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Abstract

Computing the Singular Value Decomposition (SVD) of 3× 3 ma-
trices is commonplace in 3D computational mechanics and com-
puter graphics applications. We present a C++ implementation of
implicit symmetric QR SVD with Wilkinson shift. The method is
fast and robust in both float and double precisions. We also per-
form a benchmark test to study the performance compared to other
popular algorithms.
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1 Problem Description

Our goal is finding the SVD of a real 3× 3 matrix A so that

A = UΣVT ,

where U and V are orthogonal matrices, Σ is a diagonal matrix
consisting of the singular values of A. In computational mechanics,
U and V are often enforced to be rotation matrices which better
represent geometric transformations. Furthermore, many authors
use the conventions as in [Irving et al. 2004], e.g., [Sin et al. 2011;
Stomakhin et al. 2012; Hegemann et al. 2013; Stomakhin et al.
2013; Bouaziz et al. 2014; Stomakhin et al. 2014; Saito et al. 2015;
Gast et al. 2015; Xu et al. 2015; Klar et al. 2016]. The conventions
are

• UTU = I, VTV = I;
• det(U) = 1, det(V) = 1;
• σ1 ≥ σ2 ≥ |σ3|.

Note that σ3 < 0 if det(A) < 0.

2 Givens Rotation

The QR algorithm largely depends on Givens rotations. Once any
c and s with c2 + s2 = 1 are computed from inputs x and y, a 2D
Givens rotation is defined as

G2(1, 2, c(x, y), s(x, y)) =

(
c s
−s c

)
.
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Algorithm 1 Constructing a 3D Givens rotation

1: procedure GIVENSCONVENTIONAL(x, y)
2: d← a2 + b2

3: c← 1
4: s← 0
5: if d 6= 0 then . no tolerance needed
6: t← rsqrt(d) . fast inverse square root
7: c← at
8: s← −bt
9: return (c, s)

10: procedure GIVENSUNCONVENTIONAL(x, y)
11: d← a2 + b2

12: c← 0
13: s← 1
14: if d 6= 0 then . no tolerance needed
15: t← rsqrt(d) . fast inverse square root
16: s← at
17: c← bt
18: return (c, s)

Algorithm 2 Fast inverse square root for float

1: procedure APPROXIMATERSQRT(a) . inaccurate
2: return SIMD_RSQRT (a)
3: procedure RSQRT(a) . much more accurate
4: b← ApproximateRsqrt(a)
5: b← 1

2
(3− ab2)b . Newton step with f(x) = a− 1/x2

6: return b

In 3D, there are 3 cases:

G3(1, 2, c(x, y), s(x, y)) =

 c s
−s c

1

 ,

G3(2, 3, c(x, y), s(x, y)) =

1
c s
−s c

 ,

G3(1, 3, c(x, y), s(x, y)) =

 c s
1

−s c

 .

s and c are usually constructed so that(
c −s
s c

)(
x
y

)
=

(
∗
0

)
.

Sometimes we also need to construct them so that(
c −s
s c

)(
x
y

)
=

(
0
∗

)
,

we denote this unconventional Givens rotation with Ĝ instead
of G. Algorithm 1 shows the pseudocode for constructing G



Algorithm 3 Polar Decomposition of 2× 2 matrices

1: procedure POLARDECOMPOSITION2D(A)
2: x← A11 +A22

3: y ← A21 −A12

4: d←
√
x2 + y2

5: R← G2(1, 2, c = 1, s = 0) . R is a Givens rotation
6: if d 6= 0 then . no tolerance needed
7: R← G2(1, 2, c = x/d, s = −y/d)
8: S← RowRotation(R,A) . S = RTA
9: return (R,S) . R is a rotation, S is symmetric

and Ĝ. Note that we use a fast inverse square root func-
tion (Algorithm 2) from Streaming SIMD Extensions (SSE) in-
trinsics to accelerate the float case (we use the c++ function
_mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(a)))). Simi-
larly to [McAdams et al. 2011], accuracy is improved by perform-
ing an additional Newton step. In the case of double precision, we
simply use the standard C++ square root function to maintain accu-
racy.

We further use the definition that

• B = RowRotation(G,A) means B = GTA,
• B = ColumnRotation(G,A) means B = AG.

In practice these operations are implemented more efficiently by
updating four entries of A in place instead of performing matrix
products.

3 SVD of 2× 2 Matrices

As the to-be-presented algorithm proceeds, the problem will even-
tually degrade into computing the SVD of a 2× 2 matrix. Here we
briefly describe how to do so while obeying a similar sign conven-
tion (U,V are rotations, σ1 ≥ |σ2|).

Assuming A is 2 × 2, the first step is computing its Polar Decom-
position A = RS, where R is a rotation and S is symmetric. As-
suming

R =

(
c s
−s c

)
,

requiring RTA being symmetric leads to xs = yc where x =
A11 +A22, y = A21 −A12. The two solutions are therefore

c =
x√

x2 + y2
, s =

y√
x2 + y2

or

c =
−x√
x2 + y2

, s =
−y√
x2 + y2

.

By taking the difference of ‖S− I‖2F from two solutions, it can
be shown that choosing the first one always minimizes it, therefore
guarantees the chosen R is the closest rotation to A (or S is the
closest symmetric matrix to I).

Once we have the symmetric matrix S, diagonalizing it with a Ja-
cobi rotation can be done similarly by solving c and s from(

c s
−s c

)(
S11 S12

S12 S22

)(
c −s
s c

)
=

(
∗
∗

)
.

Attentions need to be paid to prevent potential division by

Algorithm 4 Singular Value Decomposition of 2× 2 matrices

1: procedure SVD2D(A)
2: (R,S)← PolarDecomposition2D(A)
3: if S12 = 0 then . S is already diagonal
4: (ĉ, ŝ)← (1, 0)
5: (σ1, σ2)← (S11, S22)
6: else
7: τ ← 1

2
(S11 − S22)

8: w ←
√
τ2 + S2

12

9: t = (τ > 0)? S12
τ+w

: S12
τ−w . division is safe

10: ĉ← 1/
√
t2 + 1

11: ŝ← −tĉ
12: σ1 ← ĉ2S11 − 2ĉŝS12 + ŝ2S22

13: σ2 ← ŝ2S11 + 2ĉŝS12 + ĉ2S22

14: if σ1 < σ2 then . sorting
15: swap(σ1, σ2)
16: V← G2(1, 2,−ŝ, ĉ)
17: else
18: V← G2(1, 2, ĉ, ŝ)

19: U← RV
20: return (U, σ1, σ2,V) . U,V are rotations, σ1 ≥ |σ2|

zero [Golub and Van Loan 2012]. Finally,

V =

(
c −s
s c

)
,

U = RV,

Σ = VTSV.

After sorting σ1, σ2 to obey our sign convention and permuting
columns of U and V accordingly, we have A = UΣVT where

• UTU = I, VTV = I;
• det(U) = 1, det(V) = 1;
• σ1 ≥ |σ2|.

2×2 Polar Decomposition and SVD are shown in Algorithm 3 and
4.

4 Implicit Symmetric QR SVD

The QR algorithm iteratively applies Givens rotations to a tridi-
agonal symmetric matrix (which in the SVD case corresponds to
T = ATA) to solve the symmetric eigenproblem. Instead of con-
structing T, implicit symmetric QR SVD works on an upper bidi-
agonal A and implicitly does the same thing. This results in a much
higher accuracy and improves efficiency [Golub and Van Loan
2012].

4.1 Bidiagonalization and Zerochasing

The implicit symmetric QR algorithm starts with making A upper
bidiagonal. For 3 × 3 matrices, this can be done with 4 Givens



Algorithm 5 Zerochasing: Assuming input A31 = 0, U,V are ro-
tations, this function makes A upper bidiagonal while maintaining
the product UAVT unchanged

1: procedure ZEROCHASING(U,A,V) . update them in place
2: G← G3(2, 3, x = A12, y = A13)
3: A← AG, U← GTU
4: G← G3(2, 3, x = A12, y = A13)
5: A← GTA, V← GTV
6: G← G3(2, 3, x = A22, y = A32)
7: A← GTA, U← UG
8: return (U,A,V)

Algorithm 6 Upper Bidiagonalizing: Assuming input U,V are ro-
tations, this function makes A upper bidiagonal while maintaining
the product UAVT unchanged

1: procedure BIDIAGONALIZE(U,A,V) . update them in place
2: G← G3(2, 3, x = A21, y = A31)
3: A← GTA, U← UG
4: (U,A,V)← Zerochasing(U,A,V)
5: return (U,A,V)

rotation. Starting with A(0) = A,

A(1) = G
(1)
3 (2, 3, x = A

(0)
21 , y = A

(0)
31 )

TA(0) =

∗ ∗ ∗
∗ ∗ ∗
− ∗ ∗

 ,

A(2) = G
(2)
3 (1, 2, x = A

(1)
11 , y = A

(1)
21 )

TA(1) =

∗ ∗ ∗
− ∗ ∗
∗ ∗

 ,

A(3) = A(2)G
(3)
3 (2, 3, x = A

(2)
12 , y = A

(1)
13 ) =

∗ ∗ −
∗ ∗
∗ ∗

 ,

A(4) = G
(4)
3 (2, 3, x = A

(3)
22 , y = A

(3)
32 )

TA(3) =

∗ ∗
∗ ∗
− ∗

 .

In summary, A(4) = G
(4)
3

T
G

(2)
3

T
G

(1)
3

T
A(0)G

(3)
3 . The Givens

rotations need to be absorbed by U and V accordingly during the
process. The later three steps of this process is further called Ze-
rochasing, which takes a matrix of form∗ ∗ ∗

∗ ∗ ∗
∗ ∗


and make it ∗ ∗

∗ ∗
∗

 .

We will be using it again in every implicit symmetric QR iteration
(see Section 4.2). We summarize the algorithms for Zerochasing
and upper bidiagonalization in Algorithm 5 and 6.

4.2 Implicit Symmetric QR SVD with Wilkinson Shift

Our algorithm follows [Golub and Van Loan 2012]. Starting from
U = I and V = I, we first perform the upper bidiagonaliza-
tion described in Section 4.1 to matrix A with U and V also up-
dated. We use B to denote the bidiagonal matrix, where we have

UBVT = A. The implicit QR iteration operates on B iteratively
and update U and V on the fly. Denoting B with

B =

α1 β1
α2 β2

α3

 ,

the corresponding symmetric eigenproblem is on the matrix

T = BTB = B =

 α2
1 α1β1

α1β1 α2
2 + β2

1 α2β2
α2β2 α2

3 + β2
2

 .

QR iteration seeks to eliminate the off-diagonal entries of T.
Equivalently, one or more values of (α1, β1, α2, β2) will converge
to something close to zero. We will show in Section 4.3 that once
any of (α1, β1, α2, β2, α3) becomes smaller than a tolerance τ , we
can terminate the QR iterations and degrade the problem to a 2× 2
SVD. The termination tolerance τ is computed as a relative toler-
ance via

τ = max(
1

2
‖B‖F , 1)η

where we choose η = 128ε and ε is the floating point machine
epsilon.

QR Factorization The QR Factorization of a symmetric tridiag-
onal matrix T ∈ Rn×n can be easily done using n − 1 Givens
rotations with Q being a rotation matrix and R being upper trian-
gular.

QR Iteration If A ∈ Rn×n is symmetric, R0 is orthogonal and
T0 = RT

0 AR0, then the iteration

Tk−1 = QkRk,

Tk = RkQk

implies Tk = (R0R1 . . .Rk)
TA(R0R1 . . .Rk) is symmetric

tridiagonal, and converges to a diagonal form [Trefethen and Bau III
1997; Golub and Van Loan 2012].

Implicit Q Theorem Given A ∈ Rn×n symmetric, QTAQ =
T, VTAV = S, Q and V are orthogonal, T and S are sym-
metric tridiagonal. If A is unreduced (meaning it has non-zero
sub-diagonal entries) and the first column of Q and V are equal
(q1 = v1), then qi = ±vi and |Tij | = |Sij | [Golub and Van Loan
2012].

Explicit Shifted QR Iteration If µ is a good approximate eigen-
value of T, then Tn,n−1 tends to become smaller after a shifted
QR step:

T− µI = QR,

Tnew = RQ + µI = QTTQ

and T maintains a symmetric tridiagonal form [Golub and
Van Loan 2012].

Wilkinson Shift A good choice of the shift µ is the eigenvalue
of T’s bottom right 2 × 2 block that is closer to Tnn [Golub and
Van Loan 2012]. This shift gives average cubic convergence rate
for reducing Tn,n−1 to zero. In the 3× 3 case where

T =

a1 b1
b1 a2 b2

b2 a3

 ,



the shift is given by µ = a3 + d − sign(d)
√
d2 + b22 where d =

(a2 − a3)/2 and sign(d) = ±1 (choose 1 when d = 0).

Implicit Shifted QR Iteration The shifted QR iteration can be
done without constructing T − µI explicitly. Let’s focus on the
3× 3 case where we have

T− µI =

a1 − µ b1
b1 a2 − µ b2

b2 a3 − µ

 .

The QR decomposition T− µI = QR looks likea1 − µ b1
b1 a2 − µ b2

b2 a3 − µ

 =
(
q1 q2 q3

)∗ ∗ ∗
∗ ∗
∗

 ,

this implies q1 = γ(a1−µ, b1, 0)T for some normalization scale γ.
If we construct a Givens rotation G1 = G3(1, 2, x = a1 − µ, y =
b1), then it follows g1

1 = ω(a1 − µ, b1, 0)T for some normaliza-
tion scale ω. Therefore we know g1

1 = q1, i.e., G1 and Q has the
same first column. If we further find G2 such that Z = G1G2 has
the same first column with G1 and S = ZTTZ is symmetric tridi-
agonal, then by implicit Q Theorem, since Tnew = QTTQ and
S = ZTTZ, it follows qi = ±zi and |Tnewij | = |Sij |. Therefore,
utilizing G1 and G2 accomplishes the same effect as an explicit
shifted QR iteration step for updating T.

Implicit Shifted QR in the SVD Case For SVD, we prefer op-
erating on B directly to constructing T. Applying G1 directly to
B followed by Zerochasing B back to upper bidiagonal is equiva-
lent to doing implicit QR on T [Golub and Van Loan 2012]. More
specifically in our 3 × 3 case, after applying G1 as a column rota-
tion to B, the column rotation in the Zerochasing (i.e., G2

3 in Sec-
tion 4.1) essentially is the G2 we want to find in the implicit QR
for T with the property that G1G2 has the same first column with
Q. Therefore by operating on B directly, the implicit symmetric
QR algorithm is correctly applied.

We summarize the implicit shifted QR SVD in Algorithm 7. The
steps after exiting the loop is described in Section 4.3.

4.3 Postprocess and Sorting

If any α or β from Algorithm 7 becomes small, implicit QR itera-
tion is terminated. Here we show how each case is degraded to a
2× 2 easy problem.

4.3.1 Deflation Cases

Case 1: |β2| ≤ τ . In this case

B =

∗ ∗
∗
∗

 ,

we just need to compute the 2 × 2 SVD of the top left sub-matrix
and assemble back to 3D with

B =

∗ ∗
∗ ∗

1

∗ ∗
∗

∗ ∗
∗ ∗

1

T

Algorithm 7 Implicit Shifted QR SVD of 3× 3 matrices

1: procedure SVD3D(A) . return U,Σ,V
2: B← A
3: U,V← I
4: Bidiagonalize(U,B,V) . B is now upper bidiagonal
5: (α1, α2, α3)← (B11, B22, B33)
6: (β1, β2)← (B12, B23)
7: (γ1, γ2)← (α1β1, α2β2)
8: η ← 128ε
9: τ ← ηmax(0.5 ‖B‖F , 1)

10: while |β2|, |β1|, |α1|, |α2|, |α3| > τ do
11: a1 ← α2

2 + β2
1

12: a2 ← α2
3 + β2

2

13: b1 ← γ2
14: d← (a1 − a2)/2
15: µ← copysign(b21/(|d|+

√
d2 + b21), d)

16: G← G3(1, 2, α
2
1 − µ, γ1)

17: B← BG
18: V← VG
19: Zerochasing(U,B,V)
20: (α1, α2, α3)← (B11, B22, B33)
21: (β1, β2)← (B12, B23)
22: (γ1, γ2)← (α1β1, α2β2)

23: (U,Σ,V)← Postprocess(B,U,V, α, β) . section 4.3
24: return (U,Σ,V) . U,V are rotations, σ1 ≥ σ2 ≥ |σ3|

Case 2: |β1| ≤ τ . In this case

B =

∗ ∗ ∗
∗

 ,

we just need to compute the 2 × 2 SVD of the bottom right sub-
matrix and assemble back to 3D.

Case 3: |α2| ≤ τ . In this case

B =

∗ ∗
∗
∗

 ,

performing an unconventional Givens rotation Ĝ = Ĝ3(2, 3, x =

B23, y = B33) with B← ĜTB reduces B to the form

B =

∗ ∗

∗

 ,

where we just need to compute the 2 × 2 SVD of the top left sub-
matrix and assemble back to 3D.

Case 4: |α3| ≤ τ . In this case

B =

∗ ∗
∗ ∗

 .

We can use G = G3(2, 3, x = B22, y = B23) with B ← BG to
reduce B to the form

B =

∗ ∗ +
∗ −

 ,



Algorithm 8 Postprocessing after QR Iterations

1: procedure POSTPROCESS((B,U,V, α, β)) . return U,Σ,V
2: if |β2| ≤ τ then
3: SolveReducedTopLeft(B,U,Σ,V)
4: SortWithTopLeftSub(U,Σ,V)
5: else if |β1| ≤ τ then
6: SolveReducedBotRight(B,U,Σ,V)
7: SortWithBotRightSub(U,Σ,V)
8: else if |α2| ≤ τ then
9: Ĝ← Ĝ3(2, 3, x = B23, y = B33)

10: B← ĜTB
11: U← UĜ
12: SolveReducedTopLeft(B,U,Σ,V)
13: SortWithTopLeftSub(U,Σ,V)
14: else if |α3| ≤ τ then
15: G← G3(2, 3, x = B22, y = B23)
16: B← BG
17: V← VG
18: G← G3(1, 3, x = B11, y = B13)
19: B← BG
20: V← VG
21: SolveReducedTopLeft(B,U,Σ,V)
22: SortWithTopLeftSub(U,Σ,V)
23: else if |α1| ≤ τ then
24: Ĝ← Ĝ3(1, 2, x = B12, y = B22)

25: B← ĜTB
26: U← UĜ
27: Ĝ← Ĝ3(1, 3, x = B13, y = B33)

28: B← ĜTB
29: U← UĜ
30: SolveReducedBotRight(B,U,Σ,V)
31: SortWithBotRightSub(U,Σ,V)

32: return (U,Σ,V) . U,V are rotations, σ1 ≥ σ2 ≥ |σ3|

followed by G = G3(1, 3, x = B11, y = B13) with B← BG to
further reduce to

B =

∗ ∗ −
+ ∗

 ,

where we just need to compute the 2 × 2 SVD of the top left sub-
matrix and assemble back to 3D.

Case 5: |α1| ≤ τ . In this case

B =

 ∗
∗ ∗
∗

 .

Performing an unconventional Givens rotation Ĝ = Ĝ3(1, 2, x =

B12, y = B22) with B← ĜTB reduces B to the form

B =

 − +
∗ ∗
∗

 .

Further performing an unconventional Givens rotation Ĝ =

Ĝ3(1, 3, x = B13, y = B33) with B ← ĜTB reduces B to the
form

B =

 −
∗ ∗
+ ∗

 ,

where we just need to compute the 2 × 2 SVD of the bottom right
sub-matrix and assemble back to 3D.

Algorithm 9 Solve Reduced SVD Problem

1: procedure SOLVEREDUCEDTOPLEFT(B,U,Σ,V)
2: σ3 ← B33

3: u← G2(1, 2)
4: v← G2(1, 2)
5: (u, σ1, σ2,v) = Svd2D((TopLeftBlock(B))
6: u← G3(1, 2, c = u.c, s = u.s)
7: v← G3(1, 2, c = v.c, s = v.s)
8: U← Uu
9: V← Vv

10: return (U,Σ,V) . U,V are rotations, σ1 ≥ |σ2|
11: procedure SOLVEREDUCEDBOTRIGHT(B,U,Σ,V)
12: σ1 ← B11

13: u← G2(1, 2)
14: v← G2(1, 2)
15: (u, σ2, σ3,v) = Svd2D((BotRightBlock(B))
16: u← G3(2, 3, c = u.c, s = u.s)
17: v← G3(2, 3, c = v.c, s = v.s)
18: U← Uu
19: V← Vv
20: return (U,Σ,V) . U,V are rotations, σ2 ≥ |σ3|

4.3.2 Sorting

After processing the reduced 2 × 2 cases, the full Σ needs to be
carefully sorted to obey our sign convention. We give out the pseu-
docode for the full postprocessing (including sorting) in Algorithm
8, 9, and 10.

5 Performance

Our algorithm is implemented on top of the Eigen C++ template
library for its automatic vectorization of certain matrix operations.
The fast inverse square root function is the only explicit dependency
of SSE intrinsics, which is pretty standard on modern CPUs. We
test our code on a 12-core 3.47GHz Intel Xeon X5690 server using
the g++ compiler for Linux, version 5.3.0. We use the following
data set as our test cases:

1. Totally 1024×1024 = 1, 048, 576 random real matrices with
each entry uniformly sampled from −3.0 to 3.0.

2. All integer entry matrices with each entry ranging from−2 to
2 (totally 59 = 1, 953, 125 matrices).

3. Starting from the integer entry matrices, we perturb all entries
with random numbers from −256ε to 256ε (where ε is the
floating point machine precision). We generate 4 perturbed
cases for each integer matrix, resulting in 4×59 = 7, 812, 500
perturbed integer matrices.

4. We perturb the all entries of an identity matrix with ran-
dom numbers from −256ε to 256ε. Totally 1024 × 1024 =
1, 048, 576 matrices are generated.

5. We perturb the all entries of an identity matrix with random
numbers from −0.001 to 0.001. Totally 1024 × 1024 =
1, 048, 576 matrices are generated.

The random integer matrix and perturbed integer test cases show
the performance on singular and nearly singular matrices. Matrices
close to the identity are frequently obtained in simulations, partic-
ularly when warm starts are used. We run all tests with float and
double precisions, and compare the results with the SVD described
in [Irving et al. 2004] (implemented in the PhysBAM library and
imported to our Eigen code base), Jacobi SVD (built in Eigen), and
the one in Vega FEM library [Barbič et al. 2012] (See Figure 1 and
2). We don’t directly compare with [McAdams et al. 2011] because
their implementation is explicitly tailored to the characteristics of



Timing (float)

QR SVD ITF 04 Eigen Jacobi Vega FEM

1 0.3438 0.3637 1.4422 0.6401

2 0.5669 0.6597 2.5292 1.0886

3 2.3622 2.6397 10.3638 4.5957

4 0.1899 0.3619 0.9887 0.6079

5 0.2806 0.3619 1.1439 0.6182

Timing (double)

QR SVD ITF 04 Eigen Jacobi Vega FEM

1 0.6445 0.3517 1.8252 0.6367

2 1.0335 0.6354 3.1482 1.0834

3 4.4722 2.5336 12.9572 4.4881

4 0.2952 0.3481 1.0295 0.4800

5 0.6123 0.3481 1.6234 0.6141
Ti

m
e 

/ s
0.00

1.50

3.00

4.50

6.00

Test cases (float)
1 2 3 4 5

QR SVD ITF 04 Eigen Jacobi Vega FEM
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1 2 3 4 5

QR SVD ITF 04 Eigen Jacobi Vega FEM

Figure 1: Timing comparisons on all 5 tests with float and double precisions.

Reconstruction Maximum Error (float)

QR SVD ITF 04 Eigen Jacobi Vega FEM

1 4.965E-05 7.153E-07 7.153E-06 7.153E-07

2 3.123E-05 1.968E-04 4.530E-06 4.768E-07

3 4.035E-05 2.896E-04 5.007E-06 1.986E-06

4 1.542E-05 2.384E-07 1.609E-06 2.384E-07

5 1.528E-05 2.384E-07 1.907E-06 2.384E-07

Reconstruction Maximum Error (double)

QR SVD ITF 04 Eigen Jacobi Vega FEM

1 8.971E-14 8.984E-10 1.332E-14 3.613E-10

2 5.351E-14 1.968E-04 8.438E-15 6.322E-08

3 7.471E-14 3.189E-04 1.021E-14 8.099E-08

4 2.850E-14 3.520E-15 2.887E-15 2.442E-15

5 2.820E-14 3.113E-14 4.219E-15 2.665E-15

Figure 2: Maximum reconstruction error is computed as the maxi-
mum absolute value of entries in UΣVT −A.

SIMD or vector processors, and likely runs faster for a large array
of 3× 3 matrices in parallel.

We observe that implicit QR SVD has consistent accuracy for dif-
ferent test cases. The accuracy can be adjusted further by changing
the QR iteration tolerance and reach the machine precision. The
algorithm of [Irving et al. 2004] becomes less accurate in certain
degenerate cases even with double precision. This is largely due to
the loss of information form constructing ATA explicitly.

For the tests we performed, implicit QR SVD is the fastest in floats,
and comparable to [Barbič et al. 2012] in doubles. Notably, the
Jacobi SVD built in Eigen is much slower than all other algorithms.
This is partially due to their implementation is for general matrices
with arbitrary dimension. A specifically designed algorithm such
as in [McAdams et al. 2011] will probably improve it.

In summary, the Implicit QR SVD described in this document pro-
vides a nice balance between speed and accuracy. We release our
C++ code together with this document and expect it to benefit many
applications in computer graphics and computational solid mechan-
ics.
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37: if σ2 < 0 then
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