our diffusion taxonomy (see Section 5), the diffusive
speed for both phase-field and temperature are very high when 𝜏1, 𝜏2
are small, such that the resulting snowflake growth is very close to
the standard Fourier model, where the diffusive speed is infinite.
When 𝜏1 ≠ 𝜏2, we fix 𝜏2 = 10−4 and only increase 𝜏1 to ob-

serve non-Fourier effects due to phase-field values. The growth of
branches is limited, and the principal branches in the predefined 6-
fold pattern degenerates to 4 when 𝜏1 = 10−2. However, our model
provides a wide range of snowflake patterns and the results are
supported by real world data (see the case 𝜏1 = 10−3 in Figure 13).
Figure 7 shows a coral reef (1202 × 200 grid) that was simulated

using our diffusion solver, producing a growth pattern that is similar
to those observed in the real world (see here4 for a real image).

Fig. 12. (Left) Real world snowflake (reproduced with permission from [Lib-
brecht 2019]). (Middle) Simulated snowflake using our generalized diffusion
solver with 𝐹𝜂 = 𝐹𝑇 = 0, 𝜏𝜂 = 10−5, 𝜏1 = 1, 𝜏2 = 10−4, 𝛿 = 10−2, 𝛾 = 10, 𝛼 =

0.9, 𝜔 = 6, 𝜖𝑝 = 0.02, 𝜖𝑎 = 0, and Γ = 0. (Right) Snowflake simulated using
traditional Fourier-based diffusion. This example highlights that the C-F
diffusion model can describe snowflake patterns that are observed in the
real world, but which cannot be described by Fourier-based diffusion.

9.6 Snowfall Simulation
To showcase the various snowflake patterns obtained using our gen-
eralized phase-field modeling approach, we used them as textures
for animating a procedural simulation of snowfall (see Figure 1).
Note that more comprehensive simulation approaches are required
for capturing effects such as snow accumulation [Gissler et al. 2020].

10 CONCLUSION AND FUTURE WORK
We proposed a novel two-field convection-diffusion formulation to
describe diffusion-driven phenomena with the C-F diffusion model,
4https://www.jpl.nasa.gov/news/news.php?feature=6793

which is a strict generalization of Fourier’s law. To simulate the
proposed model on staggered MAC grids, we proposed a novel semi-
implicit discretization that leads to an implicit linear system that
has better conditioning compared to the Fourier system, and allows
for efficient numerical solutions using Multigrid-preconditioned
Conjugate Gradients. Our method easily integrates with MPM and
phase-field modeling, and allows for relatively large time steps.

Our method presents a more fundamental and physical interpre-
tation of the basic convection-diffusion phenomena in nature, that
rely heavily on the interaction between the diffusion process and
the background material dynamics. A limited diffusion regime was
proven to exist when the propagation speed of diffusion is smaller
than the speed of the background material, as shown by our smoke
simulations with uniform background flow. We also demonstrated
that our method captures a wide range of diffusion processes and
produces more detailed and realistic diffusion-driven effects in prac-
tical applications than Fourier’s law, such as anisotropic dynamic
swelling of an elastic hydrogel immersed in water, sharper ink pro-
file, and rich dendrite and snowflake growth patterns.
There are many interesting avenues for future work. Since our

method describes a hyperbolic problem (wave propagation), numer-
ical oscillations exist near the discontinuous wave front. Investiga-
tion into high order accurate upwind discretization techniques, such
as weighted essentially non-oscillatory (WENO) schemes [Jiang
and Shu 1996], and their integration with MPM, would be useful.
This may also help mitigate the memory overhead of our two-field
convection-diffusion formulation that comes with the use of high
resolution grids, which is roughly four times that of the traditional
single-field Fourier diffusion model. The parameters 𝐹𝑇 , 𝜏 , and 𝐻𝑐

provide amechanism to two-way couple diffusion dynamicswith the
background material dynamics, in stark contrast to Fourier-based
diffusion where only one-way coupling is achieved. However, the
resulting effect very much depends on the problem being simulated
and domain knowledge. It would be interesting to find parameters
that are more intuitive to control and allow for desired visual results.
Our focus in this paper was on simulating dissipative dynamics.
The diffusion step happens after advection, and is not conservative
in general because this constraint is not being explicitly enforced
in our Eulerian framework. Thus, it would be beneficial to design
schemes that conserve mass with non-Fourier diffusion. Finally, our
snowflake simulations would benefit from the introduction of more
advanced orientation field models, such as those proposed in [Ren
et al. 2018], that allow the artist to customize the crystal growth by
controlling its growth directions and final shape.
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Fig. 13. The first three patterns are simulations which use 𝐹𝜂 = 𝐹𝑇 = 0, 𝜏2 = 10−4 and 𝜏1 ∈ {10−1, 10−2, 10−3 } in Eq. (28), with the same formulation as that in
Figure 11. The rightmost image is another example of a snowflake pattern observed in the real world (reproduced with permission from [Libbrecht 2005b]).
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A APPENDIX: USING A SINGLE-FIELD C-F MODEL TO
DERIVE A CONVECTION-DIFFUSION MODEL

The single-field C-F diffusion equation is given by:

𝜏
𝜕2𝜙

𝜕𝑡2
+ 𝜏 𝜕𝜙

𝜕𝑡
= 𝑘

𝜕2𝜙

𝜕𝑥2
+ 𝜏𝐹𝑇𝑘

𝜕

𝜕𝑡

[
𝜕2𝜙

𝜕𝑥2

]
+𝑊, for 𝐹𝑇 < 1

𝜕𝜙

𝜕𝑡
= 𝑘

𝜕2𝜙

𝜕𝑥2
+𝑊, for 𝐹𝑇 = 1

Taking the case with 𝐹𝑇 < 1 in incompressible flow as an example
and replacing the partial time derivative (𝜕□/𝜕𝑡) in the diffusion
equation by the material derivative (𝐷□/𝐷𝑡 = 𝜕□/𝜕𝑡 +𝒖 ·∇□) yields:

𝜕𝜙

𝜕𝑡
:→

(
𝜕𝜙

𝜕𝑡
+ 𝒖 · ∇𝜙

)
; 𝜏

𝜕2𝜙

𝜕𝑡2
:→ 𝜏

𝜕

𝜕𝑡

(
𝜕𝜙

𝜕𝑡
+ ·𝒖 · ∇𝜙

)
and

𝜏
𝜕2𝜙

𝜕𝑡2
+𝜏 𝜕(𝒖 · ∇𝜙)
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+ 𝜕𝜙
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+𝒖·∇𝜙 = 𝑘∇·∇𝜙+𝜏𝐹𝑇𝑘
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𝜕𝑥2
+𝜏𝐹𝑇𝑘𝒖·∇

𝜕2𝜙

𝜕𝑥2

where𝑊 is omitted for simplicity of exposition. Assuming 𝒖 = 𝑉

as a constant in the one-dimensional case gives:
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𝜕𝑥3
= 0

with the following expression for the wave speed:

𝑐 =
1
2

[
𝑉 2 ±

√
𝑉 2 − 4(1 − 𝐹𝑇 )

𝑘

𝜏

]
It follows from above that the diffusive speed 𝑐 depends on the
background material velocity 𝑉 , assuming different values in dif-
ferent moving media. However, the correct diffusive speed is 𝑐 =√
(1 − 𝐹𝑇 )𝑘/𝜏 (see Section 5). In other words, using the classical

single-field formulation yields a nonphysical wave speed.

B APPENDIX: DERIVATION OF JACOBIAN MATRICES 𝑨𝑖

Our convection-diffusion formulation (9) using the generalized C-F
diffusion model considers the following variables in 3D:

𝒖 =
[
𝑢1 𝑢2 𝑢3

]T
𝒒𝐹 =

[
𝑞1
𝐹

𝑞2
𝐹

𝑞3
𝐹

]T
𝒒𝐶 =

[
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𝐶

𝑞2
𝐶

𝑞3
𝐶

]T
𝑼 =

[
𝜙 0 0 0 𝜏𝑞1

𝐶
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𝐶
𝜏𝑞3

𝐶

]T
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[
𝑊 −𝑞1

𝐹
−𝑞2

𝐹
−𝑞3

𝐹
−𝑞1

𝐶
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𝐶
−𝑞3

𝐶

]T

𝑮 =



𝑢1𝜙 + 𝑞1
𝐹
+ 𝑞1

𝐶
𝑢2𝜙 + 𝑞2

𝐹
+ 𝑞2

𝐶
𝑢3𝜙 + 𝑞3

𝐹
+ 𝑞3

𝐶
𝐹𝑇𝑘𝜙 0 0
0 𝐹𝑇𝑘𝜙 0
0 0 𝐹𝑇𝑘𝜙

(1 − 𝐹𝑇 )𝑘𝜙 + 𝜏𝑞1
𝐶
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𝐶
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where the superscripts 1, 2, 3 represent different Cartesian axes.
Therefore, we can compute the Jacobian matrices 𝐴𝑖 as follows:

𝐴1 =
𝜕𝐺1
𝜕𝑼

=



𝑢1 0 0 0 1/𝜏 0 0
𝐹𝑇𝑘 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

(1 − 𝐹𝑇 )𝑘 0 0 0 𝑢1 0 0
0 0 0 0 0 𝑢1 0
0 0 0 0 0 0 𝑢1


𝐴2 =

𝜕𝐺2
𝜕𝑼

=



𝑢2 0 0 0 0 1/𝜏 0
0 0 0 0 0 0 0

𝐹𝑇𝑘 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 𝑢2 0 0

(1 − 𝐹𝑇 )𝑘 0 0 0 0 𝑢2 0
0 0 0 0 0 0 𝑢2


𝐴3 =

𝜕𝐺3
𝜕𝑼

=



𝑢3 0 0 0 0 0 1/𝜏
0 0 0 0 0 0 0
0 0 0 0 0 0 0

𝐹𝑇𝑘 0 0 0 0 0 0
0 0 0 0 𝑢3 0 0
0 0 0 0 0 𝑢3 0

(1 − 𝐹𝑇 )𝑘 0 0 0 0 0 𝑢3


ACM Trans. Graph., Vol. 39, No. 6, Article 178. Publication date: December 2020.


	Abstract
	1 Introduction
	2 RELATED WORK
	3 GOVERNING EQUATIONS
	3.1 Classical Diffusion Equation
	3.2 Generalized C-F Diffusion Model
	3.3 Two-field Convection-Diffusion Formulation

	4 DISCRETIZATION
	4.1 Multigrid Solver

	5 Diffusion Taxonomy
	6 Coupling with Continuum Mechanics
	7 Generalized Phase-Field Modeling
	7.1 Anisotropic Phase-field Modeling for Snowflakes

	8 Integration with MPM
	8.1 Algorithm Description

	9 RESULTS
	9.1 Implementation Details
	9.2 Diffusion Patterns in 2D
	9.3 Ink Dispersion and Smoke Simulation
	9.4 Hydrogel Swelling
	9.5 Snowflake Formation and Coral Reef Growth
	9.6 Snowfall Simulation

	10 CONCLUSION AND Future Work
	Acknowledgments
	References
	A Appendix: Using a single-field C-F model to derive a convection-diffusion model
	B Appendix: Derivation of Jacobian Matrices bold0mu mumu AAAAAAi

