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1 Pseudocode

Here we present algorithms for all of our new methods, putting them in context within the MPM data flow
to highlight them as MPM augmentations that can be added to any existing pipeline.

1.1 General Routines

Algorithm 1 Initialize

{a;} = set of structural directors (one for transverse isotropy, two for orthotropy)

{a;} = set of corresponding weights € [—1, 00) (we only choose a; € {—1,0})

Set o = 0.5 Az

Set ( =1

Empirically tune o. (good starting value is to use a stress corresponding to some uniform stretch)
Empirically tune 7 //controls crack speed like M,

Algorithm 2 Construct Structural Tensor ({a;}, {ai}, F)

1: F =RS //Grab rotation, R, from F
2: if transverse isotropic then

3: return A =T+ a3(Ra; ® Ra;)
4

5

. else if orthotropic then
return A =1 + al(Ral X Ral) + Ozz(Raz X Ra2)




1.2 AnisoMPM Explicit Damage

Algorithm 3 AnisoMPM Explicit Damage

1: initializeParameters()
2: for each substep do
3: Begin MPM like usual until just before computeGridVelocity

4: computeLaplacians()
5: updateDamage()
6: Continue MPM like usual using the new updated damage values in computeGridVelocity

Algorithm 4 Compute Laplacians (Explicit Only)

: //Transfer damage to grid
: Compute interpolation weights, wj, //We must use cubic B-spline
: for each grid node, 7, do
n _ 2pWipdy
di = >, wh
ANT = N (2)Ni(y)Ni(2) + Ni(a) N/ (5) Ni(2) + Ni(2) Ni(y) N (2) //Requires cubic N
: //Compute and store Laplacians
: for each particle, p, do
Ady =3 d} AN

Algorithm 5 Update Damage (Explicit Only)

1: for each particle, p, do

2: //Compute geometric resistance: D7
3: Dl = dy — IFAd) i
4: //Compute driving force: (1 —dyy)Dy
5: Get un-degraded Cauchy stress, o), from F™ and constitutive model
6: Get eigenvalues, {0, }q=1,2,3, and eigenvectors, {n, },=1,23, of o,
7 o' =372 (04n, ®n, //With (z) = 212l
8: A} = constructStructuralTensor({a; }, {a:}p, F},') //pass structure directors and F
9: (o) = é(Agajn) : (o "AR) //See tech doc for derivation
10: Dy = max(¢(®(o ") — 1), DIfn=1)
11: bf” = D;} //update D history to keep the max
122 if (1—d?)D? > D? then
13: dptt = min(1,dy + 2H((1 - dy) Dy — D))
14: else
. +1 _
15: dy™ =dy




1.

3 AnisoMPM Implicit Damage

Algorithm 6 AnisoMPM Implicit Damage

1
2

3:

® N> T

. initializeParameters()

: for each substep do

Begin MPM like usual until just before computeGridVelocity

damageP2G()

updateD()

damageSolve()

damageG2P()

Continue MPM like usual using the new updated damage values in computeGridVelocity

Algorithm 7 Damage P2G (Implicit Only)

=W N

: //Transfer damage to grid
: Compute interpolation weights, wy, //We must use cubic B-spline

: for each grid node, i, do
dn = 2, wipdy
g 2 Wip

Algorithm 8 Update D (Implicit Only)

1

© ® T > Tk wd

: for each particle, p, do ~

//Compute driving force: (1 —dy)D}

Get un-degraded Cauchy stress, o), from F" and constitutive model

Get eigenvalues, {0, }q=1,2,3, and eigenvectors, {n, },=123, of o,

ol = Yy {00)ma @ n //With (z) = £l

A} = constructStructuralTensor({a; }p, {a;}p, F,') //pass structure directors and F
(o) = ﬁ(Aga';n) : (a;,"nAf,‘) //See tech doc for derivation

D2 = max(((®(of") — 1), D)

Df’” = Dy //update D history to keep the max

Algorithm 9 Damage Solve (Implicit Only)

1:
2:

3:

4:
5:

//Goal is to contruct and solve this system for d: (A + B)d = ¢

c=le]=3,Vr (% Dr o+ dy) wr, //Build rhs

B=[Bi]=>,V, (%l%) (V@i(a:;}))T (VO,(x})) //Build MPM discrete Laplace operator
A=Ayl =5 V) (1 + %(D;” + 1)) wy, //Build diagonal matrix

Solve the system with PCG (we use Jacobi preconditioner)

Algorithm 10 Damage G2P (Implicit Only)

g}ww.—l

: //Transfer damage from the grid
: Compute interpolation weights, wy, //We must use cubic B-spline

: for each particle, p, do

dntt = min(1, Y, df )




1.4 Inextensibility Solve

Algorithm 11 Enforce Inextensibility

1:
2
3:
4:
5
6
7

8:

procedure COMPUTE COEFFICIENT

//We store ia at (i * d + «)-th position in an array

d = simulation dimension, N,, = number of grid nodes, N. = number of cell centers
Initialize IV; as quadratic basis over grid nodes, I', as linear basis over grid cells
Set M~! = Zero(d* Ny,,d* N,,), B= Zero(N.,d * N,),b = Zero(d * N,,1)
Compute (M ~1);nia = At/m;

m;

Compute bjo = X305, — > Vy'op,5Nis(xp) //Loop over particles and sum up
p

1"

Compute Ko = Y VT (xp)aa(a - VN;(x,))//Loop over particles and sum up
P

9: procedure SOLVE LINEAR SYSTEM

10:
11:
12:
13:

Compute coefficient matrix: L = BM~'B7T, assemble RHS: » = BM ~'b
Solve linear system LA = r with conjugate gradient method

Compute v = {viq }ic1.n,pe.a=1.-d = M 1(b— BTX)

Update grid velocity using v;,,




2 Anisotropic Damage

2.1 Explicit Damage Derivation

Starting from the continuous damage evolution equation in [6], we can use explicit integration to get a
local damage evolution equation as follows:

d= % <(1 —d)D —(d—- lgAd)>

dn+1 —d" 1 n\ Myn n n

g+t = gn 4 B <(1 —dMD" — (d" — ngd”)>
7

Thus, our explicit damage update scheme becomes:

) At -
d?*' = min (l,dg + 7((1 —dy)D, — (dy — lgAdg»)
where we take the min with 1 to enforce d € [0, 1]. ﬁ; is the maximum value in the history of particle p’s
driving force, ﬁf, such that D;} = maux(Df7 C(@(a;rn) —1)). Note that, for explicit damage, we directly
update damage over particles, while the grid is only used for computing the damage Laplacians like so:

5, ud
2p Wip
and AN = N/ (z)N;(y)N;(z) + Ni(x)N/ (y)Ni(z) + Ni(z)N;(y) N/ (z) where N;(x,) is the interpolation

function used for transfer. Note that this computation requires the second derivative, mandating that we
use at least cubic N;(z,).

Ady =Y d)AN] with df =

2.2 Implicit Damage Derivation

Here we begin with the same local damage evolution equation and discretize it using implicit integration
as follows:

nd =(1- d)[) —(d— lgAd) //Local damage evolution rule

dntt —dr 1 -
-7 _ = _ gn+1 _ n+1 _ 52 n—+1
N ; <(1 4D — (d 12Ad )>
At /- _
A"t —dn = # (D —da1D — a4 ZadHh))
At - ~ -
dntt —gn = = (D —d""'D — a4 lgAd”“)) //Can remove Macauley brackets if we enforce history of D
n
gt —gn = By Blguiip Al Sl g
n n n n
At - At At At ~
d"tt 4 =d""' D+ —a"™ - —I2Ad"T = — D+ d"
n n n

A1+ Apy g) — gzgmn“ A g
n n n n

Al - A Al
(1+ #(D” + 1)) - (#lﬁ)Ad”“ - %D" +d

At this point we may write an Eulerian weak form of this PDE as follows:

/ w((a — BA)d" T — ~)dx = 0,
Ot



where a(x,t), B(x,t), and y(x,t) are corresponding coefficients, and w(x, t) is the arbitrary test function.
From this point we use MLS-MPM [I] to get a positive semi definite linear system to solve for unknown
grid damage values, d?“. For this system we follow the derivation presented by Wolper et al. 2019 in
section 3 of their supplemental document [9].

3 Anisotropic Elasticity

3.1 QR-based General Anisotropic Hyperelasticity

Drawing inspirations from [2], we can design arbitrary anisotropic hyperelastic constitutive models through
QR decomposition of F', i.e. F = QR where Q is a rotation, and R is upper-triangular.

11 Ti2 T3
R= To2 T23
33

Similar to standard SVD type elasticity, in 2D we require a sign convention that r1; is non-negative to
make sure that @ is a rotation matrix. Since

F=[r1Q1 72Q1+12Q>]

we can enforce this by flipping the sign of the entire Q and R if after QR decomposition we detect 17 < 0.
Similarly, since in 3D we have

F=[r1Q1 r12Q1+722Q2 m13Q1 +1r23Q2 + r33Q3]

We can enforce a sign convention that r1; and ros are non-negative by saying: if after QR, we detect
r11 < 0, then we flip the sign of r11, Q1, m12, ™13, 733, Q3. Then if we further detect roo < 0, we flip the

sign of 722, Q2, 723, 733, Q3.
We define our elastic energy as:

A_,u, 2 A 2 ka: 2 k 2
‘I’*§(Zﬁj—d)—#(=]—1)+§(=]—1) +3(7”11—1) +§y(\/7"%2+7"§2_1) .
ij

The first three terms, inspired by stable Neo-Hookean [8], consist of the isotropic part of our energy. We
add the last two terms to penalize the  and y direction fiber stretching. For 2D, we add only the k, term,
and the energy formula becomes

N A ke
U= 5(erj —d) —p(J 1)+ §(J— 12+ 7(m -1)%
ij

3.2 Stress
In [3] it was proven that given W(F) = ¥(R), the stress P can be computed through
Po)% v o)
(), (), (),
T T T T oV pT ov pT oV pT
P —a- | () () (o
Q PR Q aFR oR 12 oOR 22 oRr 23
% oW %
("), (3e7),, (3E7)
Note that, in our method, J = [] ri; thus, for 3D we have
R K rio + kyria(1 — ——1— r
o0 1 MT12 y 12( \/m) Hr13

R | 0 Ky 1723
0 0 K3



where K = pu(r11 —ra2r33) + A(J — 1)raoras + ky(rin — 1), Ko = pu(raa —r11733) + A(J — 1)ragri + kyrae (1 —
ﬁ) and K3 = ,LL(’I’33 - 7'117”22) + )\(J — 1)7"117"22. For 2D we have
12 22

@ _ [p(ri = r22) + A = Drag + ko (r1n — 1) HT12
OR 0 w(raz —r11) + A(J — )i

We can then compute P using the above formula. Later, we will show that our QR-based energy always
has a bounded first Piola-Kirchhoff stress under arbitrary circumstances.

3.3 Stress Differential

Note that [3] has shown how to compute 6Q and dR. Here we further derive § P, which is essential for
implicit QR energy. Starting from P = QAR™T, we have

P =0QAR T+ QIAR T + QAS(R™T).
The first term is
QAR T =5QQT"PRTR™T
=-QiQ"P

where we have used QQT = I to get the last equality.

For the second term, note that for a given energy, \il, we explicitly know the entries in A as a function
of entries of R. Thus we can explicitly build J A. That allows us to compute the second term.

The third term is

QAS(RT)=QQ"PRTs(R™T)
= PR'S(R™T)
= _PSR"RT

where we have used RTR™T = I to get the last equality.
Combining the above we get § P.

3.4 Stress Derivative

We further show how to derive the stress derivative g—?. Again, starting from P = QAR™T, we have

Pij = Qi A(R™T)y;

OP;; 0Qik _T 0Aw _T a(R_T)lj
= Tk (BT )y + Qu S (BT, + Qup Ay D2
OF.,  0F., el ( )iy + @ kaFab( )i + Qir A OF.,
. 6@2’]@ N _ 0Ay Oreq N . 0 R_T)lj
= 9F, A (R )i + Qi Broy OF (R™)1; + Qir A o,

The first term can be computed if we know how to compute g—g, the second term can be constructed if we
know how to compute 2—1;7 and the third term can be computed by noticing

1
R =Q'5JF T,

whose derivative can be computed if we can compute % and the derivative of the cofactor matrix JF~7.



3.4.1 Derivative of R

If we can compute a—F, then we can construct through

_ T
Tij = Qi Fj

Ori;  0Qu;
= F a
OF, ~ OF, M + Q}0kadjp

3.4.2 Derivative of Q

All that is left is computlng . Through differentiating both sides of QTQ = I w.r.t. F;; we obtain:

oQ" T 0Q
=0
o, @9 ap, =0
which means QT— is skew symmetric and can be written as:
0 —Ws w2
w3 0 —W1
—W w1 0

By differentiating both sides of F = QR w.r.t. Fj;, and left multiplying @ on both sides we obtain:

T 7 0Q
R
@ 8Fm =Q 55, B 8Fm
which is essentially:
(QT Fy )11 (QT FJ) 12 (QF aa}«“; )13 0 —w3s wo 11 712
(QT aFJ ) (QT aaFI::,J )22 (QT aapﬁ )23 = w3 0 —W1 0 729
QT adF” )31 (QF adpij sz (QT adFij )33 —ws Wi 0 0 0
and then we know:
Qi25j1 = w311
Qi30j1 = —warn1
Qizdjo = —waria + wiTa2
which can be used to construct 77 by computing:

2Q
8Fij

=Q(@

8F”)

3.4.3 MATLAB code
compute_dQ_div_dF.m
F = randn(3,3);
[Q. R] = ar(F);

% for faster computation
one_div_R11 = 1.0 / R(1,1);
one_div_R22 = 1.0 / R(2,2);

13
ro3 |+
33

. 0Q Qrows — Quawz —Qriws + Qiawr  Qriws — Qrawr
= [Q2ws — Qazws —Qoiws + Qazwr  Q21ws — Qaow
Q3o2ws — Q33ws  —Q31w3 + Q33w Qa1we — Q3w




% 1,1

w3 = Q(1,2) % one_div_.R11;

w2 = —Q(1,3) * one_div_R11;

wl = w2 % R(1,2) % one_div_R22;
dQ_div_dF11 = Q_mult_Omega(Q, wl, w2, w3);

% check with finite diff

perturb = le—T7;

[Q.p, R.p] = qr(F + [perturb, 0, 0; 0, 0, 0;
err = (Qp — Q) / perturb — dQ.div_dF11

Q_mult_Omega.m

function result = Q_mult_Omega(Q, wl, w2, w3)
result = [Q(1,2) * w3 — Q(1,3) % w2,

—Q(1,1) % w3 + Q(1,3) * wl,
Q(1,1) * w2 — Q(1,2) * wl;
Q(2,2) x w3 — Q(2,3) * w2,
—Q(2,1) * w3 + Q(2,3) * wl,
Q(2,1) = w2 — Q(2,2) x wl;
Q(3,2) = w3 — Q(3,3) * w2,
—Q(3,1) * w3 + Q(3,3) * wl,
Q(3,1) = w2 — Q(3,2) = wl];

end

3.5 Bounded Stress

We now address the design choices of our energy density func
has bounded stress everywhere.

3.5.1 2D

0, 0, 0]);

tion and, furthermore, show that our energy

For arbitrary energy ¥ = \i/(R) in 2D, we now derive the stress using the method mentioned above to see

what necessary conditions should be met.

QTPRT = A

ov
Orag

R — 67‘11 a’rlg
OR

8‘1’ ( o v

OR

*

ov ov

A— oy 11t e, 12
ov r

8T12 22

RfT _ 1 ( 22

711722 \ —T12

o¥

ov
T _ -T _ R orir oryo
Q P - AR - oV 722 o Tri2 owv

7 oW v
agRT = <3T11r11 + Driz 12

)

Oria T11 Oraa r11 Oraz

10



Ultimately for P to be well defined, we need:

ov

r
67“12
to either have r1; as a factor, or be equal to zero.

Using the 2D version of g—g derived in

ov

87"22

12

we can easily verify that for our energy this term equals to
r117r12(p — A(J — 1)), which is a multiple of r11; hence, the computed stress is always bounded.

3.5.2 3D
QTPRT = A
oW v v
T Oryy Oryp Orys
87\11 — L)
Oras Orys
OR pes
Oras
v v o v v o
o o S e A PRl e A E B, el T Y e S o &
Z_RT = % ov . 4 OV . ov .
8R Oraz 22 Oras 23 87‘23 33
v
* * Oras 33
o o ov ov o o
a1t o, 12 T T8 T2t g 28 5,783
_ oW v v v oV
A= ors 22t 9r; 723 9ra3 22 T 95723 ry5 33
v
g ! 33 Orag ! 33 Oras | 33
1 22733
-T
R = W —T12733 11733
11722733
12723 — 713722 —T117T23 T11722
oW v v v o v
a1t a2 Y g T2 g T2 5,783 1
Tp _ -T _ oW v v o v
Q P=AR" = Bris 22 T rys 23 ras’22 T By T23 B,y 7B
U v v
Drig 33 Drag | 33 Drag |33
22733
—T12733 11733
12723 —T13T22 —T11T23 711722
The (1,1) term is —21— times
711722733
ov ov ov ov ov

r11722733+ . r12722733+
12

87’11 8r13

giving no divisions.

r13r22T33_ar T22T12r33_8r 723712733+
12 13

87’13

The (1,2) term is —L— times
711722733
ov ov
r22711733 + 723711733 — 733711723
8’/‘12 8T13 87“13

giving no divisions.

11

711722733

33712723 — or 733713722
13



The (1,3) term is —21— times

711722733 R
ov
A 3311722
87‘13
giving no divisions.
The (2,1) term is —L— times

711722733
ov ov ov ov ov ov
S T22122T33 + 723722733 — 722712733 — 723712733 + 5733712723 — 733713722
0T12 87'13 87"22 8r23 87"23 87"23

The (2,2) term is —21— times

711722733
ov ov ov
S T22711733 + 5723711733 — 75— 733711723
81"22 87’23 6?"23

giving no divisions.
The (2,3) term is —L— times

T11722733 .
ov
——T337117
Orgg 33711722

giving no divisions.
The (3,1) term is —21— times
711722733
oV o o o

S T33722733 — 5 —T33712733 + 75— "33712723 — 75— 733713722
8T13 87“23 87“33 87“33

The (3,2) term is —L— times

711722733
ov ov
A T'33711733 — 733711723
87"23 3T33
. 1 .
The (3,3) term is — —— times )
ov
S I'33T11T22
8T33
giving no divisons.
In summary, the appearance of divisions are all in the lower left non-diagonal terms: Traaras times
ov ov ov ov ov ov
S T22722733 + 5723722733 — 55— 122712733 — S——"23T12733 + ———T33T12723 — 75— 733713722
8’/‘12 87‘13 (97“22 87"23 87“23 87“23

ov ov ov ov
S T33722733 — 7133712733 + 5733712723 — 75— 733713722
81"13 87”23 8’/’33 81“33
ov oV
33711733 — 33711723
87‘23 87‘33

which are

8@ T‘E a\if 723 8@/ 12 6'\1/ 13

Oriarin Orizrin Oraarin Orogrin
8\11 733 8\1/ 712733 + 8\11 712723 8\11 T13

87‘13 T11 37‘23 T11722 37“33 T11722 37“33 T11
8\1/ T33 8\11 T23

Oragmaz  Orss T2z
Using % derived in we can verify that all three of these expressions give no division; thus, our

elastic energy can be used to compute stress under an arbitrary setting.

12



3.6 Energy Degradation

To allow damage to degrade our elastic potential, we use a typical degradation function [7, [5], g(d), such
that g € [0,1] and choose to selectively degrade specific terms like so:

e We always degrade the shearing term (our two p terms) by multiplying it by g.

e We conditionally degrade the volumetric term (the A term) when J > 1 (volume increase, associated
with tension) by multiplying it by g.

e We never degrade the k, and k, terms to allow for the fiber elasticity to remain intact.

We write our QR-elasticity in the following form, splitting it into a tension term, ¥ (R), a compression
term, U~ (R), and a fiber term, ¥/ (R), as follows:

U(R) = V" (R) + VU~ (R) + U/ (R).

This incorporates our aforementioned terms in the following way:
UH(R)+T¥MNR) J>1 0 J>1

UH(R) = (B)+ THR) J= , UT(R) =9 i
UH(R) J<1 IMR) J<1

Thus, we can simply degrade elasticity like so, successfully only degrading the tension portion of our
elasticity:

U(R) =g(d) P (R)+ ¥ (R) + U/ (R).

4 Inextensibility

4.1 Derivation of Constraint Equation

Our inextensibility constraint equation is:
(aa®) :d=0. (1)

In the following context, we will use notations and concepts from standard MPM and continuum mechanics.
We list some of them here for reference. Assuming we have a deformation map ¢(X,t), the deformation
gradient is defined as F' = g—)‘p(. J = |F| denotes the determinant of F. C denotes Cauchy-Green tensor
defined as C = FTF and E denotes the Green-Lagrangian strain tensor defined as E = L{(FTF —I) =
HC-1),

Let a® = a(x,0) = (a%)a=1..a denote the initial fiber direction. The structural tensor is defined
M = a’ ® a®. In mechanics literature like [10], the constraint relation for inextensibility is a’ - Ea® = 0.
We can rewrite the above condition as: a’ - Ca’ = (a’)Ta’ = 1 (a° is a unit vector). Notice that
a’ Ca’=C: M =tr(CM) (a’ - Ca’ = a)(Ca®); = a)C;;af,tr(CM) = C;;Mj; = Cyjalal). Thus, the
inextensibility constraint becomes:

tr(CM) = 1. 2)

Note that tr(CM) equals 1 in the initial configuration. In order to keep the fiber inextensible, the derivative

D(r(CM)) _ 0. We can derive that

should equal 0 in all configurations. Thus, C satisfies b

_ D(tr(CM))

0= D = tr(CM) = tr(FT (Vol + Vo)FM). (3)

Here the upper dot represents derivative with respect to time, and V represents the spatial gradient. The
second equal sign holds because M is a constant tensor. To derive the third equation, we can see from
MPM literature that F' = Vo F Hence we have C = (FTF) = FTF + FTF = (VoF)TF + FTVuF =
FT(VvT + Vo)F.

13



Our formulation then becomes tr(FT(VvT + Vv)F"M) = 0. Hence, we have:

0=F5 (Vo' + Vv),Frala) = Fa)(Vo' + Vo) Fua) = (Fa’); (Vo' + Vo) (Fa®),  (4)

Uz

where summation over i, j, k, [ is implied. Notice that @ = Fa®(up to a scalar scaling) and d = (Vo™ +
Vo). The above derivation gives (aa”) : d = tr(aa’d) = tr(a’da) = a;djra), = 0. Thus, our formulation
in Eq. is proven.

4.2 Derivation of Weak Form

4.2.1 Momentum Equation
Dv
p(.’B t) Dt =V® s Ol + P(‘Bv t)g (5)

Through introducing test function, g(x,t), and ignoring gravity for simplicity, the weak form of Eq. is:

/Qt q(x, t)p(:c,t)%dw = /Qt q(z,t)V® - (o + aa®)dzx. (6)

After applying integration by parts and divergence theorem, this becomes:

Do, (x,t
/ qa(m,t)p(w’t)wdw :/ Gatads(x) — (/ qa,gaagdw+/ qa,@)\(ac,t)aa(w,t)aﬂ(a:,t)dw> .
Ot Dt aQt Ot Ot

We’ll assume a zero-traction boundary condition, so let’s remove the boundary integral term and to arrive
at:
Duv,(x,t
/ qa(a:,t)p(w?t)#)dw =— (/ Go,k0apdx —|—/ qa,k)\(w,t)aa(a:,t)ag(nt)da:) . (7)
Qt t Qt Qt

Now, we follow the standard MPM weak form derivation and only focus on the final integration since
the others are proven in [4]. By expanding velocity and ¢ at nodes, and X at cell centers as:

da(T) = GiaNi(x), vao(x) = viaNi(x), Mx)=AT.(x),
we get:

1
& | N @ = N @) == [ Ns@ase e = [N T (@)da.
0

Thus, following the same mass lumping strategy from [4], we have:

n+1 n
b At e _/ Nig(®)oas(z, t")dx _/ Ni gaaagA.T;(x)de. 9)
Q" Q"

(mw

Rearranging this equation, we get an equation of unknown A\ and wv:

ﬂvﬁjl + (/ aq(a - VNi)Fz(a:)da:> Ay = ﬁvﬁl - N; g(x)oap(x, t")de. (10)
At Qt"" At Qt”
For simplicity, let dim be the dimension of simulation, N,, be the number of grid nodes, and N, be the
number of grid cells. Eq.@ gives dim x N, equations of v?cjl and A,. We further use B, ;o) to denote
the coefficient of \, while using b;,, to denote the right hand side. This item relates the z-th cell and the
a-th dimension of i-th node, i.e.

D1 4 B iy s = bia (11)
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4.2.2 Constraint
Recall Eq. . By introducing the test function, h(z,t), the weak form of Eq. is:

/ h(z,t)(aa”) : ddx = 0.
Qt

This is:

YR
/ch(w,t)(aa).2 8sc+8w dx =0

1 Ov, ~ Oug _
§/ch0/aaﬁ (m‘i‘m)dw—o

Through expanding velocity at nodes and h at cell centers like so:

Vo(x) = via Ny (), h(x) =h,T,(2),

we get:
1 ON,;(x) ON(x)
5 thz (e (2’ - =
5 /Qt (x)aqas (v 925 + vp Dz, de =0
1 N; N,
2 ) thz(x)aaaﬁvwaa;(:) + hZFZ(:c)aaaﬂvkﬁaa;im) dz = 0.

Let h, = d.. (in turn picking an equation for each cell center c):

1 ON;(x) ONy ()
— I, ; I =0.
5 /Qt c(®)anasvia 925 +Te(x)anapurgs B de =0

Note that the two terms are equal to each other (to see this, we could switch k to ¢ and swap « and 3 in
the second term, since they are all dummy indices); therefore, we get:

/ Le(x)aaapvia ONi(x) dx =0,
Ot 8:55

ie.
/ I'e(x)an(a - VN;)dzvi, =0 (12)
Ot

In a stacked view, this defines a linear constraint on v: Bv = 0. One constraint per cell c.
Comparing Eq. with Eq.@) we can easily see that the coefficient of v;, is exactly B( o). This gives
N, equations of v;, and A\.(with zero coefficient), i.e.

B(c,ia)via =0. (13)

4.3 KKT Relaxation

Directly solving the KKT system can be difficult both because it introduces more degrees of freedom (the
Lagrange multipliers) as well as non-symmetric positive definite (SPD) nature of the system. Even if
the Schur-complement is applied to solve for Lagrange multipliers and original unknowns in sequence to
make the sub-systems SPD, the computational overhead is still large, especially when the upper-left part
is not diagonal (when implicit time integration is applied). Likewise, the system can be super stiff and
ill-conditioned. Thus, we investigate relaxing the KKT system by augmenting the lower right block with
a diagonal matrix %I .
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Suppose we are solving:

min E(x) s.t. c(x)=0 (14)

x

with nonlinear energy, E(z), and linear constraints, c(x) and (VZc(z) = 0), the KKT system at iteration
1 is:
V2E(z') —VTe(z')\ (Axz\ [ - VE(x) (15)
—Ve(z?) 0 A c(z?) ’
then the relaxed KKT system would become:
VZE(z') —V'e(z')\ (Az\ _ (- VE(z') (16)
—Ve(z') 2 A)o\ e@) )

When the optimization converges at *, the above system will be solved to give Az = 0, which means we
have:

~VPe(z*)\* = —~VE(z*) (17)
%)\* = c(x"). (18)

By combining and to eliminate A\* we obtain:
VE(z*) — VTe(z*)ne(z*) = 0, (19)

which means the solved x* from our relaxed KKT is also a local optimum of the penalty-based soft
constraint version of our original problem:

min B(z) + —[|c(@)|” (20)

When 1 — —o0, the constraint in Eq. will be strictly satisfied after convergence, which is essentially
equivalent to not adding relaxation on our KKT formulation.

In this way, we can further demonstrate that a relaxation on our KKT formulation is essentially equiv-
alent to solving anisotropic elasticity by properly defining c(x).
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