
Drucker-Prager Elastoplasticity for Sand Animation:

Supplementary Technical Document

April 20, 2016

We first present pseudocode to provide further details useful for implementing the method in Section 1.
Then in Sections 2-6 we provide details related to the derivation and basic properties of the plastic flow
and its discretization.

1 Pseudocode

Pseudocode for our algorithm is given in Algorithm 1, with additional details for the implicit solve in
Algorithm 2.

1.1 Derivatives of elasticity and plasticity

As part of an implicit formulation, we encounter the combination

Y(F) =
∂ψ

∂F
(Z(F, α)) = W(Z(F, α)), (1)

where W(F) = ∂ψ
∂F (F). This corresponds to projecting a deformation gradient for plasticity and then using

the result as part of a force computation. This function Y must be differentiated, resulting in the rank-four
tensor

M =
∂Y

∂F
(F). (2)

The tensor M has 34 = 81 entries and no symmetries. Both the construction and application of M are
somewhat expensive, and both can be avoided.

If F = UΣVT , then it turns out that Z(F, α) = UẐ(Σ, α)VT and W(F) = UŴ(Σ)VT , where Ẑ(Σ, α)

and Ŵ(Σ) are diagonal matrices. It follows then that Y(F) = UŶ(Σ)VT , with Ŷ(Σ) = Ŵ(Ẑ(Σ, α)),

where Ŷ(Σ) is also a diagonal matrix. To be able to carry out these steps, it is required of the energy
density function ψ, that it depends only on the singular values of F. In essence, we need to be able to

define ψ̂ such that, ψ̂(Σ) = ψ(F). This allows us to write the definition of Ŵ as Ŵ(Σ) = ∂ψ̂
∂Σ (Σ).

Note that we have taken advantage of these relationships to avoid computing the singular value de-
composition more often than necessary. Indeed, Ŵ is implemented by Energy derivative, and Ẑ is
implemented by Project.

Since these functions are rather simple in diagonal space, it might not be too surprising that the
derivatives are also simpler there. Let M̂ be the diagonal space version of M, defined by

Mijkl = M̂rsuvUirVjsUkuVlv, (3)

where index notation is used and summation is implied. In the pseudocode, the operation

A = M̂ : T (4)

1

Algorithm 1 Simulate sand

1: procedure Time Step
2: Transfer to grid
3: if explicit then
4: Explicit grid step
5: else
6: Implicit grid step
7: Transfer to particles
8: Update particle state
9: Plasticity hardening

1: procedure Transfer to grid
2: for all grid nodes i do
3: mn

i ←
∑
p w

n
ipmp

4: vni ← 1
mn

i

∑
p w

n
ipmp

(
vnp + 3

h2 Bn
p (xi − xnp)

)
. assuming cubic spline

1: procedure Explicit grid step
2: 〈v?i 〉 ← 〈vni 〉+ Force Increment(〈FE,np 〉, 0)

3: 〈vn+1
i 〉 ← Grid collisions(〈v?i 〉)

4: 〈ṽn+1
i 〉 ← Friction(〈vn+1

i 〉, 〈vn+1
i − v?i 〉)

1: procedure Implicit grid step
2: Coupled solve
3: 〈v?i 〉 ← 〈vni 〉+ Force Increment vel(〈vn+1

i 〉)
4: 〈∆vi〉 ← Grid collisions(〈v?i 〉)− 〈v?i 〉
5: 〈ṽn+1

i 〉 ← Friction(〈vn+1
i 〉, 〈∆vi〉)

1: procedure Transfer to particles
2: for all particles p do

3: vn+1
p ←

∑
i

wnipṽ
n+1
i

4: Bn+1
p ←

∑
i

wnipṽ
n+1
i (xi − xnp)T

1: procedure Update particle state
2: for all particles p do

3: xn+1
p ←

∑
i

wnip(x
n
i + ∆twnipv

n+1
i)

4: T←
∑
i

vn+1
i (∇wnip)T

5: F̂E,n+1
p ← (I + ∆tT)FE,np

6: F̂P,n+1
p ← FP,np

1: procedure Plasticity hardening
2: for all particles p do
3: (U,Σ,V)← SVD(F̂E,n+1

p)
4: (T, δq)← Project(Σ, αnp)

5: FE,n+1
p ← UTVT

6: FP,n+1
p ← VT−1ΣVT F̂P,n+1

p

7: qn+1
p ← qnp + δq

8: φF ← h0 + (h1q
n+1
p − h3)e−h2q

n+1
p

9: αn+1
p ←

√
2
3

2 sinφF

3−sinφF

1: function Friction(〈vi〉, 〈∆vi〉)
2: for all recorded collisions (b, i, ·,n, ·) do
3: vt ← vn+1

i − n(n · vi)
4: t← vt

‖vt‖
5: vi ← vi −min(‖vt‖, µb‖∆vi‖)t
6: return 〈vi〉
1: function Grid collisions(〈vi〉)
2: Forget recorded items
3: 〈v̂i〉 ← 〈vi〉;
4: for all collision bodies b do
5: x̂i ← xni + ∆tv̂i
6: if Is sticky(b) and φb(x

n
i) < 0 then

7: Record sticky(b, i)
8: v̂i ← vb(x̂i)
9: else

10: φ̂← φb(x̂i)−min(φb(x
n
i), 0)

11: if (Is separating(b) and φ̂ < 0) or
12: (Is slipping(b) and φb(x

n
i) < 0) then

13: Record collision(b, i,∇φb(x̂i))
14: v̂i ← v̂i − φ̂∇φb(x̂i)/∆t
15: return 〈v̂i〉
1: function Project(Σ, α)
2: ε← ln Σ
3: ε̂← ε− tr(ε)

d I
4: if ε̂ = 0 or tr(ε) > 0 then . Case II
5: return (I, ‖ε‖F)

6: δγ ← ‖ε̂‖F + dλ+2µ
2µ tr(ε)α

7: if δγ ≤ 0 then . Case I
8: return (Σ, 0)

9: H← ε− δγ ε̂
‖ε̂‖F

. Case III

10: return (exp(H), δγ)

1: function Energy derivative(F)
2: return 2µΣ−1 ln Σ + λtr(ln Σ)Σ−1

1: function Force Increment(〈Fp〉, b)
2: for all particles p do
3: (U,Σ,V)← SVD(Fp)
4: if b 6= 0 then
5: (Σ, ·)← Project(Σ, αnp) . ignore hardening

6: T← Energy derivative(Σ)

7: Ap ← V 0
p UTVT (Fnp)

T

8: for all grid nodes i do
9: fi ← − ∆t

mn
i

∑
p Ap∇wnip

10: return 〈fi〉
1: function Force Increment vel(〈vi〉)
2: for all particles p do
3: T←

∑
i vi(∇wnip)T

4: Ap ← (I + ∆tT)FE,np

5: return Force Increment(〈Ap〉, 1)

2

Algorithm 2 Implicit solve

1: procedure Coupled solve
2: 〈v̂i〉 ← 〈vni 〉+ Force Increment vel(〈vni 〉)
3: return Constrained Newton(〈v̂i〉)
1: function Constrained Newton(〈zi〉)
2: 〈zi〉 ← Grid collisions(〈zi〉)
3: while not too many iterations do
4: 〈yi〉 ← Nonlinear function(〈zi〉)

5: a←
√∑

i

miyi · yi

6: if a < τ∆t and not first iteration then
7: return 〈zi〉
8: Find 〈∆zi〉 so Times Diff(〈∆zi〉) = −〈yi〉

. Solve using GMRES
9: 〈zi〉 ← 〈zi〉+ 〈∆zi〉

10: 〈zi〉 ← Grid collisions(〈zi〉)
11: return 〈zi〉
1: function Nonlinear function(〈vi〉)
2: 〈v̂i〉 ← Grid collisions(〈vi〉)
3: 〈vi〉 ← 〈v̂i〉−〈vni 〉−Force Increment vel(〈v̂i〉)
4: return Prune collisions(〈vi〉)
1: function Prune collisions(〈vi〉)
2: 〈v̂i〉 ← 〈vi〉
3: for all recorded sticky (·, i) do
4: v̂i ← 0

5: for all recorded collisions (b, i,n) do
6: if Is separating(b) and v̂i · n < 0 then
7: Forget collision(·, i)
8: else
9: v̂i ← v̂i − (v̂i · n)n

1: function Times Diff(〈vi〉)
2: 〈v̂i〉 ← 〈vi〉
3: for all recorded sticky (·, i) do
4: v̂i ← 0

5: for all recorded collisions (·, i,n) do
6: v̂i ← v̂i − (v̂i · n)n

7: 〈vi〉 ← Hessian Times(〈v̂i〉)
8: for all grid nodes i do

9: vi ← v̂i + ∆t2

mn
i

vi

10: for all recorded sticky (·, i) do
11: vi ← 0

12: for all recorded collisions (·, i,n) do
13: vi ← vi − (vi · n)n

14: return 〈zi〉
1: function Hessian Times(〈zi〉)
2: for all particles p do
3: Load(Up,Qp, M̂)
4: T1 ←

∑
i zi(∇wnip)T

5: T2 ← UT
p T1Qp

6: T3 ← M̂ : T2 . See (§1.1)
7: Ap = V 0

p UpT3Q
T
p

8: for all grid nodes i do
9: yi ←

∑
p Ap∇wnip

10: return 〈yi〉
1: procedure Precompute(〈vi〉)
2: for all particles p do
3: T←

∑
i zi(∇wnip)T

4: Fp ← (I + ∆tT)FE,np

5: (Up,Σ,V)← SVD(Fp)
6: Qp ← FE,np V

7: Construct M̂ . See (§1.1)

8: Store(Up,Qp, M̂)

3

is requested. This is equivalent to Aij = M̂ijklTkl. What remains is to determine the structure of M̂. The
way that this is done follows from the approach taken in [5], but we summarize the result here.

Introducing the auxiliary variables Y ij , Dij , Sij , the nonzero entries of M̂ are (with no summation
implied)

M̂iijj = Y ij =
∂Ŷii
∂Σjj

(5)

M̂ijij =
Dij + Sij

2
i 6= j (6)

M̂ijji =
Dij − Sij

2
i 6= j (7)

Dij =
Ŷii − Ŷjj
Σii − Σjj

(8)

Sij =
Ŷii + Ŷjj
Σii + Σjj

(9)

Note that Dij = Dji and Sij = Sji, so that M̂ijij = M̂jiji and M̂ijji = M̂jiij . Thus, there are only
9 + 3 + 3 = 15 distinct nonzero entries to compute, and 9 + 6 + 6 = 21 multiplications (plus 12 additions)
are required to apply the tensor. Of the computations required, Y ij and Dij merit further attention. Sij
can be computed directly, since division by zero is not a concern there.

First we describe the computation of Y. Since Ŷ is the composition of two functions, Y is computed
using the chain rule. Note that both Ŵ and W are evaluated at Ẑ = Ẑ(Σ, α).

Y ij =
∂Ŷii
∂Σjj

=
∑
k

∂Ŵii

∂Σkk

∂Ẑkk
∂Σjj

=
∑
k

W ikZkj , (10)

where the matrices Y, W, and Z represent the derivatives of the functions Ŷ, Ŵ, and Ẑ when diagonal
matrices are treated as functions taking vector and returning a vector. Differentiating Ŵ gives

W = Ẑ−1(2µI− 2µ ln(Ẑ) + λooT − λtr(ln(Ẑ))I)Ẑ−1, (11)

where o is the all-ones vector.
Next, we need to differentiate the projection to get Z. There are three cases to consider. In Case I,

Z = I. In Case II, Z = 0. This leaves only Case III, in which case

ε = diag(ln Σ) w = diag(Σ−1) k = tr(ln Σ) s = ε− k

d
o ŝ =

s

‖s‖
p =

αk(dλ+ 2µ)

2µ‖s‖
(12)

Z = Ẑ

((
1 + 2p

d
o− p

k
ε

)
wT − p

(
I− ŝŝT

)
Σ−1

)
. (13)

With this, Y can be readily computed as Y = W Z by Equation (10).
Finally, for Dij , we can avoid potential numerical problems in the case where Σii ≈ Σjj by writing

Dij =
Ŷii − Ŷjj
Σii − Σjj

=

(
Ŷii − Ŷjj
Ẑii − Ẑjj

)(
Ẑii − Ẑjj
Σii − Σjj

)
. (14)

4

This works as long as both factors can be robustly computed. Consider the first term.

Ŷii =
2µ ln Ẑii

Ẑii
+
λtr(ln Ẑ)

Ẑii
(15)

Ŷii − Ŷjj =
2µ(ln(Ẑii)− ln(Ẑjj))

Ẑii
− λtr(ln Ẑ) + 2µ ln Ẑjj

ẐiiẐjj
(Ẑii − Ẑjj) (16)

Ŷii − Ŷjj
Ẑii − Ẑjj

=
2µ

Ẑii

ln(Ẑii)− ln(Ẑjj)

Ẑii − Ẑjj
− λtr(ln Ẑ) + 2µ ln Ẑjj

ẐiiẐjj
(17)

The only term that presents further difficulties is the divided difference on the natural log. This can be
computed by noting

ln(x)− ln(y)

x− y
=

1

y

ln(w + 1)

w
x = (w + 1)y (18)

=
1

y

{
1 |w| < ε

log1p(w)/w |w| ≥ ε
(19)

Here we have made use of the log1p library routine, which is designed to be robust in this case.
The next term that must be considered is the divided difference on Ẑ. Following the same general

procedure yields

Ẑii − Ẑjj
Σii − Σjj

=

(
1− δγ

‖ε̂‖F

)(
exp(Hii)− exp(Hjj)

Hii −Hjj

)(
ln(Σii)− ln(Σjj)

Σii − Σjj

)
. (20)

The first term is not a problem, and we have already seen how to handle the last term. For the middle
term,

ex − ey

x− y
= ey

ew − 1

w
x = y + w (21)

= ey

{
1 |w| < ε

expm1(w)/w |w| ≥ ε
(22)

where in this case we have made use of the expm1 library function.

2 Yield surface and plastic flow

In the continuum conception of sand, mechanical interactions are expressed through elasticity, modified
with plasticity to model the effects of frictional contact. We use the Drucker-Prager plasticity model, which
is built to enforce that shear stresses do not exceed a coefficient times normal stresses in magnitude. In
Section 2.1 we detail the connection between Coulomb friction, and the Drucker-Prager stress condition.

The stress condition defines a notion of admissibility for states of stress. In stress space, this is a region
whose boundary is often referred to as the yield surface. This places a constraint on the constitutive model
defining the mechanical response of the body. The multiplicative decomposition of the deformation gradient
into elastic and plastic parts is a means for designing a constitutive model that meets these constraints.
For states of stress in the interior of the feasible region, there is no plastic flow since the elastic constitutive
model suffices. However, as a state on the boundary of the region (yield surface) is approached, plastic
flow will be defined as means of modifying the constitutive model to satisfy the constraints. In Section 3
we derive the plastic flow as a means of satisfying the Drucker-Prager stress constraint.

2.1 Drucker-Prager yield surface derivation

5

x

n

d

−fnn

ffd

t

Consider a Coulomb friction interaction between two grains in contact. If α̃
is the coefficient of friction, then the frictional force ff can only be as large as
the coefficient of friction times the normal force fn: ff ≤ α̃fn. The Drucker-
Prager model generalizes this to a continuum. At any point in the continuum
body, the Cauchy stress σ expresses the local mechanical interactions in the
material. Specifically, at point x, σ(x) relates the force per area (or traction)
t that material on one side of an imaginary plane with normal n exerts on
material on the other side, as t = σ(x)n. If we consider this interaction to be
from friction, we can use the Coulomb model to relate the frictional force (per
area) ff = dT t to the normal force (per area) fn = −nT t as dT t ≤ −α̃nT t.
Here, d is the normalized projection of the traction t into the plane orthogonal
to n. In terms of σ, this is expressed as dTσ(x)n ≤ −α̃nTσ(x)n.

The frictional force (per area) ff = dT t is often referred to as the shear stress (at x, in direction n) and
the normal force (per area) is often referred to as the normal stress (at x, in direction n). If we consider
all shear stresses to arise from friction, then we get a notion of states of stress consistent with the Coulomb
model of frictional interaction. That is, we consider the stress field σ(x) as admissible (or consistent with
the Coulomb model) if

dTσ(x)n ≤ −α̃nTσ(x)n (23)

for all x in the material and for arbitrary directions d and n with dTn = 0.
When the normal stress nTσ(x)n is positive, the material on one side of the imaginary plane is pulling

on the material on the other side. This does not arise from a contact/frictional interaction and is a cohesive
interaction. Note that Equation (23) implies that in the presence of a positive normal stress, the shear stress
would have to be zero. In fact, it can be shown that it is not possible to be consistent with Equation (23)
(for all d and n) with a positive normal stress, and thus cohesion is not possible with this model.

2.1.1 Reformulation of stress admissibility

Consider the two dimensional case and states of stress consistent with Inequality (23). In this case, given
normal n, there are only two directions d orthogonal to it, namely d = ±Rn where

R =

(
0 −1
1 0

)
. (24)

In this case, satisfaction of Inequality (23) is achieved when

±nTRσ(x)n + α̃nTσ(x)n ≤ 0 (25)

for all directions n. Since the Cauchy stress must be symmetric (by conservation of angular momentum),
it has an eigen decomposition

σ = QDQT = Q

(
s1

s2

)
QT (26)

where Q is a rotation matrix. Rewriting Inequality (25) in terms of the eigen decomposition gives

±nTRQDQTn + α̃nTQDQTn ≤ 0 (27)

and since R and Q commute (2D rotations commute), satisfaction of Inequality (25) is the same as

ñT (±RD + α̃D) ñ ≤ 0 (28)

where ñ = Qn and

RD =

(
−s2

s1

)
. (29)

6

Since Inequality (28) must be true for all ñ and choice of sign, it is equivalent to require that the maximum
of

F (ñ, h) = ñT (hRD + α̃D) ñ (30)

subject to ‖ñ‖2 = 1 and h2 = 1, is less than 0. Using the method of Lagrange multipliers it can be shown
that this maximum is given by

s1 + s2

2
α̃+
|s1 − s2|

2

√
1 + α̃2. (31)

Dividing by
√

1+α̃2
√

2
we obtain that

(s1 + s2)
α̃√

2
√

1 + α̃2
+
|s1 − s2|√

2
≤ 0

tr(σ(x))α+

∥∥∥∥σ(x)− tr(σ(x))

2
I

∥∥∥∥
F

≤ 0 (32)

Where ‖ · ‖F is the Frobenius norm and α = α̃√
2
√

1+α̃2
.

If we solve the analogous maximization problem in three dimensions we obtain the Mohr-Coulomb yield
surface [3]. However, there is a simple generalization of Inequality (32) that works for both two and three
dimensions given by

tr(σ(x))α+

∥∥∥∥σ(x)− tr(σ(x))

d
I

∥∥∥∥
F

≤ 0. (33)

where d is the number of space dimensions. The Drucker-Prager model uses Inequality (33) in both two
and three dimensions, because it is easier to work with than the Mohr-Coulomb model in 3D and it is a
decent approximation of Mohr-Coulomb in that case.

In summary, the Drucker-Prager model for the stress field σ requires that

y(σ(x)) ≤ 0 (34)

for all points x in the domain occupied by the material, where y(σ) = tr(σ)α+ ‖σ− tr(σ)
d I‖F and d is the

number of space dimensions. Note that this function is actually defined in terms of the eigenvalues of σ

as y(σ) = tr(D)α+ ‖D− tr(D)
d I‖F .

2.2 Kirchhoff stress

The Kirchhoff stress τ is related to the Cauchy stress σ as τ = Jσ where J = det(F) is the determinant
of the deformation gradient F. It is often mathematically convenient to express the Drucker-Prager stress
condition in terms of this stress measure. We will find this useful when deriving and analyzing properties
of the plastic flow. Expressing the Drucker-Prager condition in terms of τ is simply the requirement that
y(τ (x)) ≤ 0 for all x in the domain.

2.3 Yield surface

We can think of the condition y(τ) = tr(τ)α + ‖τ − tr(τ)
d I‖F ≤ 0 as defining a feasible region in stress

space. Since the constraint can be evaluated as a function of the principal stresses, we can visualize it as

the cone (τ1 +τ2)α+ |τ1−τ2|√
2
≤ 0 for 2D problems, or the cone (τ1 +τ2 +τ3)α+

√∑3
j=1

(
τj −

∑3
i=1

τi
3

)2

≤ 0

for 3D problems. The plastic flow will be chosen as a means of satisfying this constraint. When the stress
is in the feasible region, there is no plastic flow. However, when the stress reaches the boundary of this
region, the plastic flow will be chosen in a manner that prevents the stress from leaving the feasible region.
For this reason, the boundary of the feasible region is called the yield surface, since plastic “yield” occurs
when the state of stress reaches it.

7

3 Plastic flow

The plastic flow is characterized by the multiplicative decomposition of the deformation gradient F =
FEFP , however it is convenient for analysis and constitutive modeling to consider evolution of the left

elastic Cauchy-Green strain BE = FEFE
T

= FCP−1
FT where CP = FP

T
FP is the right plastic Cauchy-

Green strain. We will use l = ∇v for brevity throughout. Recalling that the deformation then evolves as
DF
Dt = lF, DBE

Dt = lBE + BElT + FDCP −1

Dt FT . The term FDCP −1

Dt FT is the Lie derivative of the of BE

with respect to v so we denote it as LvBE . The Lie derivative of BE is its rate of change independent of
deformation in the flow, and it will be determined to define the plastic flow as a means of satisfying the
stress feasibility condition in Inequality (34). For example, when the stress is inside the feasible region,
LvBE = 0. However, when the stress is on the yield surface, it will be chosen to guarantee that ẏ(t) ≤ 0,
thus preventing any future elastic stresses attaining values outside the feasible region. This can be done in
infinitely many ways, however care must be taken to avoid artifacts associated with non-volume preserving
plastic flows, as well as to guarantee that the plastic flow increases entropy (or decreases the total energy).
To illustrate the different choices of LvBE in satisfying stress feasibility, we denote it as LvBE = −γL
where L is an arbitrary matrix. With this view, L is the direction of the Lie derivative and γ is its
magnitude. Given any direction L, we can choose magnitude γ to guarantee that ẏ(t) ≤ 0.

3.1 Effect of plastic flow on stress criteria

Consider how the stress criteria function y(τ) varies with the elastic state as a function of time: y(τ (BE(t))).
The plastic flow will effect this evolution via

ẏ(t) =
∂y

∂τ
(τ (BE(t))) :

∂τ

∂BE
(BE(t)) :

DBE

Dt
(t)

=
∂y

∂τ
(τ (BE(t))) :

∂τ

∂BE
(BE(t)) :

(
lBE + BElT + LvBE

) (35)

Here, the : operator denotes a generalized dot product to express the chain rule when differentiating the
composition of scalar and matrix valued functions of matrix argument. The material derivative D

Dt appears
in the chain rule because we are considering how y evolves with time for one particle of the continuum.
Defining β as the rate of change of y in the absence of plasticity (LvBE = 0) gives

β =
∂y

∂τ
(τ (BE(t))) :

∂τ

∂BE
(BE(t)) :

(
lBE + BElT

)
(36)

and using the convention that LvBE = −γL gives

ẏ(t) = β − γ ∂y
∂τ

(τ (BE(t))) :
∂τ

∂BE
(BE(t)) : L. (37)

When the stress criteria is satisfied, we have y(τ (BE(t))) < 0 and there is no plastic flow, (LvBE = 0).
However, when we reach the boundary of the feasible region in stress space, y(τ (BE(t))) = 0, then we will
leave the region if β > 0. In this case, we choose γ so that ẏ(t) = 0. This defines the plastic flow as

LvBE =

{
0, if y(τ (BE)) < 0 or if y(τ (BE)) = 0 and β ≤ 0

−γL, if y(τ (BE)) = 0 and β > 0
(38)

where γ is chosen as

γ =
β

∂y
∂τ (τ (BE(t))) : ∂τ

∂BE (BE(t)) : L
(39)

3.2 Choosing the direction of the plastic flow

In order to insure that stress never leaves the feasible region, the plastic flow direction L only needs to have
non-zero component ∂y

∂τ (τ (BE(t))) : ∂τ
∂BE (BE(t)) : L. Thus, for a given value of BE , there are infinitely

8

many choices of L that will suffice in preventing stresses outside the feasible region. However, care must
be taken to insure that the plastic flow does not decrease the entropy of the system. Or more specifically,
that it does not instantaneously increase the rate of change of the total energy and thus violate the second
law of thermodynamics [2]. Notably, the rate of change of total energy would be zero in the absence of
plasticity so violating this would cause an increase in the total energy. Physically we would expect the
plasticity to decrease the total energy over time. We next discuss the choice of L in light of the entropy
concerns.

The total energy E(t) = KE(t) + PE(t) satisfies (see Section 5)

E(t+ ∆t)− E(t) = W t(t,∆t)−
∫ t+∆t

t

∫
Ω0

ẇP (X, s)dXds (40)

where W t(t,∆t) is the work done by external traction t boundary conditions and ẇP = τ : lP where

lP = − 1
2LvBEBE−1

. In the absence of plasticity, the work done by the mechanical stresses is equal to
the negative change in the potential, and this leads to exact conservation of energy (minus the effect of
the boundary conditions and external forcing). In the case of plasticity, the total energy may go up or
down from the work done by the mechanical stress, and this term quantifies that. Specifically, the plastic
flow must be designed in a way that ensures non-negative ẇP , otherwise total energy may increase due to
plasticity, which would violate the second law of thermodynamics.

The principle of maximum plastic dissipation [1] seeks to design the plastic flow in a way that maximizes
ẇP to respect this concern. This leads to an associative plastic flow where lP = γ ∂y∂τ or LvBE = −2γ ∂y∂τ BE .
Unfortunately, the choice of matrix L in LvBE = −γL will effect the volume change in the plastic flow.
Specifically, it can be shown that if tr(L) = 0, then the plastic flow will be volume preserving with
JP = det(FP) = 1. Since the elastic potential seeks to preserve det(FE) = 1 by design, a volume preserving
plastic flow will produce an overall flow that tends to preserve volume. However, without tr(L) = 0 there
is a potential for excessive volume loss or gain in the model and indeed simply using LvBE = −2γ ∂y∂τ BE

will tend to cause excessive volume gain during sheering [3]. However, using the non-associative rule
LvBE = −γGBE , with G = ∂y

∂τ −
1
d tr(∂y∂τ)I, the deviatoric part of ∂y

∂τ , remedies the artifact. Furthermore,
we show in Section 7 that the modification still guarantees that ẇP is non-negative and thus satisfies the
second law of thermodynamics. In summary, the plasticity is expressed through LvBE as

LvBE =

{
0, if y(τ (BE)) < 0 or if y(τ (BE)) = 0 and β ≤ 0

−γGBE , with G = ∂y
∂τ −

1
d tr(∂y∂τ)I, if y(τ (BE)) = 0 and β > 0

(41)

where, given L = GBE , γ is defined as in Equation (39).

4 Derivation of return mapping algorithm from plastic flow

The return mapping algorithm is the discrete equivalent to solving for a strain that satisfies the plastic
flow rule in Equation (41) and that lies in the Drucker-Prager yield surface. In this section first we outline
the method of Simo and Meschke [4] to derive the discrete equations their continuous versions, and then
we show how they can be solved leading to a procedure that computes Z(FE , α). This procedure starts by
assuming there is no plastic flow and a return mapping algorithm is derived from the flow equations that
shows how to project back to the yield surface if the assumption of no plastic flow is invalid.

Consider the evolution of BE from time tn to time tn+1 = tn + ∆t. We consider this evolution
per particle, and thus it is useful to take a Lagrangian view. We outline the notation used in the
Lagrangian view in Section 5. Specifically useful here is the flow map φ : Ω0 × [0, T] → Rd, and
its relation to the deformation gradient F = ∂φ

∂X . Define the time tn configuration of the material as

Ωt
n

=
{
x̃|x̃ = φ(X, tn) for some X ∈ Ω0

}
and define φ̃ : Ωt

n × [tn, T]→ Rd as φ̃(x̃, t) = φ(φ−1(x̃, tn), t).

Intuitively, φ̃ defines the deformation as if the time tn configuration Ωt
n

of the material is the reference
configuration, rather than Ω0 as in the standard Lagrangian view. This is some times called an updated

9

Lagrangian view. While the deformation gradient F defines the deformation from the initial configuration

(Ω0) to the time t configuration (Ωt), the Jacobian F̃ = ∂φ̃
∂x̃ defines the deformation from the time tn

configuration (Ωt
n

) to the time t configuration (Ωt), where t ≥ tn. Also these are related as F = F̃Fn, or
more precisely F(X, t) = F̃(φ̃(φ(X, tn), t))F(X, tn) for all X ∈ Ω0.

Define BE∗ = F̃−1BEF̃−T . With this definition, BE∗ is constant (DBE∗

Dt = 0) for t > tn along flow

characteristics in the absence of plasticity since DBE∗

Dt = −2γF̃−1GF̃BE∗. In contrast, if there is no

plastic flow from time tn to time t ≤ tn+1, then BE
∣∣
t

= F̃
∣∣∣
t
BE
∣∣
tn

F̃T
∣∣∣
t
. In other words, BE∗ is constant

along characteristics except for the effect of plasticity, in contrast to BE which would also be stretched
by the flow. This isolation of the plastic part allows for a more intuitive discretization. Specifically,
combined with the initial value BE∗

∣∣
tn

= BE
∣∣
tn

, we can use the exponential approximation BE∗
∣∣
tn+1 ≈

exp(−2δγ F̃−1GF̃)
∣∣∣
tn+1

BE
∣∣
tn

where δγ ≥ 0 will be used to enforce the constraint y(τ (BE
∣∣
tn+1)) ≤ 0.

Multiplying the approximation by F̃
∣∣∣
tn+1

on the left and F̃T
∣∣∣
tn+1

on the right, and recalling the definition

of BE∗, we obtain

BE
∣∣
tn+1 = F̃

∣∣∣
tn+1

BE∗∣∣
tn+1F̃

T
∣∣∣
tn+1

≈ F̃
∣∣∣
tn+1

exp(−2δγ F̃−1GF̃)
∣∣∣
tn+1

BE
∣∣
tn

F̃T
∣∣∣
tn+1

= F̃
∣∣∣
tn+1

F̃−1
∣∣∣
tn+1

exp(−2δγG)|tn+1F̃
∣∣∣
tn+1

BE
∣∣
tn

F̃T
∣∣∣
tn+1

= exp(−2δγG)|tn+1F̃
∣∣∣
tn+1

BE
∣∣
tn

F̃T
∣∣∣
tn+1

.

Using the notation B̂E = F̃
∣∣∣
tn+1

BE
∣∣
tn

F̃T
∣∣∣
tn+1

, we are looking for a solution pair δγ and BE
∣∣
tn+1 such that

BE
∣∣
tn+1 = exp

(
−2δγG(τ (BE

∣∣
tn+1))

)
B̂E , (42)

and constraint y(τ (BE
∣∣
tn+1)) ≤ 0 is satisfied. Note that B̂E is the elastic strain we would get without the

effect of plasticity. For example if y(τ (B̂E)) ≤ 0, then δγ and BE
∣∣
tn+1 = B̂E is the trivial solution pair

and there is no plastic flow. In this sense, we can see that B̂E can be considered as the trial elastic state
obtained with out any plastic flow. If this does not satisfy the constraint, δγ and BE

∣∣
tn+1 must be defined

to “project” B̂E to BE
∣∣
tn+1 .

We use this process to define the projection Z(FE , α). FE is considered the trial elastic state, one

obtained in the absence of plastic flow. Thus, B̂E = FEFE
T

and we seek the solution of Equation 42 to
define the projection to BE

∣∣
tn+1 , from which we can determine Z(FE , α). This can be done most easily by

considering the singular value decomposition of FE .

If the singular value decomposition of FE is given by FE = UEΣEVET , then B̂E = FEFE
T

=

UEΣE2
UET . It can be shown that U diagonalizes G(τ (BE

∣∣
tn+1)) and BE

∣∣
tn+1 (i.e. G(τ (BE

∣∣
tn+1)) =

UEĜ(ΣE,n+1)UET , and BE
∣∣
tn+1 = UE

(
ΣE,n+1

)2
UET), then we may write (42) as

UE
(
ΣE,n+1

)2
UET = exp

(
−2δγUEĜ(ΣE,n+1)UET

)
UEΣE2

UET = UE exp
(
−2δγĜ(ΣE,n+1)

)
ΣE2

UET .

(43)

Multiplying both sides of Equation (43) by UET on the left and by UE on the right, and taking log results
in

2 ln
(
ΣE,n+1

)
= −2δγĜ(ΣE) + 2 ln

(
ΣE
)
. (44)

10

The model that we choose uses the Hencky-strain as a measure of deformation. By defining

εE := ln ΣE and HE := ln ΣE,n+1, (45)

we may simplify and rearrange Equation (44)

εE −HE = δγĜ. (46)

This is our discrete flow rule. In the return mapping algorithm, we want to solve for HE satisfies Equa-
tion (46) subject to the constraint

y(τ (HE)) ≤ 0. (47)

Solving Equation (46) and (47) can be seen as a ray-cone intersection problem, see Figure 9 in the paper.
Before proceeding, we introduce the deviatoric operator to act on matrices:

dev(A) := A− 1

d
tr(A)I, (48)

i.e. dev(A) gives the deviatoric part of any arbitrary square matrix A of size d × d. Equation (46) has
no solution if tr(εE) ≥ 0. In this case the sand is in extension and we project to the tip HE = 0. We

have G = dev(∂y∂τ), and ∂y
∂τ = αI + dev(τ)

‖dev(τ)‖F , thus G is simply dev(τ)
‖dev(τ)‖F . In principal space this becomes

Ĝ = dev(τ̂)
‖dev(τ̂)‖F , where τ̂ and Ĝ are diagonal. From (§6.1) we have τ̂ = ∂ψ

∂εE = 2µHE + λtr(HE)I because

we use the energy density ψ(εE) = µtr((εE)2)+ 1
2λtr(εE)2. Thus Ĝ = dev(HE)

‖dev(HE)‖F . Using Equation (46), we

can see that tr(ε) = tr(HE), since tr(Ĝ) = 0. Thus dev(εE)−dev(HE) = δγ dev(HE)
‖dev(HE)‖F , and collecting like

terms we have dev(εE) =
(

1 + δγ
‖dev(HE)‖F

)
dev(HE). Thus Ĝ = dev(εE)

‖dev(εE)‖F . Then plugging the equation

for the ray HE = εE − δγ dev(εE)
‖dev(εE)‖F , into the equation for the cone y(τ (HE)) = 0, and solving for δγ, we

obtain

δγ = ‖dev(εE)‖F +

(
dλ+ 2µ

2µ

)
tr(εE)α. (49)

If δγ ≤ 0 we intersect the cone from the inside and thus don’t need to project and have HE = εE . Otherwise

we project to the cone and HE = εE − δγε̂E . Finally, we return Z(FE , α) = UeH
E

VT .

5 Energy and plasticity

Here we discuss the notion of total, kinetic and potential energy in the context of elastoplasticity. It is
important to carefully consider the effect the plastic flow will have on the rate of change of total energy.
The plastic flow should not increase the rate of change of total energy. Using a hyperelastic constitutive
model for the elastic stress implies that the rate of change of total energy in the absence of plasticity will be
zero. We take a Lagrangian view of the continuum for these derivations. We define a number of quantities
here for completeness but refer the reader to the texts of Gonzalez and Stuart [2] and Bonet and Wood [1]
for more detail on Lagrangian and Eulerian descriptions of the continuum.

We use φ : Ω0 × [0, T]→ Rd to denote the flow map of the material (where d = 2 or 3 is the number of
space dimensions). The Lagrangian view identifies particles of the continuum with their initial positions.
Ω0 is the set of all initial positions of particles in the material. We use X to represent points in Ω0. We
use Ωt =

{
x| x = φ(X, t) for some X ∈ Ω0

}
to represent the time t configuration of the material. In other

words, φ(·, t) : Ω0 → Ωt and φ(X, t) is the location of particle X at time t. Thus φ(X, t) is the trajectory

of the material point X over time, and V(X, t) = ∂φ
∂t (X, t) is its velocity and A(X, t) = ∂2φ

∂t2 (X, t) is its

acceleration. Note also that the deformation gradient is related to the flow map as F = ∂φ
∂X . The flow map

is invertible (a fundamental assumption of continuum mechanics) and its inverse φ−1 can be used to define
any function over Ω0 as a function over Ωt. For example, the Eulerian velocity is related to the flow map as

11

v(x, t) = V(φ−1(x, t), t). We can also define a Lagrangian version of the mass density R : Ω0 × [0, T]→ R
with R(X, t) = ρ(φ(X, t), t) and ρ(x, t) = R(φ−1(x, t), t).

The Lagrangian view presents more options when defining stresses, for example while the Cauchy stress
(σ) relates area weighted normals in the current configuration (Ωt) to surface tractions, the first Piola-
Kirchhoff Stress (P) relates area weighted normals in the initial configuration (Ω0) to surface tractions.
We will use the first Piola-Kirchhoff stress tensor in our discussion of energy.

We can also express the governing equations in the Lagrangian view. Conservation of mass, in the
Lagrangian view is

R(X, t)J(X, t) = R(X, 0), X ∈ Ω0, t ∈ [0, T] (50)

where recall that J(X, t) = det(F(X, t)). Conservation of linear momentum results in force density balance

R(X, 0)A(X, t) = ∇X ·P(X, t), X ∈ Ω0, t ∈ [0, T]. (51)

Note that this equation has units of force density but is otherwise just Newton’s second law generalized to
the continuum.

5.1 Work done by elastic deformation

The work done by the elastic forces (W e) is defined to be (see [1])

W e(T) =

∫ T

0

∫
Ω0

Pij,jVidXdt. (52)

Here we use the convention that Pij,jk represents
∂Pij

∂Xk
and unless otherwise stated, we use the Einstein

summation conventions where repeated indices are summed over their ranges. With this in mind, the work
can be rewritten by using integration by parts, this satisfies∫ T

0

∫
Ω0

Pij,jVidXdt =

∫ T

0

∫
Ω0

(PijVi),j − PijVi,jdXdt =

∫ T

0

∫
∂Ω0

tiVidS(X)−
∫

Ω0

PijVi,jdXdt (53)

where ti = PijNj is the applied traction boundary condition. Now since

d

dt

∫
Ω0

ψ(F(X, t))dX =

∫
Ω0

dψ

dFij
(F(X, t))Vi,j(X, t)dX =

∫
Ω0

PijVi,jdX (54)

we can say

W e(T) = W t(T)−
∫ T

0

d

dt

∫
Ω0

ψ(F(X, t))dXdt

= W t(T)−
∫

Ω0

ψ(F(X, T))dX +

∫
Ω0

ψ(F(X, 0))dX

= W t(T)− PE(T) + PE(0)

where W t(T) =
∫ T

0

∫
∂Ω0 tiVidS(X)dt is defined to be the work done by the boundary forces and PE(t) is

the elastic potential at time t. The kinetic energy KE(t) is

KE(t) =

∫
Ω0

1

2
V(X, t)T

(
R(X, 0)V(X, t)

)
dX (55)

The rate of change of kinetic energy density is:

d

dt

[
1

2
V(X, t)T

(
R(X, 0)V(X, t)

)]
= R(X, 0)A(X, t) ·V(X, t) (56)

and assuming
R(X, 0)A(X, t) = ∇X ·P (57)

12

we get ∫ T

0

∫
Ω0

d

dt

[
1

2
V(X, t)T

(
R(X, 0)V(X, t)

)]
dXdt = KE(T)−KE(0) = W e (58)

and also
KE(T)−KE(0) + PE(T)− PE(0) = W t(T) (59)

5.2 Plastic flow rate and potential

With plasticity we have F = FEFP and Ḟ = ḞEFP + FEḞP . Also,

ḞE = ḞFP
−1 − FEḞPFP

−1
(60)

etc. The elastic potential energy is defined as

PE(t) =

∫
Ω0

ψ(FE(X, t))dX (61)

and its rate of change is

d

dt
PE(t) =

∫
Ω0

∂ψ

∂Fij
(FE(X, t))ḞEij (X, t)dX

=

∫
Ω0

∂ψ

∂Fij
(FE)FPjk

−T
Ḟik − FEki

T ∂ψ

∂Fij
(FE)FPjl

−T
ḞPkldX.

The integral above motivates the definition of the first Piola-Kirchhoff Stress in the presence of plasticity

as Pik = ∂ψ
∂Fij

(FE)FPjk
−T

or

P(X, t) =
∂ψ

∂F
(FE(X, t))FP

−T
(X, t). (62)

With this definition, the work done by the mechanical forces is

W e(T) =

∫ T

0

∫
Ω0

Pij,j(X, t)Vi(X, t)dXdt

= W t(T)−
∫ T

0

∫
Ω0

∂ψ

∂Fij
(FE)ḞikF

P
jk

−T
dXdt

5.3 Stress power density

Define the stress power density as

ẇ(X, t) = τij(X, t)lij(X, t) = Pij(X, t)Ḟij(X, t) (63)

with l = ḞF−1 and τ = Jσ = PFT . Also define

ẇe(X, t) = τij(X, t)l
e
ij(X, t) =

∂ψ

∂Fij
(FE(X, t))ḞEij (X, t) (64)

with lE = ḞEFE
−1

. ẇe(X, t) is then the rate of change in elastic potential density since

d

dt
PE(t) =

∫
Ω0

∂ψ

∂Fij
(FE(X, t))ḞEij (X, t)dX =

∫
Ω0

ẇe(X, t)dX (65)

13

Next, defining

ẇp(X, t) = FEki
T ∂ψ

∂Fij
(FE)FPjl

−T
ḞPkl = PilF

E
ik Ḟ

P
kl (66)

gives
ẇ(X, t) = ẇe(X, t) + ẇp(X, t). (67)

The term FEḞP is referred to as the plastic rate of deformation [1]. The work can then expressed as

W e(T) =

∫ T

0

∫
∂Ω0

tiVidS(X)−
∫

Ω0

PijVi,jdXdt = W t(T)−
∫ T

0

∫
Ω0

ẇe(X, t) + ẇp(X, t)dXdt (68)

and then also

KE(T)−KE(0) = W t(T)−
∫ T

0

∫
Ω0

ẇe(X, t) + ẇp(X, t)dXdt

= W t(T)− PE(T) + PE(0)−
∫ T

0

∫
Ω0

ẇp(X, t)dXdt

and thus

KE(T)−KE(0) + PE(T)− PE(0) = W t(T)−
∫ T

0

∫
Ω0

ẇp(X, t)dXdt. (69)

This motivates why ẇp(X, t) is often referred to as “plastic dissipation rate”.

6 Hencky Strain Derivative Lemma

Consider symmetric positive definite matrix B ∈ Rd×d with d = 2 or 3. Use B = UΛUT to denote
the eigenvalue decomposition of B where Λ is diagonal and positive definite. Define ε(B) = 1

2 ln(B) =

Uln(Λ
1
2)UT . For example if B = FFT , then ε is the Hencky strain. We can also write B(ε) = e2ε.

Lemma: Suppose that f(B) is a scalar function of B which is invariant under coordinate changes, and

f̂(ε) = f(B(ε)), then ∂f̂
∂ε = 2 ∂f∂BB.

Proof: First note that f̂ will also be invariant under coordinate change and therefore can be written as a

function of the invariants of ε. That is f̂(ε) = f̃(I1, I2, I3). This means we have ∂f̂
∂ε = ∂f̃

∂I1
∂I1
∂ε + ∂f̃

∂I2
∂I2
∂ε + ∂f̃

∂J
∂J
∂ε

where ∂I1
∂ε = I, ∂I2

∂ε = I1I− εT , ∂J
∂ε = Jε−T . Therefore, if ε is diagonal then ∂f̂

∂ε will be as well. Note that

from frame invariance we have f̂(ε) = f̂(RT εR) for any rotation R. Which means

∂f̂

∂ε

∣∣∣∣∣
ε

: δε =
∂f̂

∂ε

∣∣∣∣∣
RTεR

: RT δεR

∂f̂

∂ε

∣∣∣∣∣
ε

: δε = R
∂f̂

∂ε

∣∣∣∣∣
RTεR

RT : δε

∂f̂

∂ε

∣∣∣∣∣
ε

= R
∂f̂

∂ε

∣∣∣∣∣
RTεR

RT

R
∂f̂

∂ε

∣∣∣∣∣
ε

RT =
∂f̂

∂ε

∣∣∣∣∣
RTεR

Plugging in R = U we have U∂f̂
∂ε

∣∣∣
ε
UT = ∂f̂

∂ε

∣∣∣
UTεU

and is therefore diagonal.

14

Deriving

∂f

∂B
: δB =

∂f̂

∂ε
: δε

= UT ∂f̂

∂ε
U : UT δεU

= UT ∂f̂

∂ε
U : diag(UT δεU)

From ε = 1
2U log(Λ)UT we have

δε =
1

2
(δU log(Λ)UT + UδΛΛ−1UT + U log(Λ)δUT)

UT δεU =
1

2
(UT δU log(Λ) + δΛΛ−1 + log(Λ)δUTU)

Since U is orthonormal UT δU is skew and therefore diag(UT δεU) = diag(δΛ)Λ−1. Similarly from B =
UΛUT we have diag(UT δBU) = 1

2diag(δΛ). Continuing the derivation we have

∂f

∂B
: δB =

1

2
UT ∂f̂

∂ε
U : diag(δΛ)Λ−1

=
1

2
UT ∂f̂

∂ε
U : diag(UT δBU)Λ−1

=
1

2
UT ∂f̂

∂ε
UΛ−1 : diag(UT δBU)

=
1

2
UT ∂f̂

∂ε
UΛ−1 : UT δBU

=
1

2

∂f̂

∂ε
UΛ−1UT : δB

=
1

2

∂f̂

∂ε
B−1 : δB

Thus ∂f
∂B = 1

2
∂f̂
∂εB−1 which yields ∂f̂

∂ε = 2 ∂f∂BB.

6.1 The relationship between τ and ε

Claim: For any isotropic constitutive model ψ, τ = ∂ψ
∂ε .

Proof: We have

P =
∂ψ

∂F

P =
∂ψ̃

∂B
F + FT

∂ψ̃

∂B

P = 2
∂ψ̃

∂B
F

PFT = 2
∂ψ̃

∂B
FFT

τ = 2
∂ψ̃

∂B
B.

15

By the Hencky strain derivative lemma applied to ψ̃(B) we have τ = ∂ψ
∂ε .

7 Plastic Dissipation is Nonnegative

Recall that we have previously defined s = τ − 1
d tr(τ), and that G = ∂y

∂τ −
1
d tr(∂y∂τ)I, i.e. it satisfies

G = −γLvBEBE−1
(e.g. see Section (§3.2)). Therefore

ẇP = τ : lP

= −τ :
1

2
LvBEBE−1

= γτ : G

=
γ

‖s‖F
τ : s

=
γ

‖s‖F

(
s +

1

d
tr(τ)I

)
: s

= γ‖s‖F .

Thus all that remains to prove is that γ ≥ 0. To do this we use the constraint that ∂y
∂t ≤ 0 when y = 0.

∂y

∂t
=
∂y

∂τ
:
∂τ

∂BE
: ḂE

=
∂y

∂τ
:
∂τ

∂BE
:

(
lBE + BElT − 2γ

∂y

∂τ
BE

)
=
∂y

∂τ
:
∂τ

∂BE
:
(
lBE + BElT

)
︸ ︷︷ ︸

η

−2γ
∂y

∂τ
:
∂τ

∂BE
:

(
∂y

∂τ
BE

)
︸ ︷︷ ︸

ν

.

So

0 = η − 2γν =⇒ γ =
η

2ν

Note that η is what ∂y
∂t would be in the absence of plastic flow. Thus if η ≤ 0 the material is deforming

in such a way that the yield function is going down, and therefore is undergoing elastic deformation which
means γ = 0. Otherwise η > 0 and

ν =
∂y

∂BE
:

(
2

s

‖s‖F
BE

)
= 2

∂y

∂BE
BE :

s

‖s‖F
.

Applying the Hencky strain derivative lemma to y we have

ν =
∂y

∂εE
:

s

‖s‖F

=
∂y

∂τ
:
∂τ

∂εE
:

s

‖s‖F

=

(
s

‖s‖
+ η̃I

)
: C :

s

‖s‖F
= 2µ‖s‖F .

16

References

[1] J. Bonet and R. Wood. Nonlinear continuum mechanics for finite element analysis. Cambridge Uni-
versity Press, 2008.

[2] O. Gonzalez and A. Stuart. A first course in continuum mechanics. Cambridge University Press, 2008.

[3] C. Mast. Modeling landslide-induced flow interactions with structures using the Material Point Method.
PhD thesis, 2013.

[4] J. Simo and G. Meschke. A new class of algorithms for classical plasticity extended to finite strains.
application to geomaterials. Comput Mech, 11(4):253–278, 1993.

[5] A. Stomakhin, R. Howes, C. Schroeder, and J. Teran. Energetically consistent invertible elasticity. In
Proc Symp Comp Anim, pages 25–32, 2012.

17

