
A Massively Parallel and Scalable Multi-GPU Material Point Method
Supplementary Technical Document

XINLEI WANG∗, Zhejiang University and University of Pennsylvania
YUXING QIU∗, University of California, Los Angeles and University of Pennsylvania
STUART R. SLATTERY, Oak Ridge National Laboratory
YU FANG, University of Pennsylvania
MINCHEN LI, University of Pennsylvania
SONG-CHUN ZHU, University of California, Los Angeles
YIXIN ZHU, University of California, Los Angeles
MIN TANG, Zhejiang University
DINESH MANOCHA, University of Maryland
CHENFANFU JIANG, University of Pennsylvania

ACM Reference Format:
Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-
Chun Zhu, Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang.
2020. A Massively Parallel and Scalable Multi-GPU Material Point Method
Supplementary Technical Document. ACM Trans. Graph. 39, 4, Article 1
(July 2020), 6 pages. https://doi.org/10.1145/3386569.3392442

1 COMPILE-TIME SETTINGS
To maximize the performance, we use compile-time constants for
both controls- and material-related settings. Below, we provide ad-
ditional details on compile-time settings for reproduction purposes.
We set the maximum number of particle-per-cell to be 64 for

all the experiments. Note that this setting is more than sufficient
for most MPM simulations since the typical particle-per-cell is 8
when initializing scenes. We have not observed any violations in
any examples we used in this paper, and one can easily modify this
setting in our code. However, the particles will be discarded if the
particle number inside one cell exceeds the compile-time setting,
leading to incorrect results.

We also preset the maximum number of particle blocks and grid
blocks, as well as the maximum particle number for the experiments.
These settings are adopted to enable the pre-allocation of all spatial
data structures. Still, we periodically check the current demand for
∗equal contributions

Authors’ addresses: Xinlei Wang, Zhejiang University and University of Pennsylvania;
Yuxing Qiu, University of California, Los Angeles and University of Pennsylvania;
Stuart R. Slattery, Oak Ridge National Laboratory; Yu Fang, University of Pennsylvania;
Minchen Li, University of Pennsylvania; Song-Chun Zhu, University of California,
Los Angeles; Yixin Zhu, University of California, Los Angeles; Min Tang, Zhejiang
University; Dinesh Manocha, University of Maryland; Chenfanfu Jiang, University of
Pennsylvania.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/7-ART1 $15.00
https://doi.org/10.1145/3386569.3392442

memory and dynamically resize to fulfill the need. Different scenes
require different settings, and the program works as long as the
whole memory allocated does not exceed the device memory limit.

Another assumption is that Courant–Friedrichs–Lewy (CFL) con-
dition always holds during run-time, indicating that the particles
would move at most one-cell distances in each time step. We use
Courant-number 0.6 to compute the CFL-bounded default stepping
time in all the experiments. The material stiffness is also considered
when computing the default stepping time for stability requirements.
During run-time, we compute the maximum of the grid velocity and
calculate a stepping time to ensure particles do not move more than
one-cell distance. The final stepping time is chosen as the minimum
of the computed time among all devices and the default stepping
time. The CFL condition is crucial for the correctness of the results,
and the G2P2G kernel will crash if it is violated, leading to failures
as would happen in traditional CPU and GPU solvers.

2 HIERARCHICAL DATA STRUCTURE COMPOSITION
Since the efficacy of the data structure is usually hardware- and
algorithm-dependent, it often requires non-trivial engineering ef-
forts to explore different choices. Therefore, the ability to quickly
design and benchmark new data structures for a specific task can
significantly reduce code complexity.

2.1 Data-Oriented Design Philosophy
Due to the increased overhead of memory operations, data-oriented
design philosophy [A. 2014] has been widely adopted in HPC. Fol-
lowing this design principle, Hu et al. [2019] introduces a high-
performance programming language, Taichi, wherein dedicated data
structures can be developed by assembling components of different
properties in static hierarchies. Taichi provides a powerful and easy-
to-use toolchain for developing a wide range of high-performance
applications. It implements an abstraction to define multi-level spa-
tial data structures and kernel functions through a user-friendly
python front-end and a robust LLVM back-end that automatically
handles memory, manages executions, and deploys to CPU or GPU.

https://doi.org/10.1145/3386569.3392442
https://doi.org/10.1145/3386569.3392442

Still, there are two major issues in Taichi that prevents us from
directly adopting it when developing multi-GPU-tailored MPM al-
gorithms: 1) no access to low-level operations, including CUDA
warp intrinsics, and 2) lack of multi-GPU support. Therefore, in our
implementation, we refer to the data structure description described
in Taichi as the mini-language and build up the infrastructure within
our C++ codebase with the following improvements.

C++ Oriented Programming. Unlike developing a new compiler
as in the Taichi programming language, we intend to develop a
tool that can be directly used in both native C++ and CUDA C++.
The latest standard supported by CUDA is C++14; thus it becomes
our final choice. Function definitions are decorated with ‘constexpr’
keyword whenever applicable on both the host- and the device-side.

Structural Composition. The C++ template meta-programming
is adopted to implement the infrastructure. Most setups, includ-
ing hierarchy, layout, the relationship of elements, etc., are known
beforehand and can be statically specified as template parameters.
Hence, the access interface and the internal composition of the
customized data structure are specified.

Memory Management. The representations of memory handles
vary across APIs for GPU computing. For CUDA C++, the memory
handle of the device memory is simply a pointer on the host; the cost
of copying is trivial. Thus, the memory handle can be value-copied
to CUDA kernel functions from the host-device. The specific type
of memory (e.g., unified virtual memory or device memory) that the
variable is allocated with is determined by the allocator given at the
run-time. The instance does not own the handle of the allocator so
that its lifetime could be managed by programmers explicitly.

In our c++ codebase, we follow the same principle emphasized by
the data-oriented design principle: the internal data structure should
be highly compositional and shielded under a set of high-level access
interfaces. Specifically, Structural Nodes can be associated with child
nodes recursively for multi-level hierarchy composition, and the
accompanyingDecorator specifies the property of the node itself. For
high performance, most specifications of the structure are performed
at compile-time. We provide these utilities through C++ variadic
templates in the following form:
domain<Tn, Ns...>; // Tn: Index Type, Ns: Multi−

dimensional coordinates of type Tn
enum attrib_layout{aos,soa};
enum structural_type{entity, hash, dense, dynamic};
decorator<structural_allocation_policy,

structural_padding_policy, attrib_layout>;
structural<structural_type, domain, decorator,

structurals...>;

2.2 C++ Implementation
The entire infrastructure consists of the four major components:
Domain,Decorator, Structural Node, and Structural Instance. For more
details, please refer to the opensourced code.

2.2.1 Domain. Domain describes the range for the index of a data
structure. It maps from multi-dimensional coordinates to a 1D mem-
ory span.
template<typename Tn, Tn Ns...>
struct domain {

template<typename... Indices>
static constexpr Tn offset(Indices&&... indices);

};

2.2.2 Decorator. Decorator describes the auxiliary and detailed
properties regarding the data structure it decorates.
enum class structural_allocation_policy : std::size_t {
full_allocation = 0,
on_demand = 1,
...

};
enum class structural_padding_policy : std::size_t {
compact = 0,
align = 1,
...

};
enum class attrib_layout : std::size_t {
aos = 0,
soa = 1,
...

};
template <structural_allocation_policy alloc_policy_,

structural_padding_policy padding_policy_,
attrib_layout layout_>

struct decorator {
static constexpr auto alloc_policy = alloc_policy_;
static constexpr auto padding_policy = padding_policy_

;
static constexpr auto layout = layout_;

};

2.2.3 Structural Node. Structural Nodes with particular properties
are formed in a hierarchy to compose a multi-level data structure.
Currently, we support three types of structural nodes (i.e., hash,
dense, and dynamic), same as in Hu et al. [2019].
enum class structural_type : std::size_t {
/// leaf
sentinel = 0,
entity = 1,
/// trunk
hash = 2,
dense = 3,
dynamic = 4,
...

};

No matter what the internal relationship of elements is within a
structure (either contiguous- or node-based), we assume there is at
least one contiguous chunk of physical memory to store the data;
the size is a multiple of the extent of the Domain and the total size
of all the attributes of an element.
/// attribute index of a structural node
using attrib_index = placeholder::placeholder_type;

/// traits of structural nodes
template <structural_type NodeType, typename Domain,

typename Decoration, typename... Structurals>
struct structural_traits {
using attribs = type_seq<Structurals...>;
using self =

structural<NodeType, Domain, Decoration,
Structurals...>;

template <attrib_index I>
using value_type = ...;
static constexpr auto attrib_count = sizeof...(

Structurals);
static constexpr std::size_t element_size = ...;
static constexpr std::size_t element_storage_size =

...;
/// for allocation

static constexpr std::size_t size = domain::extent *
element_storage_size;

template <attrib_index AttribNo> struct accessor {
static constexpr uintptr_t element_stride_in_bytes =

...;
static constexpr uintptr_t attrib_base_offset = ...;
template <typename... Indices>
static constexpr uintptr_t coord_offset(Indices

&&... is) {
return attrib_base_offset + Domain::offset(std::

forward<Indices>(is)...) *
element_stride_in_bytes;

}
template <typename Index>
static constexpr uintptr_t linear_offset(Index &&i)

{
return attrib_base_offset + std::forward<Index>(i)

* element_stride_in_bytes;
}

};

// manage memory
template <typename Allocator> void allocate_handle(

Allocator allocator) {
if (self::size != 0)

_handle.ptr = allocator.allocate(self::size);
else

_handle.ptr = nullptr;
}
template <typename Allocator> void deallocate(

Allocator allocator) {
allocator.deallocate(_handle.ptr, self::size);
_handle.ptr = nullptr;

}
// access value
template <attrib_index ChAttribNo, typename Type =

value_type<ChAttribNo>, typename... Indices>
constexpr auto &val(std::integral_constant<

attrib_index, ChAttribNo>, Indices &&... indices)
{

return *reinterpret_cast<Type *>(_handle.ptrval +
accessor<ChAttribNo>::coord_offset(std::forward
<Indices>(indices)...));

}
template <attrib_index ChAttribNo, typename Type =

value_type<ChAttribNo>, typename Index>
constexpr auto &val_1d(std::integral_constant<

attrib_index, ChAttribNo>,
Index &&index) {

return *reinterpret_cast<Type *>(
_handle.ptrval +
accessor<ChAttribNo>::linear_offset(std::forward

<Index>(index)));
}
/// data member
MemResource _handle;

};
/// specializations of different types of structural

nodes
template <typename Domain, typename Decoration, typename

... Structurals>
struct structural<structural_type::hash, Domain,

Decoration, Structurals...> : structural_traits<
structural_type::hash, Domain, Decoration,
Structurals...> {...};

...

We define two types of Structural Nodes, the root node and the
leaf node, to form the hierarchy.

/// special structural node
template <typename Structural> struct root_instance;
template <typename T> struct structural_entity;

2.2.4 Structural Instance. A variable defined by a Structural Node
is an Structural Instance spawned given an allocator at the run-time.
The instance is customizable (e.g., accessing the parent node requires
additional data) as it is assembled from data components.

enum class structural_component_index : std::size_t {
default_handle = 0,
parent_scope_handle = 1,
...

};
template <typename ParentInstance, attrib_index,

structural_component_index>
struct structural_instance_component;
/// specializations for each data component
template <typename ParentInstance, attrib_index>
struct structural_instance_component<ParentInstance,

attrib_index, structural_component_index::
parent_scope_handle> {...};

...

Besides the data components, the Structural Instance also inherits
from the Structural Node that specifies the properties of itself.

/// traits of structural instance, inherit from
structural node

template <typename parent_instance, attrib_index
AttribNo>

struct structural_instance_traits
: parent_instance::attribs::template type<(std::

size_t)AttribNo> {
using self = typename parent_instance::attribs::type<(

std::size_t)AttribNo>;
using parent_indexer = typename parent_instance::

domain::index;
using self_indexer = typename self::domain::index;

};

/// structural instance, inherit from all data
components and its traits (which is derived from
structural node)

template <typename ParentInstance, attrib_index AttribNo
, typename Components>

struct structural_instance;
template <typename ParentInstance, attrib_index AttribNo

, std::size_t... Cs>
struct structural_instance<ParentInstance, AttribNo,

std::integer_sequence<std::
size_t, Cs...>>

: structural_instance_traits<ParentInstance,
AttribNo>,

structural_instance_component<ParentInstance,
AttribNo, static_cast<
structural_component_index>(Cs)>... {

using traits = structural_instance_traits<
ParentInstance, AttribNo>;

using component_seq = std::integer_sequence<std::
size_t, Cs...>;

using self_instance =
structural_instance<ParentInstance, AttribNo,

component_seq>;
template <attrib_index ChAttribNo>
using accessor = typename traits::template accessor<

ChAttribNo>;

// hierarchy traverse
template <attrib_index ChAttribNo, typename... Indices

>
constexpr auto chfull(std::integral_constant<

attrib_index, ChAttribNo>,
Indices &&... indices) const {

...
}
template <attrib_index ChAttribNo, typename... Indices

>

constexpr auto ch(std::integral_constant<attrib_index,
ChAttribNo>,

Indices &&... indices) const {
...

}
template <attrib_index ChAttribNo, typename... Indices

>
constexpr auto chptr(std::integral_constant<

attrib_index, ChAttribNo>,
Indices &&... indices) const {

...
}

};

2.3 Examples
Here, we showcase usages of Structural in C++ by providing a set
of examples that describes a GPU SPGrid.

Common Useful Definitions.

/// leaf node
using empty_ = structural_entity<void>;
using i32_ = structural_entity<int32_t>;
using f32_ = structural_entity<float>;

/// attribute index
namespace placeholder {
using placeholder_type = unsigned;
constexpr auto _0 = std::integral_constant<

placeholder_type, 0>{};
...
}

/// default data components for constructing instances
using orphan_signature = std::integer_sequence<std::

size_t, static_cast<std::size_t>(
structural_component_index::default_handle)>;

Definition of GPU SPGrid.

// domain
using BlockDomain = domain<char, 4, 4, 4>;
using GridBufferDomain = domain<int, g_max_active_block

>;
// decorator
using DefaultDecorator = decorator<

structural_allocation_policy::full_allocation,
structural_padding_policy::compact, attrib_layout::
soa>;

// structural node
using grid_block_ = structural<structural_type::dense,

DefaultDecorator, BlockDomain, f32_, f32_, f32_,
f32_>;

using grid_buffer_ = structural<structural_type::dynamic
, DefaultDecorator, GridBufferDomain, grid_block_>;

Create Instances.

template <typename Structural, typename Signature =
orphan_signature>

using Instance = structural_instance<root_instance<
Structural>, (attrib_index)0, Signature>;

template <typename Structural, typename Componenets,
typename Allocator>

constexpr auto spawn(Allocator allocator) {
auto ret = Instance<Structural, Componenets>{};
ret.allocate_handle(allocator);
return ret;

}
auto allocator = ...;
auto grid = spawn<grid_buffer_, orphan_signature>(

allocator);

Access GPU SPGrid in a Function.

/// acquire blockno−th grid block
auto grid_block = grid.ch(_0, blockno);
/// access cidib−th cell within this block
grid_block.val_1d(_0, cidib); // access 0−th channel (

mass)
/// access cell within by coordinates
grid_block.val(_1, cx, cy, cz); // access 1−th channel

(velocity x)

Memory Layout. Two types of Structural Nodes with different Deco-
rators are illustrated in ?? to explain the underlying memory layout.

REFERENCES
Mike A. 2014. CppCon 2014: Mike Acton “Data-Oriented Design and C++”. https:

//www.youtube.com/watch?v=rX0ItVEVjHc.
Y. Hu, T. Li, L. Anderson, J. Ragan-Kelley, and F. Durand. 2019. Taichi: a language for

high-performance computation on spatially sparse data structures. ACM Transac-
tions on Graphics (TOG) 38, 6 (2019), 1–16.

https://www.youtube.com/watch?v=rX0ItVEVjHc
https://www.youtube.com/watch?v=rX0ItVEVjHc

	1 Compile-time Settings
	2 Hierarchical Data Structure Composition
	2.1 Data-Oriented Design Philosophy
	2.2 C++ Implementation
	2.3 Examples

	References

