
Chin. Phys. B Vol. 20, No. 9 (2011) 095202

Relativistic correction of (v/c)2 to the collective

Thomson scattering for high-temperature

high-density plasma∗

Jiang Chen-Fan-Fu(ö��Å), Zheng Jian(x j)†, and Zhao Bin(ë R)

CAS Key Laboratory of Basic Plasma Physics, Department of Modern Physics,

University of Science and Technology of China, Hefei 230026, China

(Received 29 December 2010; revised manuscript received 9 March 2011)

Collective Thomson scattering is theoretically investigated with the inclusion of the relativistic correction of (v/c)2.

The correction is rather small for the plasma parameters inferred from the spectra of the thermal electron plasma waves

in the plasma. Since the full formula of the corrected result is rather complicated, a simplified one is derived for practical

use, which is shown to be in good agreement with the un-simplified one.
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1. Introduction

Thomson scattering,[1,2] which can provide highly
reliable time- and space-resolved measurements of
plasma parameters, including electron density, tem-
perature and plasma flow, is now widely utilized to
measure the laser-produced plasma relevant to iner-
tial confinement fusion (ICF).[3−11] Thomson scatter-
ing is usually operated in the collective regime in the
field of ICF. In most of those experiments, only the
ion-acoustic features of the Thomson scattering spec-
tra are detected and the following equation is usually
adopted to infer plasma parameters from experimental
data,[1,2]

d2P

dωsdΩ
= r2

eI0Vsne(e0 × ns)2S(k, ω), (1)

where P is the power of the scattered light, re is the
classical electron radius, I0 is the intensity of the probe
light, Vs is the scattering volume, ne is the electron
density, e0 is the polarization of the probe light, ns

is the scattering direction and S(k, ω) is the so-called
dynamic form factor. The ω and k are the differential
frequency and the wave vector, respectively, given by

ω = ωs − ω0, (2a)

k = ks − k0, (2b)

where ω0,s is the frequency of the probe/scattering
light and k0,s is the wave vector of the
probe/scattering light. The wave number of the
electromagnetic wave depends on the plasma den-
sity, k0,s = (ω0,s/c)(1 − ω2

pe/ω2
0,s)

1/2where ωpe is the
Langmuir frequency of the plasma. When the plasma
density is dilute and the differential frequency is small,
the differential wave vector is usually approximated
by[1,2]

k =
ω0

c
ns − k0. (3)

In previous experiments, it is Eq. (3) that is used
to calculate the differential wave vector instead of
the more accurate Eq. (2b). For collisionless non-
relativistic plasma in the quasi-equilibrium state, the
dynamic form factor is given by

S(k, ω) =
1
ne

(∣∣∣∣1 − χe0

εl0

∣∣∣∣2 Fe0 + Z2

∣∣∣∣χe0

εl0

∣∣∣∣2 Fi0

)
, (4)

where εl0 is the non-relativistic longitudinal permittiv-
ity of the plasma, χe0 is the non-relativistic electron
susceptibility, Z is the charge state of the ions and
Fe0,i0 are given by

Fe0,i0 =
∫

fe0,i0(p)δ(ω − k · v)d3p.

=
ne,i√

2πkve,i

exp

(
− ω2

2k2v2
e,i

)
, (5)
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with fe0,i0 being the Maxwellian momentum distribu-
tion function of the electrons or the ions, δ(x) the δ

function, ve,i =
√

Te,i/me,i the electron/ion thermal
speed, Te,i the electron/ion temperature and me,i the
electron/ion mass.

The theories of Thomson scattering are thus de-
veloped to include various effects that may have im-
portant effects on the dynamic form factor S(k, ω),
such as the electron–positron plasma,[12] the super-
Gaussian electron velocity distribution due to the
strong inverse bremsstrahlung absorption,[13−14] the
frequent Coulomb collisions[15,16] and the plasma
inhomogeneity.[17,18] The scattering spectra from the
thermal electron plasma waves, which allow the direct
measurement of the electron density and the temper-
ature, were also successfully detected by Glenzer et
al.[6] Noticing that the plasma temperature was rather
high in that experiment and that the differential fre-
quency ω was no longer negligible in comparison with
the probe frequency ω0, we revisited the first order
correction of v/c (where v and c are the electron and
the light speed, respectively) to the scattering power
spectrum[19] and obtained the same result as that pre-
sented by Sheffield,[2]

d2P

dωsdΩ
= r2

eI0Vsne(e0×ns)2S(k, ω)
(

1 +
2ω

ω0

)
. (6)

The S(k, ω) in Eq. (6) is the same as the one in Eq. (1)
and the new term 2ω/ω0 comes from the first order
correction of v/c. Another correction to Eq. (1) is
implied in the exact differential wave vector,

k =
ωs

c
ns − k0. (7)

Equations (3) and (7) are different from each other by
a term proportional to ω/ω0. With the inclusion of
the first order of v/c, we find that not only the inten-
sity but also the spectral profile of the scattering light
of the electron plasma waves changes significantly.[19]

With Eq. (6), the inferred electron temperature from
the scattering spectra in Ref. [6] is about 30% higher
than that obtained with Eq. (1).[19] With the inclu-
sion of the dependence of wave number on the plasma
density, the differential wave vector becomes a little
smaller, leading to a smaller wavelength of the reso-
nance peak of the scattering spectrum.[19]

As indicated in Eq. (6), the correction term of
2ω/ω0 can become of order 1 when the light scat-
tering from the electron plasma waves is detected.
This fact means that the first order correction may

not be enough for the fitting of the Thomson scatter-
ing spectra obtained from the electron plasma waves
in high-temperature high-density plasma. However,
the electron temperature in the coronal region of
the laser-produced plasma may reach 5 keV and the
plasma becomes mildly relativistic in the following ig-
nition experiment.[20] Therefore, a theory of collec-
tive Thomson scattering including the relativistic cor-
rection, i.e., (v/c)2, may be necessary for such high-
temperature plasma. In fact, relativistic corrections
to Thomson scattering were addressed many years
ago.[21−26] However, these previous studies concen-
trated on the relativistic effect for incoherent Thom-
son scattering. In this paper, we calculate the power
spectrum of collective Thomson scattering with the
correction up to (v/c)2. When the ratio of the elec-
tron temperature to the electron rest energy is over
a few percent or when the phase velocity of the de-
tected fluctuation is larger than 0.2c, the relativistic
effect should be included in the theory of Thomson
scattering. The electron temperature obtained with
the corrected theory is a little higher than that ob-
tained with the theory only including terms of v/c

order. Since the full formula for the corrected spec-
trum is rather lengthy and complicated, a simplified
one is derived for routine applications. The results
may make collective Thomson scattering a more ac-
curate method for diagnosing plasma parameters in
laser-produced high-temperature plasma.

2. Basic equations

In the wave zone, the spectral energy emitted
from N accelerated electrons into the solid angle dΩ

is approximately given by[19]

d2Ens,ωs

dΩdωs
=

e2

8π2c3

∣∣∣∣ N∑
i=1

∫ ∞

−∞

d
dτ

[
vi(τ) × ns

1 − ns · vi(τ)/c

]

× e iωsτ−i(ωs/c)ns·ri(τ)dτ

∣∣∣∣2, (8)

where −e is the electron charge, vi and ri are the
velocity and the coordinate of the i-th electron, re-
spectively, R is the observation coordinate, τ is the
retardation time defined as t = τ + R/c−ns · ri(τ)/c

and ωs denotes the frequency of the emitted electro-
magnetic wave.

The incident wave is assumed to be plane,
monochromatic and linearly polarized,

E0 = e0E0 cos(k0·r − ω0t), (9)
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B0 = (n0×e0)E0 cos(k0·r − ω0t), (10)

where ω0 and k0 are the frequency and the wave vec-
tor of the incident wave, respectively, and n0 is the
propagation direction of the incident wave. Here we
do not discuss the effect of the plasma polarization
on the electromagnetic fields, which has been justified
in our previous article.[19] Under the action of the in-
cident wave, the acceleration of an electron is given
by

v̇(τ) = −eE0

me

[(
1 − 1

2
v2

c2

)
e0 +

1
c
v × (n0 × e0)

− 1
c2

(v · e0)v
]

cos[k0 · r(τ) − ω0τ ]

+ O[(v/c)3]. (11)

Here we neglect those terms of orders higher than
(v/c)2. For simplicity, we assume that e0 is perpen-
dicular to scattering direction ns in the following cal-
culations, i.e., e0 · ns = 0. This condition can easily
be achieved by a suitable experimental setup.

Substituting Eq. (11) into Eq. (8) and perform-
ing the ensemble average, we can obtain the spectral
power of the Thomson scattering via the procedure
presented in our previous article,[19] the only difference
being that the Klimontovich distribution function in
this paper is defined as

Fe(r,p, τ) =
N∑

i=1

δ[r − ri(τ)]δ[p − pi(τ)] (12)

instead of Fe(r,v, τ) in Ref. [19]. Here p denotes the
momentum. The spectral power is hence given by

d2Pns,ωs

dΩdωs

=
1

2πne
I0r

2
eVsne

∫
d3pd3p′

(
1 +

1
c
Ξ1 +

1
c2

Ξ2

)
× (δf2

e )relk,ω,p,p′ . (13)

Here Ξ1 and Ξ2 are the first and the second order
corrections, respectively, given by

Ξ1 = (ns − n0) · (v + v′), (14)

Ξ2 = A : (vv + v′v′) + B : vv′, (15)

where velocities v and v′ are functions of p and p′,
respectively, and A and B are two tensors defined as

A = −1
2

I + ns(ns − n0) − [1 − (n0 · ns)]e0e0, (16)

B = (ns − n0)(ns − n0) +
[
1 − (n0 · ns)2

]
e0e0,

(17)

with I being the unit tensor of rank two. The
(δf2

e )relk,ω,p,p′ in the integrand of Eq. (13) is the spectral
density of the correlation function of the Klimontovich
electron distribution functions, which has already
been obtained.[27] It should be pointed out that with
the inclusion of the relativistic effects, (δf2

e )relk,ω,p,p′

is different from the non-relativistic one (δf2
e )non

k,ω,p,p′

presented in Ref. [28], because both fluctuating elec-
tric and magnetic fields have an effect on the particle
fluctuation.

Introducing the notations,

1
2πne

∫
(δf2

e )relk,ω,p,p′ d3pd3p′ = A(k, ω), (18a)

1
2πne

∫
v(δf2

e )relk,ω,p,p′ d3pd3p′ = B(k, ω)
k

k
,

(18b)
1

2πne

∫
(vv + v′v′) (δf2

e )non
k,ω,p,p′ d3pd3p′

= C1(k, ω)
kk

k2
+ D1(k, ω)

(
I − kk

k2

)
, (18c)

1
2πne

∫
vv′(δf2

e )non
k,ω,p,p′ d3pd3p′

= C2(k, ω)
kk

k2
+ D2(k, ω)

(
I − kk

k2

)
, (18d)

Eq. (13) can now be written as

d2Pns,ωs

dΩdωs
= I0r

2
eNs (σ1 + σ2 + σ3 + σ4) , (19)

where

σ1 = A(k, ω) (20a)

σ2 =
2
c
(ns−n0) ·

k

k
B(k, ω), (20b)

σ3 =
1
c2

{
(k · ns) [k · (ns−n0)]

k2
(C1 − D1)

+ [1 − (ns · n0)]D1 −
C1 + 2D1

2

}
, (20c)

σ4 =
1
c2

{
[k · (ns−n0)]

2

k2
(C2 − D2)

+ (1 − ns·n0) (3 + ns·n0) D2

}
. (20d)

It should be pointed out that Eqs. (18a)–(18d) are
valid only if the fluctuation in the plasma is statisti-
cally isotropic.

3. Relativistic corrections

The integral A(k, ω) in Eq. (18a) is actually
the auto-correlation function of the electron density,
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which essentially has the same form as that for the
non-relativistic plasma,

A(k, ω) ≡ Srel(k, ω)

=
1
ne

(∣∣∣∣1 − χe

εl

∣∣∣∣2 Fe + Z2

∣∣∣∣χe

εl

∣∣∣∣2 Fi

)
,(21)

where εl is the relativistic longitudinal permittivity of
the plasma, χe is the relativistic electron susceptibility
and Fe,i are given by

Fe,i =
∫

fe,i(p)δ(ω − k · v)d3p, (22)

with fe,i being the momentum distribution function
of the electrons or the ions. The relativistic dynamic
forming factor Eq. (21) is different from the non-
relativistic one given in Eq. (4), as the relativistic mo-
mentum distribution functions are used instead of the
non-relativistic ones.

For relativistic plasma, the momentum distribu-
tion function of the electrons is given by the Maxwell–
Jüttner function,

fe(p) =
neα

−1

4πm3
ec

3K2(α−1)

× exp
[
−α−1(1 + p2/m2

ec
2)1/2

]
, (23)

where α = Te/mec
2 and K2(x) is the modified Bessel

function. With the relativistic distribution function
given in Eq. (23), the function Fe can be written as

Fe

=
ne

kve

α1/2

2K2(α−1)

(
1

1 − 2αξ2
+

2α√
1 − 2αξ2

+ 2α2

)

× exp

(
− α−1√

1 − 2αξ2

)
, (24)

where ξ = ω/
√

2kve. The function Fe becomes zero
when 2αξ2 > 1, as no particle can move faster than
light. In Fig. 1, we compare function Fe with the non-
relativistic function Fe0 given in Eq. (5) in the case of
α = 0.01. As seen in Fig. 1, the two functions are dif-
ferent from each other only when ω/k becomes closer
to the speed of light. The two curves are not separable
when ξ < 2.

The real part of the full relativistic electron sus-
ceptibility χe is very complicated and no analyti-
cal form is available at present. Detailed discussion
on this function can be found in recent articles on
the linear wave dispersion relation of the relativistic
plasma.[29,30] For laser-produced plasma, parameter α

is usually less than 0.01. Hence the relativistic correc-
tion to the real part of χe is small. The real part of
χe can be approximately written as (see Appendix A)

Re χe = Re χe0 +
α

k2λ2
D

[(
5
4
− 3

2
ξ2

)
ξ2

+
(

1
8

+ 2ξ2 − 3
2
ξ4

)
ξ Re Z(ξ)

]
, (25)

where λD is the Debye length of the plasma, Reχe0 =
(kλD)−2[1 + ξ Re(ξ)] is the real part of the non-
relativistic electron susceptibility and ReZ(x) is the
real part of the plasma dispersion function. When
ξ À 1, the asymptotic expansion of Re χe is given by

Re χe = − 1
(kλD)2

[(
1 − 5

2
α

)
1

2ξ2

+ (1 − 8α)
3

4ξ4

]
+ · · · . (26)

With Eq. (26), we can obtain the relativistic correc-
tion to the dispersion relation of the electron plasma
wave as

ω2 = ω2
p

(
1 − 5

2
α

)
+ 3k2v2

e , (27)

where ωp = (4πnee
2/me)1/2 is the Langmiur fre-

quency. Equation (27) is the same as that obtained
by Buti.[31] As indicated by Bergman and Eliasson,[29]

Eq. (26) is accurate enough when α . 0.01.

Fig. 1. Comparison between Fe and Fe0 in the case with

parameter α = 0.01, i.e., Te = 5.11 keV.

The imaginary part of χe can be analytically cal-
culated and is given by

Im χe =
1

k2λ2
D

√
2α

2K2(α−1)
ξ

×

(
1

1 − 2αξ2
+

2α√
1 − 2αξ2

+ 2α2

)

× exp

(
− α−1√

1 − 2αξ2

)
. (28)
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When 2αξ2 > 1, i.e., ω/k > c, Im χe = 0. In this case,
the Landau damping of the electron plasma wave dis-
appears, as no particle can catch up with a wave with
a phase velocity faster than light.

Since the relativistic corrections are proportional
to (v/c)2 in the case of (v/c)2 ¿ 1, the integrals of
C1,2(k, ω) and D1,2(k, ω), which appear in the terms
proportional to 1/c2, can be calculated with the non-
relativistic spectral density (δf2

e )non
k,ω,p,p′ . The calcu-

lations are straight forward and similar to those pre-
sented in the Appendix of Ref. [19]. Since the first
correction term is of order 1, the integral B(k, ω) in
the first correction term should be calculated with the
relativistic spectral density (δf2

e )relk,ω,p,p′ . Its calcula-
tion is also similar to that presented in Ref. [19]. These
integrals are given by

B =
ω

k
Srel(k, ω), (29)

C1 = 2
ω2

k2
S(k, ω) +

ω2
p

k2

1
ne

[
χ∗

e0 + χe0

|εl0|2
∑

α=e,i

(eα/e)Fα0

−
(

1
εl0

+
1
ε∗l0

)
Fe0

]
, (30)

D1 = 2
Te

me
S(k, ω), (31)

C2 =
ω2

k2
S(k, ω), (32)

D2 =
Te

me
Fe0, (33)

where eα is the charge of the α-like particle and Fα0

are the non-relativistic limits of functions Fα defined
by Eq. (22).

In Eq. (20b), the unit vector k/k should be ap-
proximated by

k

k
=

1√
2(1 − n0 · ns)

[
(n0 − ns) +

ω

2ω0
(n0 + ns)

]
.

(34)
Then the second term in Eq. (19) can be approxi-
mately written as

2
c
B(k, ω)(ns − n0) ·

k

k
=

(
2ω

ω0
− ω2

ω2
0

)
Srel(k, ω).

In Eqs. (20c) and (20d), the unit vector k/k can be
approximated by

k

k
=

(n0 − ns)√
2(1 − n0 · ns)

. (35)

Thus we have

(k · ns) [k · (ns−n0)]
k2

= 1 − ns · n0,

[k · (ns−n0)]
2

k2
= 2(1 − ns · n0).

Finally, we obtain the spectral power of the Thomson
scattering with the corrections of (v/c)2,

d2Pns,ωs

dΩdωs
= r2

eI0Vsne

{
Srel +

2ω

ω0
Srel − ω2

ω2
0

Srel

+
1
c2

[
2(C1 + 2C2 − D1) sin2 θs

2

− C1 + 2D1

2
+ D2 sin2 θs

]}
, (36)

where θs is the scattering angle given by cos θs =
ns · n0.

In Fig. 2(a), we plot the three spectral powers
respectively given by Eqs. (1), (6), and (36). The pa-
rameters that we take in the calculations are the same
as those used by Glenzer et al,[6] i.e., Te = 2 keV,
ne = 2.1×1020 cm−3, λ0 = 0.5266 µm, and θs = 104◦.
Equation (7) is used in the computations of Eqs. (6)
and (36), while Eq. (2b) is used in the computation
of Eq. (1). It is shown in Fig. 2(a) that the maxi-
mum intensity given by the corrected formula Eq. (36)
is higher than that given by Eq. (6), and that the
peak position predicted by Eq. (36) is slightly blue
shifted in comparison with that predicted by Eq. (6).
The physical reason is that both the damping rate
and the frequency of the electron plasma waves be-
come a little smaller when the relativistic effect is
included.[29,30] As seen in Eq. (27), when the relativis-
tic effect is taken into account, the frequency of the
electron plasma wave is a little downshifted through
the factor (1−5α/2), making the peak of the electron
plasma wave blueshift as shown in Fig. 2. The damp-
ing of the electron plasma wave also becomes lighter
because of the relativistic effect. As seen in Fig. 1, the
imaginary part of electron susceptibility Imχe, which
is proportional to Fe, is smaller with the inclusion of
the relativistic effect, leading to slightly higher peak
of the electron plasma wave.

The profile of Eq. (36) is rather close to that of
Eq. (6). This result means that the relativistic cor-
rections are not significant for this example. In order
to show the relativistic effect more clearly, we plot in
Fig. 2(b) the profiles of the three equations in the case
of Te = 3 keV, ne = 4 × 1020 cm−3, λ0 = 0.5266 µm
and θs = 104◦. In Fig. 2(b), we can clearly see the
difference between the first and the second order theo-
ries. The relativistic effect could become more notable
when the electron temperature becomes even higher,
say 5 keV, that may be achievable at the National Ig-
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nition Facility or when the phase velocity of the mea-
sured electron plasma wave is closer to the speed of
light.

Fig. 2. Profiles of the scattering spectral power. The

parameters used in calculations are (a) Te = 2 keV,

ne = 2.1 × 1020 cm−3 , λ0 = 0.5266 µm, and θs = 104◦,

and (b) Te = 3 keV, ne = 4×1020 cm−3 , λ0 = 0.5266 µm,

and θs = 104◦.

We pointed out in our previous article[19] that in
comparison with the fitting results obtained with the
uncorrected theory, the inferred electron temperature
could be significantly underestimated and the inferred
electron density is nearly unchanged when the correc-
tions of v/c to Thomson scattering are included. We
now investigate the influence of the relativistic correc-
tion on the inference of the plasma parameters. We
still use the uncorrected theory to generate an artifi-
cial scattering spectrum and fit it with Eqs. (6) and
(36), respectively. One of the comparisons is shown in
Fig. 3(a), where the plasma parameters for the dashed
line are Te = 2 keV and ne = 2.1 × 1020 cm−3, while
those for the first order fitting curve (dotted line) are
Te = 2.7 keV, ne = 2.15× 1020 cm−3, and for the sec-
ond order fitting curve (solid line) are Te = 2.75 keV
and ne = 2.15 × 1020 cm−3. Another comparison is
shown in Fig. 3(b), where the plasma parameters for
the dashed line are Te = 3 keV and ne = 4×1020 cm−3,
while those for the first order fitting curve (dotted
line) are Te = 4.44 keV and ne = 4.08 × 1020 cm−3,

and for the second order fitting curve (solid line) are
Te = 4.48 keV and ne = 4.10×1020 cm−3. From these
results, we conclude that the first order corrected the-
ory can very slightly underestimate the electron tem-
perature.

Fig. 3. Fitting of the first and the second order cor-

rected theories to the uncorrected one. The plasma pa-

rameters used to calculate the uncorrected spectrum are

(a) Te = 2 keV, ne = 2.1 × 1020 cm−3, λ0 = 0.5266 µm,

and θs = 104◦; and (b) Te = 3 keV, ne = 4 × 1020 cm−3,

λ0 = 0.5266 µm, and θs = 104◦.

Equation (36) is rather lengthy and complicated.
For routine applications, we can further simplify it.
Noticing that the relativistic corrections are impor-
tant only in the high-frequency part of the Thomson
scattering spectrum, we can neglect the low-frequency
response of the electrons that screen the ion motion
in the plasma, i.e., we approximately have χi ≈ 0 and
Fi ≈ 0 when ω/kcs À 1, where cs is the ion-acoustic
speed of the plasma. Then, the normal dynamic form
factor can be written as

S(k, ω) ≈ 1
|εl0|2

1
ne

Fe0.

Also, C1 and D2 can be simplified into

C1(k, ω) ≈ 2
ω2

k2

(
1 −

ω2
p

ω2

)
S(k, ω),

D2(k, ω) ≈ Te

me
|εl0|2S(k, ω).
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With the above approximations, Eq. (36) can be writ-
ten as

d2Pns,ωs

dΩdωs

= r2
eI0Vsne

{[
Srel(k, ω) +

2ω

ω0
Srel(k, ω)

]
+

[(
1 −

ω2
p

ω2

)(
1 − 1

4 sin2(θs/2)

)
ω2

ω2
0

+ α

(
−4 sin2 θs

2
− 1 + |εl0| sin2 θs

)]
S(k, ω)

}
.

(37)

Here we have replaced (ω/ω0)
2
Srel(k, ω) with

(ω/ω0)
2
S(k, ω), since (ω/ω0)

2 is small in the second
order correction. The term proportional to α can be
neglected, because α . 10−2 for the laser-produced
plasma with temperature lower than 5 keV. The term
proportional to (1 − ω2

p/ω2) can also be neglected,
because ω ≈ ωp around the maximum of the col-
lective scattering spectrum. Therefore, we approxi-
mately have

d2Pns,ωs

dΩdωs
= r2

eI0Vsne

(
1 +

2ω

ω0

)
Srel(k, ω). (38)

In Fig. 4, we plot the profiles of the scattering spectral
power separately given by Eqs. (36) and (38). The
parameters used in the calculation are Te = 2 keV,
ne = 2.1× 1020 cm−3, λ0 = 0.5266 µm and θs = 104◦.
As seen in the figure, the difference between the two
curves is really very small, indicating that Eq. (38) is a
good approximation to Eq. (36). The accuracy of the
approximation becomes worse when the plasma den-
sity becomes higher, because the difference between
(ω/ω0)2Srel(k, ω) and (ω/ω0)2S(k, ω) increases with
the plasma density increasing.

Fig. 4. Comparison between the unsimplified result

from Eq. (36) and the simplified result from Eq. (38).

The parameters used in the calculation are Te = 2 keV,

ne = 2.1 × 1020 cm−3 , λ0 = 0.5266 µm and θs = 104◦.

4. Conclusion

We revisit the theory of collective Thomson scat-
tering for high-temperature high-density plasma. The
spectral power of the Thomson scattering with the
inclusion of the relativistic corrections of (v/c)2 is de-
rived with the aid of the fluctuation theory. It is found
that with the inclusion of the relativistic corrections,
the inferred electron temperature is even higher than
that obtained with the theory with the inclusion of
only the first order corrections of v/c. The full formula
(Eq. (36)) for the scattering spectrum with the inclu-
sion of the relativistic corrections is rather lengthy and
complicated. For practical use, a simplified formula
(Eq. (38)) is given. A comparison between the two
equations shows that the latter accords well with the
former.

Acknowledgment

The authors are grateful to Prof. A. Bers of Mas-
sachusetts Institute of Technology for useful discus-
sions during the preparation of this paper.

Appendix A: the derivation of Eq. (25)

The real part of the relativistic electron susceptibility can be written as[31]

Re χe =
1

k2λ2
D

[
1 +

ω

kc

α−1

4K2(α−1)

∫ ∞

0

exp
(
−α−1 cosh x

)
ln

(tanhx − ω/kc)2

(tanhx + ω/kc)2
sinhx cosh2 xdx

]
. (A1)

After integrating by part, we have

Re χe =
1

k2λ2
D

{
1 +

ω

kc

1
4K2(α−1)

∫ ∞

0

e−α−1 cosh x d
dx

[
ln

(tanhx − ω/kc)2

(tanhx + ω/kc)2
cosh2 x

]
dx

}
. (A2)
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Introducing a new variable t = α−1 cosh x, we can rewrite the second term of Eq. (A2) as

ω

kc

α

K2(α−1) exp(α−1)

∫ ∞

0

e−t

{
− 1√

2αt + α2t2
(ω/kc)

(ω/kc)2 − (2αt + α2t2)/(1 + αt)2

+
(1 + αt)

2
ln

[
√

(2αt + α2t2)/(1 + αt) − ω/kc]2

[
√

(2αt + α2t2)/(1 + αt) + ω/kc]2

}
dt.

Due to the rapidly decreasing factor exp(−t) in the integrand, the important contribution to the integral comes
from t < 1. When α ¿ 1, we can expand the bracketed part in the integrand in series of α and obtain

Re χe =
1

k2λ2
D

{
1 +

√
2αξ2

K2(α−1) exp(α−1)

∫ ∞

0

e−x2
[

1
x2 − ξ2

+ α

(
2

x2 − ξ2
− 1

4
x2

x2 − ξ2
+

3
2

x4

(x2 − ξ2)2

)]
dx

}
.

Noticing that the real part of the plasma dispersion function can be written as

Re Z(ξ) =
2ξ√
π

∫ ∞

0

1
x2 − ξ2

e−x2
dx,

we have

Re χe = Re χe0 +
α

k2λ2
D

[(
5
4
− 3

2
ξ2

)
ξ2 +

(
1
8

+ 2ξ2 − 3
2
ξ4

)
ξ Re Z(ξ)

]
. (A3)
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