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Abstract
This paper presents a mirroring approach, inspired by the
neuroscience discovery of the mirror neurons, to transfer
demonstrated manipulation actions to robots. Designed to ad-
dress the different embodiments between a human (demon-
strator) and a robot, this approach extends the classic robot
Learning from Demonstration (LfD) in the following aspects:
i) It incorporates fine-grained hand forces collected by a tac-
tile glove in demonstration to learn robot’s fine manipula-
tive actions; ii) Through model-free reinforcement learning
and grammar induction, the demonstration is represented by
a goal-oriented grammar consisting of goal states and the cor-
responding forces to reach the states, independent of robot
embodiments; iii) A physics-based simulation engine is ap-
plied to emulate various robot actions and mirrors the ac-
tions that are functionally equivalent to the human’s in the
sense of causing the same state changes by exerting similar
forces. Through this approach, a robot reasons about which
forces to exert and what goals to achieve to generate actions
(i.e., mirroring), rather than strictly mimicking demonstra-
tion (i.e., overimitation). Thus the embodiment difference be-
tween a human and a robot is naturally overcome. In the ex-
periment, we demonstrate the proposed approach by teaching
a real Baxter robot with a complex manipulation task involv-
ing haptic feedback—opening medicine bottles.

1 Introduction
A hallmark of machine intelligence is the capability to adapt
to new tasks rapidly and “achieve goals in a wide range of
environments” (Legg and Hutter 2007). In comparison, a
human can quickly learn new skills by observing other in-
dividuals, expanding their repertoire swiftly to adapt to the
ever-changing environment. To emulate the similar learning
process, the robotics community has been developing the
framework of Learning from Demonstration (LfD) (Argall
et al. 2009), some of which has shown promising results.

However, the “correspondence problem” (Dautenhahn
and Nehaniv 2002), i.e., the difference of embodiments be-
tween a human and a robot, is rarely addressed in the prior
work of LfD. As a result, a one-to-one mapping is usually
handcrafted between the human demonstration and the robot
execution, restricting the LfD only to mimic the demon-
strator’s low-level motor controls and replicate the (almost)

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A robot mirrors human demonstrations with func-
tional equivalence by inferring the action that produces sim-
ilar force, resulting in similar changes of the physical states.
Q-Learning is applied to associate types of forces with the
categories of the object state changes to produce human-
object-interaction (hoi) units.

identical procedure to achieve the goal. Such behavior is
analogous to a phenomenon called “overimitation” (Lyons,
Young, and Keil 2007) observed in human children. There-
fore, the acquired skills can hardly be adapted to new robots
or new situations, demanding better solutions.

Meanwhile, the neuroscience discovery of mirror neurons
in primate (Gallese et al. 1996) showed that the mirror neu-
ron system facilitates imitation learning in macaque monkey
and human (Rizzolatti, Fogassi, and Gallese 2001): a mirror
neuron fires when a primate performs a goal-directed action
or sees others performing the same action. Further findings
verify that human mirror neurons are activated during the
observation of robot task performance (Gazzola et al. 2007;
Oberman et al. 2007) even with different embodiments.

Inspired by the mirror neurons, we propose a mirroring
approach that extends the current LfD, through the physics-
based simulation, to address the correspondence problem.
Rather than overimitating the motion controls from the
demonstration, it is advantageous for the robot to seek func-



tionally equivalent but possibly visually different actions
that can produce the same effect and achieve the same goal
as those in the demonstration. In particular, our approach has
three characteristics compared to the standard LfD.
• Force-based: We deploy a low-cost tactile glove to col-

lect human demonstration with fine-grained manipulation
forces. Beyond visually observable space, these tactile-
enabled demonstrations capture a deeper understanding of
the physical world that a robot interacts with, providing an
extra dimension to address the correspondence problem.

• Goal-oriented: A “goal” is defined as the desired state of
the target object and is encoded in a grammar model. The
terminal node of the grammar model is the state changes
caused by the forces, independent of the embodiments.

• Mirroring without overimitation: Different from the clas-
sic LfD, a robot does not necessarily mimic every action
in the human demonstration. Instead, the robot reasons
about the action to achieve the goal states based on the
learned grammar and the simulated forces.
To validate the proposed approach, we mirror the hu-

man manipulation actions of opening medicine bottles with
a child-safety lock to a real Baxter robot. The challenge in
this task lies in the fact that opening such bottles requires
to push or squeeze various parts, which is visually similar
to opening one without a child-safe lock. Figure 1 outlines
the mirroring approach with functional equivalence. Specif-
ically, we explicitly model the forces on the object exerted
by the hand in the demonstration with a pose and force sens-
ing tactile glove. The collected distribution of the forces on
the object is compared to a set of the force distributions ex-
erted by the robot gripper on the same object in a physics-
based simulator. Simulated actions with sufficiently small
KullbackLeibler (KL) divergence with respect to the demon-
stration are considered functionally equivalent, thus hinting
this action would be the best robot action to accomplish the
task.

Our contributions are three-fold. First, we extend the
classical LfD to a mirroring approach represented by a
goal-oriented grammar to overcome the differences between
embodiments. Second, we allow a robot itself to reason
about functionally equivalent actions, instead of overimitat-
ing demonstrations. Third, we show that the proposed sys-
tem performs well in a complex manipulation task of open-
ing medicine bottles.

1.1 Related Work
Mirror Neurons or the mirror neuron system (MNS) has
been found and proven to play an essential role in human
action recognition, understanding, and imitations (Rizzolatti
and Craighero 2004; Thill et al. 2013). These findings mo-
tivate several neural-network-based computational models,
which primarily study grasping actions and are validated
by hand stimuli (Oztop and Arbib 2002; Bonaiuto, Rosta,
and Arbib 2007). In these cases, the studies were strictly
confined by hands’ relative position to an object, and lit-
tle embodiment difference was presented. In parallel work,
Ito et al. (Ito and Tani 2004) adopted a Recurrent Neural
Network to model MNS. Although it extends hand-object
relation to the body movements, it is still restricted to simi-

lar embodiments. Further, these models lack a deeper under-
standing (e.g., the goal) of the demonstration. In contrast,
the proposed mirroring approach emphasizes the intent of
the demonstration as changing the target object to desired
states regardless of the embodiment.

LfD contains a vast amount of literature; we refer the
readers to two surveys (Argall et al. 2009; Osa et al. 2018).
Here, we only highlight some exemplary work that is closely
related, specifically on how to address the correspondence
problem. Defining a set of task-level actions on robots
(Konidaris et al. 2012; Niekum et al. 2015; Edmonds et al.
2017) omits the correspondence as a robot only learns ac-
tion scheduling from the set based on the demonstration.
By manually defining the keypoints between the demon-
strator and the robot, keypoint-based methods (Koenemann,
Burget, and Bennewitz 2014; Shu et al. 2017) are capable
of mapping between different embodiments but with lim-
ited flexibility. Trajectory-based methods are more favorable
since the robot’s motion planner handles the embodiments
difference. Specifically, the robot end-effector’s trajectory is
either directly mapped to demonstrator’s trajectory (Pastor
et al. 2009; Yang et al. 2015) or indirectly mapped using tra-
jectory optimization methods (Maeda et al. 2016). However,
these approaches fall short of complex manipulation due to
the lack of haptic information.

Force-based Demonstration exists in prior work of LfD.
Lin et al. (2012) utilized fingertip force for grasping but
did not address the correspondence problem. Although us-
ing kinesthetic teaching methods (Kormushev, Calinon, and
Caldwell 2011; Montebelli, Steinmetz, and Kyrki 2015;
Manschitz et al. 2016; Racca et al. 2016) was capable of
incorporating forces into the demonstrations for in-contact
tasks, it is still difficult to transfer the demonstration to
a different embodiment. Furthermore, kinesthetic teaching
is hard to design for fine interactive tasks, e.g., opening
medicine bottles with a child-safety lock.

Policy Search Methods use human demonstrations as
the initial policy to constrain the search space (Kober and
Peters 2009), and reinforcement learning is usually ap-
plied to derive a control policy, circumventing the cor-
respondence problem. These methods have succeeded in
robot’s constrained reaching (Guenter et al. 2007), locomo-
tion (Theodorou, Buchli, and Schaal 2010), grasping (Prieur,
Perdereau, and Bernardino 2012) and soft hand controlling
(Gupta et al. 2016). To avoid being confined by the hu-
man demonstration, Levine and Abbeel (2014; 2015) uses
guided policy search for robot manipulations. However, pol-
icy search methods have not yet demonstrated successful ap-
plications in very complex tasks, especially those where un-
observable/latent information (e.g., force) plays a vital role.

Inverse Reinforcement Learning (IRL) or inverse opti-
mal control (Ng, Russell, and others 2000; Abbeel and Ng
2004; Ramachandran and Amir 2007; Ziebart et al. 2008)
gains increasing interests in robotics community. Although
it alleviates the need for reward engineering by inferring
the reward/objective function from demonstrations, IRL has
not been shown to scale to the same complexity of tasks as
direct imitation learning, since there may exist many op-
timal policies that can explain a set of given demonstra-



Figure 2: Illustration of a T-AOG. The T-AOG is a tempo-
ral grammar in which the terminal nodes are the hoi units.
An hoi unit (shown in the grey area) contains a single ac-
tion ai that transits the state from the pre-condition si to
the post-condition si+1. The fluents function fi represents
the changes of the physical state si on object caused by the
forces Fi exerted by the action ai: si+1 = fi(si, ai;Fi).

tions (Ng, Harada, and Russell 1999). This challenge is of-
ten magnified by task complexity, making it computationally
highly expensive (MacGlashan and Littman 2015). Our ap-
proach is partially similar to IRL in the sense that it recovers
the action-state relations from the demonstration. Instead of
learning only from the demonstration, we deploy a physics-
based simulation to generate feasible motions.

2 Representation
We represent the action sequence to execute a task by
a structural grammar model Temporal And-Or Graph (T-
AOG) (Zhu and Mumford 2007) (see Figure 2). A T-AOG
is a directed graph which describes a stochastic context-free
grammar (SCFG), encoding both a hierarchical and a com-
positional representation. Formally, a T-AOG is defined as a
five-tuple G= (S, V,R, P,Σ). Specifically,
• S is the start symbol that represents an event category

(e.g., opening a bottle).
• V is a set of nodes including non-terminal nodes V NT

and terminal nodes V T : V =V NT ∪V T .
• The non-terminal nodes can be divided into And-nodes

and Or-nodes: V NT =V AND∪V OR. And-nodes V AND

represent the compositional relations: a node v is an And-
node if the entity represented by v can be decomposed
into multiple parts represented by its child nodes. Or-
nodes V OR indicate the alternative configuration among
its child nodes: a node v is an Or-node if the entity rep-
resented by v has multiple mutually exclusive configura-
tions represented by its child nodes.

• The terminal nodes V T are the entities that cannot be fur-
ther decomposed or do not have different configurations.
For a T-AOG, the terminal nodes represent the human-
object-interaction (hoi) units (Johnson-Frey et al. 2003).
An hoi unit encodes actions ai that an agent can perform
(e.g. grasp, twist), the spatiotemporal relations between
the object and the agent’s hand, and how the force Fi pro-

duced by such primitive causes the changes of physical
states on the object.

• R= {r :α→β} is a set of production rules that represent
the top-down sampling process from a parent node α to
its child nodes β.
• P : p(r) = p(β|α) is the probability associated with each

production rule.
• Σ is the language defined by the grammar, i.e., the set of

all valid sentences that can be generated by the grammar.
A parse tree pt is an instance of the T-AOG, where one

of the child nodes is selected for each Or-node. The terminal
nodes of a pt form a valid sentence; in this case, terminal
nodes are a set of hoi units consisting of the actions for an
agent to execute in a fixed order, as well as the state changes
after performing such an action sequence.

3 Force-based Goal-oriented Mirroring
3.1 Learning Force and State Associations as hoi
To transfer across different embodiment, we need to know
the effect of a particular type of forces so that the desired
action can be planned, requiring to investigate the state
changes caused by the forces. We cast this problem in a re-
inforcement learning framework to learn a policy that as-
sociates forces and state changes. The state space and the
action (force) space from human demonstrations are dis-
cretized and quantized, and an iterative Q-Learning scheme
is applied. We believe the proposed learning framework does
not lose generality since one can scale up the process to con-
tinuous state space or action space by using DQN (Mnih et
al. 2015) or other advanced policy gradient methods.
Categorize Force The pose and force data of human
demonstrations were collected using a tactile glove. See
Sec. 4.1 for details. The forces exerted by a human hand,
together with the poses, are projected onto the mesh of the
object. Formally,

F o
t = g(aht (Fh

t , p
h
t )), t∈{1, 2, . . . , n} (1)

where t is the frame index, and n is the total number of
frames. g is an implicit projection function that maps a hu-
man action aht , parameterized by the force exerted Fh

t and
the pose pht , to F o

t the force projected on the object mesh.
Each element in the resulting force F o

t is a 4-dimensional
vector, where the first three dimensions represent the posi-
tion of one object surface vertex and the fourth dimension
the force magnitude on this vertex.

K-means clustering (Kanungo et al. 2002) is adopted to
categorize the force F o

i into N types, i.e.,

lk = c(F o
t ), t∈{1, 2, . . . , n}, k∈{1, . . . , N} (2)

where c(·) denotes the clustering function and lk is the label
of the k-th cluster type. After assigning labels to each frame,
we aggregate the frames with the same label into a segment
and take the average,

Fk = avg(F o
t ), ∀t, c(F o

t ) = lk. (3)

The segments form a discretized action (force) sequence
(Figure 3c) to complete the given task.



Figure 3: Force and state associations as hoi units. The ma-
nipulation force is clustered into 21 types. (a) Five examples
of force types, in which Type 3 has no force. (c) Given the
categorized force and quantized states based on the forces,
(b) the Q-learning algorithm associates a force to a specific
state change (A: lid is twisted; B: initiate contact; C: pull off
the lid) shown by the solid lines. The dash lines indicate the
forces that are incompatible to the given fluents functions,
represented by the triangles.

Quantize State The relative poses can describe the states
of a rigid target object under manipulation actions among
object’s parts, e.g., bottle and lid, multiple Lego blocks, etc..
Without loss of generality, we use the relative distance and
relative rotation angle between the lid and the bottle, which
are derived from their relative poses, as our state space. As
shown in Figure 3b, within each segment of the force (shown
in color bars), we take the average of the corresponding an-
gle and distance and normalize their magnitude to unit size,

si = 〈di, θi〉 ∈ [0, 1]2,∀i∈{1, . . . ,M} (4)

where M is the total number of states, and di and θi denotes
the relative distance and angle, respectively.
Associate Force and State as hoi Units by Q-Learning
By replacing the actions in Q-learning with the labels of the
force lk, we adopt the tabular Q-Learning that associates the
current state si to a force type using the iterative Q-Learning
update rule in a temporal difference fashion,

Q(si, lk) = (1−α) ·Q(si, lk)+α ·
[
r(si, lk)+γ ·max

k
Q(si+1, lk)

]
, (5)

where r denotes the reward,Q the Q-function, α the learning
rate, and γ the discount factor. Here, we assume the system
dynamics is deterministic.
Inference We pick the best action according to the Q-
function l∗= arg maxkQ(si, lk). The association among si,
si+1 and corresponding Fk naturally forms an hoi unit (see
Figure 2) and will be used for learning a goal-oriented gram-
mar discussed in the next section.

3.2 Learning Goal-Oriented Grammar
Grammar Induction Each successful demonstration con-
tributes a sequence of hoi units that encode the types of
forces and the state evolvement. We induce a T-AOG G from
multiple demonstrations using a modified version of Auto-
matic Distillation of Structure (ADIOS) algorithm presented
in (Qi et al. 2017). The objective function is the posterior
probability of the grammar given the training data X ,

p(G|X)∝ p(G)p(X|G)=
1

Z
e−α||G||

∏
pti∈X

p(pti|G), (6)

where pti = (hoi1, hoi2, . . . , hoim)∈X represents a valid
parse graph of hoi units with length m.

Action Sequence Sampling To generate a valid sentence,
i.e., a parse tree pt= (hoi0, . . . , hoiK), we sample T-AOG G
by decomposing all the And-nodes and selecting one branch
at each Or-node. This pt is goal-oriented in the sense that
its terminal nodes hoik ∈ pt encode the forces of reaching
sub-goal states that are invariant across embodiments for the
given task. Note that this process is non-Markovian, while
the force-state association using Q-Learning is Markovian.

3.3 Mirroring to Robot without Overimitation
Simulation-based Action Synthesis Discrete robot
action primitives are given by a dictionary Ωar =
{ar1, . . . , arM},M = 10, parameterized by the change of
end-effector poses, including moves in all six canonical di-
rections, rotations in both clockwise and counter-clockwise
directions, and opening/closing the gripper. The task of
opening a medicine bottle can be accomplished by the com-
binatorics of the actions. Given a pt, we seek to generate
a sequence of robot actions {ari , i= 1, . . . ,m} that produce
forces sufficient to cause the same changes of states as en-
coded in the sampled pt. In this sense, we say the robot ac-
tion ari is functionally equivalent to the demonstration action
sequence ahi . Additionally, since the goal of the generated
action sequences is to achieve the same effects, such gen-
erated action sequences can be different from the observed
demonstrations and will not overimitate the observed ones.

A physics-based simulator (see Figure 4) is introduced to
estimate the force exerted by the robot gripper on the bottle.
We denote the force obtained from the simulator as F sim

m ,
where m is the index of the robot primitives, and compare
it to the corresponding Fk, the average force exerted by hu-
man demonstrations with label lk. Formally, Fk and F sim

m
are formalized as distributions,

P (Fk) =
1

Zk
Fk, and P (F sim

m ) =
1

Zsim
m

F sim
m , (7)

where Zk and Zsim
m are the normalization factors, obtained

by summing over the force magnitudes on all vertices of the
object. The similarity of the two forces can be measured by
the KL divergence, and the robot action is selected by

F sim
∗ = arg min

m
KL
(
P (Fk) ‖P (F sim

m )
)

= arg min
m

∑
v

[
PFk

(v) log
PFk

(v)

PF sim
m

(v)

]
,

(8)



Figure 4: Based on the demonstrations, the force in the same cluster lk produces a force distribution on the object F o
t , and

the average is the distribution of the force category Fk. Among the simulated force responses F sim
m obtained from a physics-

based simulator, the corresponding primitive of the most similar force, measured by the KL distance, is selected for the robot
execution. (a) The forces in the same cluster. (b) The simulated robot primitives (downward, no contact, contact, and twist) and
their force responses. (c) The force distributions of the same cluster in each frame. (d) The distributions of Fk against each
simulated force distribution F sim

m , denoted by blue and red, respectively.

where v is the vertex index on the object mesh. Once F sim
∗

is selected, the robot would choose the corresponding prim-
itive ar∗ that produces F sim

∗ .
Physics-based Simulation The physics-based simulation
needs to be able to capture intricate frictional contact be-
tween the robot gripper and the bottle. The total force ap-
plied at each point located at the surface of the bottle consists
of several terms: the normal component of squeezing force
from the gripper, the tangential component of static friction
force from the gripper, the internal elastic force from the rest
of the continuous bottle material and gravity.

The key to achieving such a force balance in the simulator
is to model the deformation of the bottle. Various physical
constitutive models and stress-strain relationships exist for

Figure 5: (a) A fragment of a pt. The forces Fi−1 and Fi

produced by human (in blue) change the bottle states from
si−1 to si+1. The robot action that produces the closest force
distribution obtained by simulation (in red) is chosen and
causes the same changes of object states. (b) If si+1 6= sj ,
and ∆si+1,j is closer to ∆sj,j+1 than any other fluents, we
assign the force Fj to change the state from si+1 to sj .

polymers, and it is impractical for us to find the exact mate-
rial parameters through mechanical tension or compression
tests. Thus, we assume the deformation of the bottle is suf-
ficiently far away from the plastic regime, and adopt a stan-
dard hyperelastic model: the Neo-Hookean model (Macosko
1994) to describe the mechanical stress under deformation

P=µ(F−F−T )+λ log(det(F))F−T , (9)

where F is the deformation gradient tensor encoding the
strain at each point, P is the first Piola-Kirchoff stress tensor
describing its elastic mechanical stress, and µ, λ are material
parameters describing the stiffness and incompressibility of
the bottle, respectively. The governing equation describing
the force balance of the bottle is given by

∇·P= fext, (10)

where fext denotes the total external force on the bottle.
We solve Equation 10 using the Finite Element Method

(Bonet and Wood 1997). The input bottle geometry is first
converted from a triangulated surface to a tetrahedralized
volume using TetGen (Si 2015). The robot gripper mesh is
converted into a watertight level set represented by Open-
VDB (Museth et al. 2013), which allows natural treatment
of frictional contact under arbitrary kinematic rigid motion.
The additional parameters including friction coefficient, µ,
and λ are set empirically. Once the discretized equation sys-
tem is solved to convergence, we evaluate the force magni-
tude at each discrete point of the object surface mesh and
store them in F sim

m .
Execution Ideally, a robot can accomplish the task using
the primitives obtained from the simulator (see Figure 5a).
However, we may encounter two types of discontinuity is-
sues in robot execution.
1. Discontinuity in object state space. The post-condition
si+1 of action ai and the pre-condition si+1

′ of the next
action ai+1 are not necessarily the same from the sam-
pled pt; e.g., si+1 6= sj shown in Figure 5b. A discontinu-
ity exists between two consecutive object states, thus an



Figure 6: Data collection environment. A tactile glove is uti-
lized to collect hand poses and forces, and the Vicon MoCap
system for relative poses of hand and objects.

additional primitive is needed. We define a subtraction
operator,∇−(·, ·) for two consecutive states such that

∆si,j =∇−(si, sj) = 〈dj−di, θj−θi〉. (11)

As shown in Figure 5b, by comparing the discontinuity
∆si+1,j with any other changes of states, we choose the
most similar one in terms of L2 norm. The corresponding
type of force is assigned to interpolate the discontinuity.

2. Discontinuity in robot action space. We use B-Spline to
fill in two discontinuous primitives assuming no obsta-
cles, and the robot is able to follow the trajectory speci-
fied by the spline. Once the end-effector reaches the joint
limit, it is set to restore to the initial position. For in-
stance, if the generated primitive is rotating in the clock-
wise direction, reaching robot’s joint limit, the robot will
first rotate back to its natural pose before the execution.

4 Experiment
4.1 Preliminary
Robot Platform We exercise the proposed framework
in a robot platform with a dual-armed 7-DoF Baxter robot
mounted on a DataSpeed mobility base. The robot is
equipped with a ReFlex TakkTile gripper on the right wrist
and a Robotiq S85 parallel gripper on the left. The entire sys-
tem runs on ROS, and the arm motion is planned by MoveIt!.
Dataset The hand pose and force data is collected us-
ing an open-sourced tactile glove (Liu et al. 2017) that is
equipped with i) a network of 15 IMUs to measure the ro-
tations between individual phalanxes, and ii) 6 customized
force sensors using Velostat, a piezoresistive material, to
record the force in two regions (proximal and distal) on each
phalange and a 4×4 regions on palm. Figure 6 depicts the
tactile glove and the data collection environment. The rela-
tive poses between the wrist of hand and object parts (i.e.,
bottle, and lid) are obtained from Vicon. The data of 10 hu-
man manipulation sequences is collected, processed, and vi-
sualized using ROS.

Figure 7: (a) The cumulative rewards during training and
evaluation. (b) The landscape of the learned Q table, where
yellow indicates high values and blue low. (c) The 21 types
of actions (forces) by clustering in one exemplary demon-
stration. (d) The 25 discretized states based on the forces
(some force types appear more than once).

4.2 Learning
Figure 7a-b shows the Q-learning results, with a discount
factor 0.99, reward for success +1, reward for failure −1,
and reward for all others 0. We use ε-greedy exploration with
exponential decay to obtain the state-force associations.

Figure 7a shows the cumulative reward during each train-
ing episode in red, and the average cumulative reward during
evaluation in blue. During training, the cumulative reward
generally increases until finding a path that leads to the max-
imum reward and begins fluctuating. This fluctuation hap-
pens due to the marginal probability of a non-optimal ac-
tion being chosen at each step in ε-greedy exploration pol-
icy, even though an optimal path has been found. The eval-
uation is performed every ten episodes during training with
a policy induced by the Q-table. During the evaluation, the
reward monotonically increases slowly at first and jumps to
the maximum, due to the optimal path found during training
and the learning signals propagated into the Q-table. The
policy induced from the Q-table converges to the optimum
after approximately 900 episodes in training. The resulting
Q-table is shown in Figure 7b.

4.3 Robot Execution with Functional Equivalence
A pt is first sampled from the T-AOG induced from the
learned policy to obtain a sequence of force types the robot
should imitate in order to cause the same changes of object
states. Our physics-based simulation then emulates a set of
robot actions to obtain their force responses; some examples
are shown in Figure 8a.

Figure 8b shows an example of a pt consisting of 21 hoi
units (x-axis). The force responses of the ten robot primi-
tives are simulated, and the similarities (y-axis) to the cor-
responding Fk are measured in each stage. The primitives
with the lowest KL divergence (connected by the red line)



(a) Force simulation

(b) KL divergence for action primitives

Figure 8: (a) Simulations of the robot actions’ force re-
sponses. (b) The KL divergence for all action primitives in a
pt. In this case, the primitives are a1 move forward, a2 move
backward, a3 move left, a4 move right, a5 move up, a6 move
down, a7 rotate clockwise, a8 rotate counter-clockwise, a9
open gripper, and a10 close gripper. The solid red line is the
sequence of actions for a robot to execute.

are selected for robot execution.
The execution of a Baxter robot is shown in Figure 9a.

It starts from an initial position and sequentially performs
the corresponding primitives indicated in the grey area in
the lower right corner. The a6 downward primitive indeed
generates forces which are captured by the force sensor (top
left) in the robot wrist, which demonstrate that the mirroring
approach indeed allows the robot to fulfill the challenging
task of opening medicine bottles with a set of actions that
are different from demonstrations.

The result also shows that the similarity between forces
can be adequately measured by KL divergence to deter-
mine whether two actions are functionally equivalent. For
instance, the primitive opening the gripper has the largest
divergence in most of the cases as it produces no force to
the object, except in F9 when the demonstrator releases the
lid after one rotation. The pressing force critical to our task
is also captured and mirrored to robot well (see F2 and F16

where a downward primitive is planned). Finally, upward
primitives are selected to finish the task by pulling the lid.

4.4 Ablative Analysis
We further present a quantitative analysis of the proposed
mirroring approach. A baseline experiment is designed to
only account for the trajectories of the hand in demonstra-
tion, which are directly mapped to robot end-effectors. We
also test the proposed approach, without new training, in
similar tasks of opening two additional medicine bottles–
Bottle 2 with the same press-open mechanism but in differ-
ent shape and size, and Bottle 3 with no lock.

Table 1 shows the success rate. Frames of the executions
are shown in Figure 9b-9c. The success rates of the base-
line (B) are significantly lower than those of our approach
(M) for Bottle 1 and 2, showing the necessity of capturing
the hidden force information and the effectiveness of our ap-
proach in transferring the manipulative actions. As pressing
the lid is not required for opening Bottle 3, the success rates
do not vary a lot between both methods.

Without mimicking the observed demonstrations, the
learned the grammar model T-AOG is capable of sampling
a pt that can be different from demonstration to alleviate
overimitation. In the particular pt shown in Figure 9c, an
a6 move down action is not planned and no significant
downward force is applied when twisting. The ablative anal-
ysis performed here shows that our approach can be general-
ized to similar but different tasks, and it is possible to avoid
overimitation in new scenarios using the proposed approach.

5 Discussion
Overimitation in Infants, Children, and Animals. A
phenomenon termed overimitation (Lyons, Young, and Keil
2007) illustrates a seeming cost of our imitative prowess.
Children have been observed to overimitate, i.e., to repro-
duce an adults obviously irrelevant actions (Tomasello et al.
2005; McGuigan et al. 2007), even in situations where chim-
panzees correctly ignored the unnecessary steps (Horner and
Whiten 2005; Want and Harris 2002; Whiten et al. 1996).
However, such overimitation only occurs when the chil-
dren are trying to discover the hidden structure of complex
problems given the demonstrations (Lyons, Young, and Keil
2007). Younger infants, on the contrary, often do not exhibit
the overimitation and only imitate rationally (Skerry, Carey,
and Spelke 2013); but will still try to explore the world by
discovering the hidden causes to explain the unexpected ob-
servations (Stahl and Feigenson 2015).
What are advantages and disadvantages of using simu-
lation? Physics-based simulation can be difficult to tune
and has a reality gap that does not match the real world per-
fectly. However, it still affords a powerful tool for a robot
to explore the action space to reach the desired goal of a
task rather than mimicking the demonstrations. On the other
hand, if the accurate tactile sensing gripper and good object
state perception are available, the simulation engine could
be replaced in the proposed approach.
What is unique about Goal-oriented and Mirroring com-
pared with other LfD methods? Prior work that learns
action-state policy in using IRL (Osa et al. 2018) is similar
to our Goal-oriented method that associates force types to
state changes as hoi units. The IRL assumes a Markov De-
cision Process; however, the use of T-AOG that is composed

Table 1: The success rate for opening 3 bottles using the
baseline model (B) and the proposed approach (M).

Bottle 1 Bottle 2 Bottle 3
B 38.5% 30.8% 76.9%
M 69.2% 53.8% 73.1%



(a) Robot execution to open Bottle 1

(b) Robot execution to open Bottle 2 (c) Robot execution to open Bottle 3

Figure 9: Starting from the initial pose, the primitives (in grey) are performed sequentially. The robot “pushes” by a6 (down-
ward) (see force plot) and opens the medicine bottle by a5 (upward).

of hoi units yields a non-Markovian model. Mirroring ac-
tions allows to generate an unseen action sequence for the
robots that goes beyond the observed demonstration.

6 Conclusion
We present a force-based, goal-oriented mirroring approach
for a robot to learn a manipulation task by imitating the
forces from the demonstrations and the changes of the ob-
ject’s physical states caused by the forces. This approach
differs from prior work that either mimics the demonstra-
tor’s trajectory or matches the keypoints, providing a deeper
understanding of the physical world for a robot.

In the experiment, we use a tactile glove to collect hu-
man demonstrations of opening medicine bottles with safety
locks. The discretized force types and object state changes
are associated by a policy learned using the Q-Learning. A
T-AOG is further induced to provide a robot the task planner
on how to change the physical states by exerting a partic-
ular type of force. Our physics-based simulation engine is
capable of emulating the forces produced by a set of robot
actions. Finally, human demonstrations are successful “mir-
rored” to robot’s actions with functional equivalence as they
both produce similar forces and cause similar changes in
object states, which is validated by an actual Baxter robot
opening various medicine bottles.
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