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Augmented MPM for phase-change and varied materials
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Figure 1: Lava solidifying into pāhoehoe forms complex and attractive shapes. The lava emits light according to the blackbody spectrum
corresponding to the simulated temperature. c©Disney.

Abstract

In this paper, we introduce a novel material point method for heat
transport, melting and solidifying materials. This brings a wider
range of material behaviors into reach of the already versatile mate-
rial point method. This is in contrast to best-of-breed fluid, solid or
rigid body solvers that are difficult to adapt to a wide range of ma-
terials. Extending the material point method requires several con-
tributions. We introduce a dilational/deviatoric splitting of the con-
stitutive model and show that an implicit treatment of the Eulerian
evolution of the dilational part can be used to simulate arbitrarily in-
compressible materials. Furthermore, we show that this treatment
reduces to a parabolic equation for moderate compressibility and an
elliptic, Chorin-style projection at the incompressible limit. Since
projections are naturally done on marker and cell (MAC) grids, we
devise a staggered grid MPM method. Lastly, to generate varying
material parameters, we adapt a heat-equation solver to a material
point framework.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

Keywords: material point, lava, freezing, melting, physically-
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1 Introduction

From the process of lava solidifying into pāhoehoe to advertise-
ments showing caramel and chocolate melting over ice cream, ma-
terials undergoing phase transitions are both ubiquitous and com-

plex. These transitional dynamics are some of the most compelling
natural phenomena. However, visual simulation of these effects re-
mains a challenging open problem. The difficulty lies in achieving
robust, accurate and efficient simulation of a wide variety of mate-
rial behaviors without requiring overly complex implementations.

Phase transitions and multiple material interactions typically in-
volve large deformation and topological changes. Thus a common
approach is to use a modified fluid solver, which works well for
viscous Newtonian-fluids or even moderately viscoplastic flows.
However, solid and elastic material behavior is then more difficult
to achieve. Alternatively, Lagrangian-mesh-based approaches natu-
rally resolve elastic deformation, but they must be augmented with
explicit collision detection, and remeshing is required for fluid-like
behaviors with topological changes. Due to the tradeoffs between
solid and fluid methods, many authors have considered explicit cou-
pling between two solvers, but such approaches typically require
complex implementations and have significant computational cost.

A common goal is to handle a variety of materials and material tran-
sitions without sacrificing simplicity of implementation. This mo-
tivation typically drives researchers and practitioners toward par-
ticle approaches. For example, SPH and FLIP methods are com-
monly augmented with an approach for computing strains required
for more general elastic stress response. The key observation is
that particles are a simple and extremely flexible representation for
graphics. This is a central motivation in our approach to the prob-
lem.

Computing strain from world-space particle locations without the
luxury of a Lagrangian mesh proves challenging. One approach is
using the material point method (MPM) [Sulsky et al. 1995], which
augments particles with a transient Eulerian grid that is adept at
computing derivatives and other quantities. However, while MPM
methods successfully resolve a wide range of behaviors, they do not
handle arbitrarily incompressible materials. This is in contrast to
incompressible FLIP [Zhu and Bridson 2005] techniques that nat-
urally treat liquid simulation but typically only resolve pressure or
viscosity-based stresses.

In this paper, we present a number of contributions. We show
that MPM can be easily augmented with a Chorin-style projec-
tion [Chorin 1968] technique that enables simulation of arbitrar-
ily incompressible materials thus providing a connection to the
commonly used FLIP techniques. We achieve this with a MAC-
grid-based [Harlow and Welch 1965] MPM solver, a splitting of
the stress into elastic and dilational parts, a projection-like implicit
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Figure 2: An apple is pulled from liquid candy and it hardens on
contact with the air, creating a candied, sticky apple. c©Disney.

treatment of the Eulerian evolution of the dilational part, and care-
ful attention to how quantities are rasterized and updated on the
grid. Additionally, we couple a simple yet practical heat model to
our material point solver, allowing us to drive material changes with
temperature and phase.

2 Previous work

Thermodynamic variation of material properties to achieve melting
and solidifying effects for visual simulation was first explored in
the pioneering work of [Terzopoulos et al. 1991]. Since then, such
explorations have remained very popular. A common requirement
in such approaches is the unified treatment of a wide variety of ma-
terial behaviors. While specialized techniques for single materials
are relevant when discussing prior approaches, we primarily restrict
the following literature discussion to papers that explicitly consider
multiple materials with solidification and melting.

Particle-based melting. SPH is commonly used for modeling vis-
cosity and pressure response in liquids and has been popular in
graphics since [Desbrun and Gascuel 1996]. Because of its wide
use, SPH has been frequently modified with more general strain
computations that allow more general stress response. For exam-
ple, [Solenthaler et al. 2007] simply use standard SPH interpolation
to create a continuous displacement field from per-particle world
space positions that can be differentiated in material-space to obtain
per-particle displacement gradients. [Becker et al. 2009] show how-
ever that this displacement differentiation approach cannot accu-
rately resolve material rotations, so they propose a shape-matching
[Müller et al. 2005] approach instead. [Chang et al. 2009] han-
dle viscoelastic and melting flow by computing the strain using a
convenient Eulerian evolution (as in [Goktekin et al. 2004]) that
only requires SPH interpolation of the velocities in world space. A
number of other SPH methods have used Moving Least Squares to
compute the strain. [Keiser et al. 2005] and [Müller et al. 2004]
handle the transition from solid to fluid by including both tradi-
tional SPH-based pressure forces with elastic forces defined from
an elastic potential defined via the Moving Least Squares approxi-
mation to the deformation gradient. While Moving Least Squares
approaches do not suffer from the rotational artifacts encountered in
the more straightforward methods of [Solenthaler et al. 2007] and
[Becker et al. 2009], they are plagued by a number of failure sce-
narios where inversion of the associated moment matrices are not
defined (e.g. co-planar and co-linear particle configurations as dis-
cussed in [Becker et al. 2009]). [Paiva et al. 2009] and [Paiva et al.
2006] avoid the need for strain computation altogether instead using
non-Newtonian modifications of fluid viscosity to achieve complex
fluid effects useful in melting and solidifying. Other notable uses
of SPH for melting effects include [Stora et al. 1999] for lava flows,
[Iwasaki et al. 2010] and [Lii and Wong 2013] for melting ice and
[Lenaerts and Dutre 2009] for the treatment of porous granular ma-
terials and water.

Figure 3: Our method is able to capture many intricate features
of butter melting over a hot frying pan, such as wave-like spread
and micro ripples of the fluid phase, as well as effortless sliding
behavior of the solid chunk on top of it. c©Disney.

Mesh-based melting. Lagrangian meshes have long been popular
due to trivial per-element strain computation that leads to accurate
elastic behavior [Teschner et al. 2004]. However, fluid and melt-
ing behaviors necessitate topological change, requiring remesh-
ing. [Bargteil et al. 2007] achieved efficient remeshing, [Wojtan
and Turk 2008] increased efficiency and fidelity using embedded
meshes, and [Wojtan et al. 2009] included the treatment of splitting.
[Wicke et al. 2010] introduce a dynamic local remeshing algorithm
that attempts to replace as few tetrahedra as possible, limiting the
number of visual artifacts. [Clausen et al. 2013] used tetrahedron-
based remeshing to melt viscoelastic solids into fluids. [Kim et al.
2006] model ice dynamics as a thin film Stefan problem and repre-
sent ice volumes with a level set method.

Grid-based melting. Eulerian methods are natural when melting
into a fluid phase. However, the challenge is then the computa-
tion of elastic strain. [Goktekin et al. 2004; Losasso et al. 2006a]
use an Eulerian update rule for the strain evolution. [Rasmussen
et al. 2004] achieve melting effects by simply increasing viscosity
in an Eulerian approach. [Wojtan et al. 2007] include erosion phase
change effects with a level set representation of fluids and eroding
solids. [Zhao et al. 2006] use a modified Eulerian lattice Boltz-
mann method to treat melting and flowing. [Wei et al. 2003] use
a cellular-automata-based simplification of the physics. [Losasso
et al. 2006b] couple a Lagrangian mesh representation of a solid
with Eulerian representations of a fluid to treat each phase in the
melting process. [Carlson et al. 2002] also combine Lagrangian
and Eulerian approaches by using particles for material advection
and a MAC grid for implicit viscosity and pressure projection.

Heat and phase transitions. Heat evolution is typically achieved
by solving the heat equation in the world space of the system. The
local temperature of the material can then be used to modify its me-
chanical properties. [Stora et al. 1999] varied viscosity with tem-
perature to simulate lava flows. [Terzopoulos et al. 1991; Teschner
et al. 2004; Zhao et al. 2006; Losasso et al. 2006a; Iwasaki et al.
2010; Clausen et al. 2013] model phase transition using a hard
freezing temperature threshold. On the other hand, [Carlson et al.
2002; Keiser et al. 2005; Paiva et al. 2006; Solenthaler et al. 2007;
Chang et al. 2009; Paiva et al. 2009; Dagenais et al. 2012] define a
more smoothed material property range in the phase transition re-
gion, perhaps to model the latent heat. [Maréchal et al. 2010; Lii
and Wong 2013] more correctly model phase transition including
latent heat.

138:2        •        A. Stomakhin et al.

ACM Transactions on Graphics, Vol. 33, No. 4, Article 138, Publication Date: July 2014



3 Method Overview

Goal. Our goal is to simulate a wide variety of materials, with
the specific area of focus being volumetric simulation in the pres-
ence of phase change. A fully general unified simulation model
is beyond the scope of our paper, and such a model would need
to consider many more interactions. Researchers have considered
some of these other goals with coupling [Carlson et al. 2004; Chen-
tanez et al. 2006; Robinson-Mosher et al. 2008] and multi-material
unification [Martin et al. 2010] (these citations are not exhaustive).
Our focus is on heat-driven material change, in particular, because
it requires handling a wide range of material behaviors and the tran-
sition within that range. We stress, however, that if a practitioner
requires only one material at a time, computational efficiency might
be obtained by using a specialized solver (e.g. FLIP for liquids).

MPM limitations. [Stomakhin et al. 2013] demonstrates that mate-
rial point methods occupy an interesting middle ground for simula-
tion techniques, especially elasto-plastic materials undergoing frac-
ture. By adding plasticity to the basic constitutive model energy in
[Stomakhin et al. 2012], they show that a range of compressible ma-
terials (like snow) can be simulated. While incompressibility can be
approached by increasing the Poisson’s ratio, at some point locking
can occur [Mast et al. 2012]. At that point one might decide to use
a much simpler incompressible FLIP method. However, more gen-
erally speaking, numerical systems can usually be formulated using
hard constraints or soft constraints. Soft constraints can vary stiff-
ness, but at sufficiently high stiffness, hard constraint formulations
become efficient and necessary. For example, stiffer mass-spring
systems can approach rigidity, but practitioners usually turn to the
reduced-coordinate rigid body systems. Analogously, liquids can
be simulated using equation-of-state SPH, but Incompressible SPH
[Solenthaler and Pajarola 2009] is often more efficient. Regard-
less, in the presence of material transition, it becomes difficult to
switch different parts of the domain between hard constraints and
soft constraints, so soft constraint methods are used everywhere.
This serves to motivate the key idea of the paper, to bring some of
the efficiency of hard-constraint incompressible FLIP methods to
soft-constraint MPM techniques like [Stomakhin et al. 2013].

Contributions. Our basic approach is to combine the projection
ideas present in incompressible FLIP with the rich constitutive ma-
terial properties of MPM to get a very flexible solver. Our particular
contributions are the following:

1. We carefully model heat in the context of MPM by solving
the heat equation on a background grid. Using the resulting
temperature and phase, we can vary material properties like
the Young’s modulus and Poisson ratio. To solve for specif-
ically problematic parameters that cause MPM locking, we
develop a generalized Chorin-style projection, further requir-
ing a MAC-style staggered MPM formulation.

2. We further show that a deviatoric/dilational splitting of the
constitutive model naturally allows for this while facilitating
arbitrary variation from compressible to incompressible.

3. We also show that sharp phase transitions also benefit from
a deviatoric strain-based energy density function because it
prevents energy gain when transitioning from fluid to solid.

We now proceed with the details of our solver. A visual diagram of
our method is shown in Figure 4. In Section 4 we derive the physi-
cal equations for the mechanical evolution and heat transfer, as well
as our splitting scheme. In Section 5 we discuss the details of our
algorithm. Finally we present results in Section 6 and discussion in
Section 7.

Initial
MAC grid velocities

rasterization

MPM solved
MAC grid velocities

MAC
deviatoric MPM solve

Final
MAC grid velocities

cell-centered
pressure solve

rasterization

Initial cell-centered 
temperature & heat

Final cell-centered
temperature & heat

cell-centered
Poisson heat-solve

interpolate temperature
& update phase

Initial MPM particles

Final MPM particles

interpolate velocities 
& update deformation gradient

Grids

Figure 4: Our method benefits from the interplay of grids and par-
ticles. In parallel with our mechanical evolution we have a thermo-
dynamic evolution that also uses grids as a scratchpad.

4 Physical Model

We describe the mapping from points in an initial material configu-
rationX to their deformed state x by a transform x = φ(X). We
use the notation F = ∂φ/∂X to describe the Jacobian (or defor-
mation gradient) of the mapping. Material motion is governed by
conservation of mass, conservation of momentum and the elasto-
plastic constitutive relation

Dρ

Dt
= 0, ρ

Dv

Dt
= ∇ · σ + ρg, σ =

1

J

∂Ψ

∂FE
F TE , (1)

where ρ is density, t is time, v is velocity, σ is the Cauchy stress, g
is the gravity, Ψ is the elasto-plastic potential energy density, FE is
the elastic part of the deformation gradient F and J = det(F ) (see
e.g. [Bonet and Wood 1997]).

The heat flow is given by

ρ
Du

Dt
= −∇ · q, q = −κ∇T , c =

du

dT
, (2)

where u is stored heat energy per unit mass, T is temperature, q is
heat flux, κ is heat conductivity in accordance with Fourier’s Law,
and c is heat capacity per unit mass (see e.g. [Gonzalez and Stuart
2008]). Eliminating u and q leads to the heat equation

ρc
DT

Dt
= ∇ · (κ∇T ). (3)

This is a simplified model in that we assume no transfer between
the mechanical and heat energy of the system (and hence u is a
function of T only). Even so, this is the most popular approach for
simulating heat transfer in graphics, as can be seen from the papers
listed in the previous work. Also, instead of representing volumetric
heat source terms we use heat boundary conditions: Dirichlet or
Neumann, depending on the desired behavior.

To complete our physical model we must form a thermo-
mechanical model by bringing our heat and mechanical systems
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together. This is accomplished by varying Ψ with temperature and
phase. In particular, we use different expressions for Ψ depending
on whether the material is in a solid or liquid state. It is worth not-
ing that stable transition between two phases requires the careful
treatment discussed later.

4.1 Heat flow and phase transition

We discretize the temperature evolution in time from (3) as

Tn+1 − Tn =
∆t

ρncn
∇ · (κn∇Tn+1). (4)

Note, however, that this equation describes temperature evolution
only within one phase. Phase transition is a separate process in
the sense that it requires extra heat, so called latent heat, which
cannot be observed as a temperature change. Specifically, the latent
heat of fusion L of an object is the heat required to transfer it from
a solid to a liquid state isothermally at the freezing point of the
material (see e.g. [Serway and Jewett 2009]). Thus, the transition
does not happen instantly at the freezing point, and the importance
of capturing this effect is discussed in [Lii and Wong 2013].

Some researchers mimic the effect of latent heat by expanding the
temperature range in the vicinity of the freezing point and introduc-
ing separate temperatures for melting and freezing [Carlson et al.
2002; Keiser et al. 2005; Paiva et al. 2006; Solenthaler et al. 2007;
Paiva et al. 2009; Chang et al. 2009; Dagenais et al. 2012]. While
this approach is sufficient for handling phase transition of a single
material, it is not generally applicable to mixtures of materials with
different thermal properties, since the expanded temperature ranges
would not necessarily agree. We thus will follow the approach of
[Maréchal et al. 2010; Lii and Wong 2013] to accurately handle the
effect latent heat in the multimaterial case. We discuss our latent
heat treatment in Section 5.9.

4.2 Constitutive model

For a realistic treatment of melting and freezing, we require a suit-
able and well-behaved handling of plasticity and transition between
liquid and solid phases of the materials. Following the multiplica-
tive plasticity treatment of [Stomakhin et al. 2013], we separate F
into an elastic part FE and a plastic part FP so that F = FEFP .
With this separation, we base our constitutive model on the elasto-
plastic fixed co-rotational energy density function [Stomakhin et al.
2012; Stomakhin et al. 2013]

Ψ(FE) = Ψµ(FE) + Ψλ(JE), (5)

where

Ψµ(FE) = µ‖FE −RE‖2F , Ψλ(JE) =
λ

2
(JE − 1)2, (6)

JE = det(FE), and RE is the rotation from the polar decompo-
sition of FE . This constitutive model is known to be suitable for
solids, where µ and λ are typically set from Young’s modulus and
Poisson’s ratio of the material. Furthermore, letting µ = 0 makes
the energy density depend only on the local volume change and thus
is suitable for liquids, both compressible and incompressible (in the
λ→∞ limit). In fact, in this case it can be shown that the Cauchy
stress is a scalar pressure. Specifically, JE measures relative vol-
ume change, and Ψλ penalizes it, facilitating volume preservation.

Note however, that Ψµ is not completely orthogonal to Ψλ in the
sense that it also penalizes volume change. In addition, it penalizes
deviatoric strains which Ψλ is oblivious to. Thus, simply overriding
Ψµ in (5) when changing phase is unsuitable for freezing, as this
transition would result in a sudden large increase in potential energy

Figure 5: Changing the value of latent heat affects the rate of phase
transition, demonstrated by this melting wax example. c©Disney.

and produce popping artifacts. Clearly this energy increase must be
avoided if freezing is to be possible.

In order to better understand where the energy increase comes from
consider the dilational (JE)

1
d I and deviatoric (JE)−

1
dFE parts of

FE , where d is the dimension and I is the identity matrix. The
first source of energy is the consequence of the deviatoric com-
ponent of FE . The deviatoric part is not used in Ψλ and would
generally change quite drastically with the flow. To remedy this,
we note that fluids are almost perfectly plastic with respect to de-
viatoric strain. We incorporate this into our model by clearing the
deviatoric component from FE immediately after it is updated by
letting FE ← (JE)

1
d I at the end of each time step in the fluid

phase.

This fluid plasticity does not completely eliminate the problem,
since Ψµ is nonzero even if FE contains only a dilational com-
ponent. To address this, we eliminate the dilational component ex-
plicitly from Ψµ. This is commonly done for nearly-incompressible
materials [Bonet and Wood 1997] and helps allow for arbitrarily
large λ. So, we define an alternative energy density function

Ψ̂(FE) = Ψ̂µ(FE) + Ψλ(JE) (7)

where Ψ̂µ(FE) = Ψµ(J
− 1
d

E FE). (8)

The derivatives of Ψµ and Ψλ are as in [Stomakhin et al. 2013], and

the chain rule gives us the deviatoric stress σµ = 1
J

∂Ψ̂µ
∂FE

F TE where

for clarity ∂Ψ̂µ
∂FE

(FE) is an evaluation of a function at FE . See the
supporting technical document for details related to the derivative
terms arising from the chain rule.

In general, material parameters, e.g. µ and λ, can be defined as
functions of the current temperature in addition to them being func-
tions of the current phase, however in practice we found that keep-
ing them constant with T and letting µ = 0 in the fluid phase was
sufficient to produce visually compelling results.

4.3 Pressure Splitting

The model as stated would handle some material variation, but lock-
ing could occur in highly incompressible materials. This section
shows how to prevent locking by transforming our solid model into
a more fluid-like form, whose resulting discretization will be much
more efficient. This process is analogous to fluid-only methods that
are derived by starting with general continuum stresses together
with simplifying assumptions that lead to a pressure equation of
state. We will follow a similar strategy, albeit without the fluid-
only simplifying assumption by starting with our hyperelastic stress
given in (5). Although this derivation ultimately yields the com-
monly used pressure p = k(ρ − ρ0), where k is a stiffness, ρ is
pressure and ρ0 is the rest density, that connection must be proven.
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4.4 Pressure

The problematic term for highly incompressible materials is Ψλ.
However, we note that this term gives rise to a dilational (constant
diagonal) Cauchy stress as

σλ =
1

J

„
∂Ψλ

∂JE

∂JE
∂FE

«
F TE =

1

J

∂Ψλ

∂JE
JEF

−T
E F TE = −pI, (9)

where
p := − 1

JP

∂Ψλ

∂JE
= − 1

JP
λ(JE − 1) (10)

It is interesting to note that in the absence of plasticity J = JE ,
Jp = 1, and J = ρ/ρ0, making (10) reduce to p = −λ(ρ/ρ0− 1),
the traditional SPH equation of state [Monaghan 1992].

4.5 Temporal evolution

Even though p is related to our other variables, by treating it as
an unknown, we can achieve a splitting, analogous to Chorin-style
projection. The main difference is that we are not restricted to fully
incompressible materials, and we instead handle the full spectrum.
To derive the splitting consider the time evolution of pressure

Dp

Dt
= − 1

JP

∂2Ψλ

∂J2
E

DJE
Dt

. (11)

Since J = JEJP and DJ
Dt

= J∇ ·v (see e.g. [Gonzalez and Stuart
2008]), we have DJE

Dt
= JE∇ · v and therefore

Dp

Dt
= − 1

JP

∂2Ψλ

∂J2
E

JE∇ · v = −λJE
JP
∇ · v. (12)

4.6 Discretization

In addition, with the definition of p from (9), our force balance
equation takes the fluid-like form

ρ
Dv

Dt
= ∇ · σ + ρg = ∇ · σµ −∇p+ ρg, (13)

where σµ is the component of stress from Ψµ. We discretize the
system of equations (12) and (13) as

pn+1 − pn

∆t
= −λ

nJnE
JnP
∇ · vn+1, (14)

vn+1 − vn

∆t
=

1

ρn
∇ · σµ −

1

ρn
∇pn+1 + g. (15)

Note that we can replace the material derivative with a simple finite
difference in time because advection will be done in a Lagrangian
manner using MPM.

In order to solve the system (14) and (15) we split the pressure
application in (15) from the other forces by introducing an interme-
diate v?

v? − vn

∆t
=

1

ρn
∇ · σµ + g, (16)

vn+1 − v?

∆t
= − 1

ρn
∇pn+1. (17)

Taking the divergence of (17) and eliminating ∇ · vn+1 using (14)
yields

JnP
λnJnE

pn+1

∆t
−∆t∇·

„
1

ρn
∇pn+1

«
=

JnP
λnJnE

pn

∆t
−∇·v?. (18)

We use pn = − 1
Jn
P
λn(JnE − 1) for the right hand side.

Note that the discrete system for the pressure will be symmetric
positive definite and similar to a discrete heat equation for moder-
ate λ. As λ is increased to the incompressible limit, the pressure
equation is then the standard Poisson equation seen in Chorin-style
projections [Chorin 1968]. This is similar in spirit to the implicit
treatment of the compressible Euler equations in [Kwatra et al.
2009]. While the introduction of an auxiliary pressure unknown
is common in incompressible elasticity (see e.g. [Bonet and Wood
1997]), it would generally be coupled with the velocity unknowns
(see e.g. [Mast et al. 2012]). Our introduction of the implicit treat-
ment based on the evolution of pressure (11) is novel and drasti-
cally improves the efficiency of the approach because it decouples
the pressure from the nonlinear equations for velocity unknowns.

5 Algorithm

Here we describe the discretization details in our algorithm. We
outline each step required to advance one time step in the simula-
tion (see Figure 4 for a schematic overview). We can think of this
process as updating the state (itemized in Table 1) from time tn to
time tn+1. The process uses a background MAC grid and combines
standard aspects of traditional MPM and FLIP solvers. Specifically,
after the particle state is transferred to the grid, the deviatoric forces
are first discretized with implicit MPM in accordance with (16).
This step results in an intermediate velocity field whose divergence
is used in the right hand side of the implicit equation for the dila-
tional part in (18). The dilational part is treated with the generalized
Chorin-style projection over the MAC grid and the intermediate ve-
locity is then given a pressure correction in accordance with (17).
The inclusion of the heat transfer effects only requires an additional
heat equation solve per time step. We discuss the specific details of
each step in the algorithm in the following subsections, which can
be summarized as:

1. Apply plasticity from previous timestep (Section 5.1)
2. Compute interpolation weights (Section 5.2)
3. Rasterize particle data to grid (Section 5.3)
4. Classify cells (Section 5.4)
5. Compute MPM forces (Section 5.5.1)
6. Process grid collisions (Section 5.6)
7. Apply implicit MPM update (Section 5.5.2)
8. Project velocities (Section 5.7)
9. Solve heat equation (Section 5.8)

10. Update particle state from grid (Section 5.9)
11. Process particle collisions and update particle positions (Sec-

tion 5.10)

5.1 Apply plasticity from previous timestep

For simplicity, it is common for graphics researchers to apply a
heuristic plastic-yield criterion for compressible elastic materials,
because there is considerable leeway in visual applications [Irving
et al. 2004; Stomakhin et al. 2013]. However, in the case of nearly
incompressible materials, the plastic flow should also be nearly in-
compressible. We therefore provide a simple procedure for guar-
anteeing JP ≡ det(FP ) = 1 for nearly incompressible materi-
als. We note that more accurate plasticity models from the engi-
neering literature (such as von Mises yield criteria) also have the
property that JP = 1 as a consequence of rate independence (see
[Bonet and Wood 1997; Goktekin et al. 2004; Bargteil et al. 2007]).
We begin by adjusting FE and FP so that the singular values of
FE are restricted to the interval [1 − θc, 1 + θs] as in [Stomakhin
et al. 2013]. We then apply the correction FE ← (JP )1/dFE and
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Notation Description Is Constant
xp Position Not constant
vp Velocity Not constant
mp Mass Constant
V 0
p Initial volume Constant

FEp Elastic part of Fp Not constant
FPp Plastic part of Fp Not constant
µp Lamé parameter µ Depends on Tp and phase
λp Lamé parameter λ Depends on Tp, but not phase
Tp Temperature Not constant
Up Transition heat Not constant (Sec. 5.9)
cp Heat capacity per unit mass Depends on Tp and phase
κp Heat conductivity Depends on Tp and phase
Lp Latent heat Constant
ζp Phase Depends on Tp and Up (Sec.5.9)

Table 1: Quantities stored on each particle.

FP ← (JP )−1/dFP , which ensures that FP is purely deviatoric,
or equivalently, JP = 1.

5.2 Compute interpolation weights

In order to transfer data from particles to MAC faces and MAC cell
centers, we need multiple sets of interpolation weights per particle.
Basically, we have d face-centered grids, one for each dimension,
and one cell-centered grid. The procedure of computing the weights
is identical for all of these grids and follows [Steffen et al. 2008].
The grids however are offset with respect to each other, which leads
to different weight values for each grid. Below, we introduce a com-
mon notation for all offset grids and describe a way to procedurally
calculate the weights.

We express the fact that the d+1 grids are offset with respect to each
other by considering their base point (x0a, y0a, z0a) (lower-left
point in 2D), where a ∈ {x, y, z} indicates velocity components for
each of the face grids and a = ? represents the pressure grid. Up
to some translation vector, we have (x0x, y0x, z0x) = (−h

2
, 0, 0),

(x0y, y0y, z0y) = (0,−h
2
, 0), (x0z, y0z, z0z) = (0, 0,−h

2
), and

(x0?, y0?, z0?) = (0, 0, 0), where h is the grid spacing. See Fig-
ure 6 (left) for an illustration of the MAC grids. Now, given a grid
of spacing h with cell indices c = (i, j, k) with points located at
xca = (xi, yj , zk) = (x0a+ih, y0a+jh, z0a+kh) we can define
interpolation of an arbitrary particle position xp = (xp, yp, zp). As
in [Steffen et al. 2008], we define a multidimensional separable ker-
nel from the one-dimensional cubic B-spline

N(x) =

8><>:
1
2
|x|3 − x2 + 2

3
, 0 ≤ |x| < 1

− 1
6
|x|3 + x2 − 2|x|+ 4

3
, 1 ≤ |x| < 2

0, otherwise
(19)

as Nh
ca(xp) = N( 1

h
(xp−xia))N( 1

h
(yp− yja))N( 1

h
(zp− zka)).

For a more compact notation later on we will use i as an index into
MAC grid faces, and use c for indexing cell-centered quantities.
E.g. vi stands for the velocity field component at face i, and pc is
the pressure value at the center of cell c. With this the interpolation
weight of particle xp is wip = Nh

c(i)a(i)(xp) with respect to face i

and wcp = Nh
c?(xp) with respect to cell c. Here a(i) and c(i)

are the dimension component and cell index associated with face
i respectively. Alternatively face index can be uniquely identified
by a cell and an axis as i = i(c, a), for a ∈ {x, y, z}. Similarly,
we define ∇wip = ∇Nh

c(i)a(i)(xp) and ∇wcp = ∇Nh
c?(xp). The

various components and their associated values are summarized in
the following table:

Grid a Base Weight
cell ? (0, 0, 0) wcp = Nh

c?(xp)
x-offset x (−h

2
, 0, 0) wi(c,x)p = Nh

cx(xp)
y-offset y (0,−h

2
, 0) wi(c,y)p = Nh

cy(xp)
z-offset z (0, 0,−h

2
) wi(c,z)p = Nh

cz(xp)

5.3 Rasterize particle data to grid

We rasterize data to the grid using the interpolation weights from
Section 5.2. Mass is first rasterized to the grid faces as

mn
i =

X
p

wnipmp.

These face densities allow us to normalize the interpolation of ve-
locity and thermal conductivity as

Ani =
X
p

wnipmpA
n
p for A ∈ {v, κ}.

We repeat the process at cell centers, computing cell masses mn
c =P

p w
n
cpmp followed by

Bnc =
1

mn
c

X
p

wncpmpA
n
p for B ∈ {J, JE , c, T, λ−1}

noting that rasterizing λ−1 rather than λ is important for stability. 1

Finally, we set JnPc =
Jnc
Jn
Ec

.

5.4 Classify cells

We represent our collision objects as level sets and assign each col-
lision object a temperature. We begin the collision processing by
checking all faces for collisions. A MAC face is colliding if the
level set computed by any collision object is negative at the face
center. If it is colliding, we flag the face as colliding. For conve-
nience and consistency in other parts of the algorithm, we classify
each MAC cell as empty, colliding, or interior. A cell is marked as
colliding if all of its surrounding faces are colliding. Otherwise, a
cell is interior if the cell and all of its surrounding faces have mass.
All remaining cells are empty. See Figure 6 (left). Colliding cells
are either assigned the temperature of the object it collides with or a
user-defined spatially-varying value depending on the setup. If the
free surface is being enforced as a Dirichlet temperature condition,
the ambient air temperature is recorded for empty cells. No other
cells require temperatures to be recorded at this stage.

5.5 MPM velocity update

In our deviatoric/dilational splitting of the material response, the
deviatoric forces are discretized with implicit MPM, and the dila-
tion part is discretized with the generalized Chorin-style projection.
Using the common notation from a projection method, we can think
of the the implicit MPM step as updating rasterized grid-based ve-
locities vni to v?i in accordance with (16). The last step for grid
velocities is to apply the pressure correction, computed using (18),
to v?i to obtain vn+1

i in accordance with (17). In this section and
the following subsections we outline the procedure for computing
v?i . The first step is to compute the MPM force.

1The relationship between JE and λ results in a balance in the pressure
− λ
JP

(JE − 1). Unfortunately, averaging JE and λ through rasterization
might destroy this balance, creating an artificially large pressure. Estimating
λ with a harmonic average, or equivalently, rasterizing λ−1 and computing
λc = 1/λ−1

c , resolves this problem.
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Particles
Cells marked empty
Cells marked interior

Collision object boundary
Faces marked as colliding

Cells marked colliding

Node did not receive mass
Node did receive mass

Node & Cell Classification Node Stencils

Reference particle
Cells whose pressures not corrected
Cells whose pressures corrected

Node received no mass / not corrected /not used
Node received mass / corrected / used

Node received mass / not corrected / not used
Node received masses / corrected / not used

Figure 6: Left figure illustrates cell classification criteria. Note
that faces marked “colliding” are Neumann faces for the Poisson
solve and yellow cells marked “colliding” are Dirichlet cells for the
Poisson solve. Right figure shows stencils for a single reference
particle. The particle contributes to the green, blue, and orange
faces, the pressure solve only corrects orange and blue faces, but
our quadratic interpolation touches only the orange faces.

Following [Stomakhin et al. 2013], we discretize the deviatoric
forces via a potential energy. This naturally facilitates an implicit
treatment with symmetric linearization. We denote the location of
grid face i as xi. If we interpret our Eulerian MAC grid as though it
were Lagrangian, we would estimate that after ∆t, this face would
have moved to x̂i = xi + ∆tv?i ea(i), where ea(i) is the basis vec-
tor in the direction corresponding to the MAC velocity component
v?i . If we denote the vector of all x̂i as x̂, then we can think of
it as depending on the vector of all face velocities v?i which we
can denote as v?. Or, x̂ = x̂(v?). Note that this interpreta-
tion is for convenience in computing forces and force derivatives
as we do not actually move our grid. Since we only really have one
degree of freedom in x̂i, we will denote it as x̂i = (x̂i)a(i) and
x̂i = x̂i(v

?
i ) = (x̂i)a(i) + ∆tv?i .

The deviatoric potential energy is

Φµ(x̂) =
X
p

V 0
p Ψ̂µ(F̂Ep(x̂)), (20)

where V 0
p is the initial volume occupied by particle p and F̂Ep is the

elastic part of the deformation gradient of particle p. F̂Ep depends
on x̂ as in [Sulsky et al. 1995]

F̂Ep(x̂) =

 
I +

X
i

(x̂i − xi)(∇wnip)T
!
F nEp. (21)

5.5.1 MPM forces

The force component fi at face i is given by fi = − ∂Φ
∂x̂i

=

− ∂Φ

∂F̂Ep

∂F̂Ep
∂x̂i

∂xi
∂xi

, or

fi(x̂) = −
X
p

V 0
p e

T
a(i)

∂Ψ

∂FE
(F̂Ep(x̂))(F nEp)

T∇wnip. (22)

Figure 7: Simulation of a stationary pool with (left) and without
(right) density correction. Without correction the faces near colli-
sion objects appear lighter which causes them to rise under gravity.

With these forces, we compute the right hand side for our MPM
treatment

bi = vni +
∆t

mi
fi + ∆tgi

X
p

wnip, (23)

where gi is the gravity component at face i and fni = − ∂Φµ
∂x̂i

(x̂(0)),
again using the convention that x̂ = x̂(v?).

5.5.2 Semi-implicit MPM update

We use one step of Newton’s method to solve the implicit system
for deviatoric and inertial force balance. This yields a (mass) sym-
metric system for v?

X
j

„
δij +

∆t2

2mn
i

∂2Φµ
∂x̂i∂x̂j

(x̂(0))

«
| {z }

qij

v?j = bi, (24)

where qij are the matrix Q’s entries. The system is symmetric
but potentially indefinite so we use the iterative conjugate residual
method [Choi 2006]. This Krylov method only requires the action
of Q on an arbitrary increment δu (comprised of scalar MAC face
increments δuj). The non-trivial term is from the Hessian and can
be expressed as

−δfi =
X
j

∂2Φµ
∂x̂i∂x̂j

(x̂(0))δuj =
X
p

V 0
p e

T
a(i)Ap(F

n
Ep)

T∇wnip,

(25)
where

Ap =
∂2Ψµ

∂F 2
E

(FE(x̂)) :

0@X
j

δujea(i)(∇wnjp)TF nEp

1A. (26)

5.6 Process grid collisions

Each face marked as colliding during the cell classification step
must have its velocity corrected for collisions. We perform sticking
collisions for all of our collisions, so we simply assign the velocity
component from the collision body to the corresponding face on the
MAC grid.

5.7 Project velocities

We discretize (18) for the pressure then use it to correct the in-
termediate velocities v?. This is a discrete parabolic equation
that of course reduces to a Poisson equation in the incompress-
ible limit of λ → ∞. In either case our discretization reduces
to a symmetric positive definite system of equations. We dis-
cretize in space using the central-difference stencils naturally de-
fined over the MAC grid. The right hand side of our system
has entries sc stored at MAC cell centers. We compute these as
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Figure 8: Setting a Dirichlet temperature boundary condition on
the air cells allows us to melt objects from the outside. c©Disney.

sc = −JE
n
c−1

∆tJE
n
c
−
Pn

i Gicv
?
i , where Gic are the coefficients of

the central-differenced gradient stencil. Our corresponding ma-
trix takes the increments δpc and produces the results δrc, where
δrc =

δpcJ
n
P c

JE
n
c λ

n
c ∆t

+ ∆t
P

i

P
c′

1
ρn
i
GicGic′δpc′ and ρni =

mni
V n
i

is
the mass density at face i. mn

i is the mass at the face and V ni is
a control volume around the face whose formula we describe be-
low. Once we have solved for the pressure, we apply the pressure
correction to the velocities using vn+1

i = v?i −∆t
P

c
1
ρn
i
Gicpc.

The discretization of Gic corresponds to a simple voxelized,
central-differenced gradient operator. We enforce homogeneous
Dirichlet pressure boundary conditions at cells that have been
marked as empty and homogeneous Neumann boundary conditions
at faces adjacent to cells that have been marked as colliding.

Degrees of freedom near collision objects do not have as many
neighboring particles as interior degrees of freedom, since part of
their influence is covered by a collision object. This causes these
faces to appear lighter, which would in turn cause them to rise un-
der gravity without careful definition of ρni . We prevent such phe-
nomena by computing control volumes that accurately represent
the portion of the domain associated with a face. This is done as
V ni =

P
c

R
Ωc
χcN

h
c(i)a(i)(x)dx where Ωc is the interior of MAC

cell c and χc = 1 if cell c is marked as interior and χc = 0
otherwise. This is an approximation to

R
Ωn

Nh
i dx where Ωn is the

domain encompassed by the material. This control volume is essen-
tial for accurately approximating the density near collision objects.
Note that the integral described in the formula for V ni has only a
finite number of cases, which the product structure of Nh

c(i)a(i)(x)
makes relatively easy to tabulate. We demonstrate the effect of den-
sity correction in Figure 7.

5.8 Solve heat equation

We perform a stabilized Poisson solve to update the temperature
in accordance with (4). We begin by setting the right hand side
to Tnc , which is a cell-centered rasterized temperature. Our cor-
responding matrix takes the increments δTc and produces the re-
sult δTc + ∆t

Pn
i

P
c′

∆xd

mnc c
n
c
κni GicGic′δTc′ . The discretization

of Gic corresponds to a simple voxelized, central-differenced gra-
dient operator. We enforce Dirichlet temperature boundary condi-
tions at cells that are in contact with fixed temperature bodies (like
a heated pan or air) and homogeneous Neumann boundary condi-
tions at faces adjacent to cells that can be considered empty or cor-
responding to insulated objects.

5.9 Update particle state from grid

Some outermost faces involved in the MPM step do not receive
a correction from the projection step, and as a result they tend to
have outdated velocity values (see Figure 6). To prevent errors from

Figure 9: Our method handles mixtures of materials with dras-
tically different properties, ranging from compressible to (almost)
incompressible. Here each letter has λ varying from 106 to 5×109,
as well as varying µ and plasticity parameters. c©Disney.

uncorrected velocities when transferring information back to the
particles, we use a tighter quadratic stencil given by the following
spline:

N(x) =

8><>:
−x2 + 3

4
, 0 ≤ |x| < 1

2
1
2
x2 − 3

2
x+ 9

8
, 1 ≤ |x| < 3

2

0, otherwise
. (27)

We interpolate velocities back to particles using FLIP, where the
PIC component is computed as vPICp =

P
i v
n+1
i wnipea(i) and the

FLIP component as vFLIPp = vnp +
P

i(v
n+1
i −vni )wnipea(i).With

these, the new velocities are vn+1
p = αvFLIPp + (1 − α)vPICp ,

where α is the FLIP fraction. We used α = 0.95 in our examples.

The next step is to update FEp. To do this, we must compute a ve-
locity gradient, which we do with ∇vn+1

p =
P

i v
n+1
i ea(i)∇wTip.

Normally, one would finish with the update rule F n+1
Ep = (I +

∆t∇vn+1
p )F nEp. We found that this occasionally leads to Jn+1

Ep ≤
0 if the time step is too large, so we opt for a compromise be-
tween this simple rule and the ideal but expensive exponential
computation F n+1

Ep = e∆t∇vn+1
p F nEp. Instead, we use F n+1

Ep =

R(∆t∇vn+1
p )F nEp, whereR(M) = I +M if det(I +M) > 0

and R(M) = R( 1
2
M)2 otherwise. Note that this is effectively

a truncated geometric series of the exponential function, where we
invest just enough time to keep the determinant positive. In prac-
tice, this function recurses very rarely, and the update is more robust
but nearly as efficient as before. If p is a fluid particle, we finish off
the update of F n+1

Ep by removing its deviatoric component using
F n+1
Ep ← (Jn+1

Ep )1/dI .

Similarly, temperature gets transferred from the grid cell centers to
particles as Tn+1

p = βTFLIPP + (1 − β)TPICP , where TFLIPp =

Tnp +
P

c(Tn+1
c − Tnc )wcp, TPICp =

P
c T

n
c wcp and β is the
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FLIP ratio (we used β = 0.95 for our examples). As mentioned
before, the heat equation and, thus, the grid-based heat update are
valid only within one material phase, so cases where the tempera-
ture crosses the freezing point require special treatment. Namely, a
portion of the heat the particle gets (or loses) should be spent on the
phase change. To account for this effect we have an energy buffer
associated with each particle of size Lp, and the particle stores the
amount of heat Up contained in that buffer, which can vary from 0
to Lp. Initially, we allow each particle to freely change its temper-
ature according to the heat equation. But whenever the freezing
point is reached, any additional temperature change is multiplied
by cpmp and added to the buffer, with the particle temperature kept
unchanged. This can also be viewed as a post correction of the tem-
perature for a particle that “illegally” crossed the freezing point.
Once the buffer is completely full (particle heat Up = Lp), we
switch the particle phase to fluid. Conversely, if the buffer becomes
empty (particle heat Up = 0), we switch the particle phase to solid.
Note that the phase change happens only when the buffer is com-
pletely full or empty, otherwise the material retains its phase from
the previous timestep. This sort of hysteresis facilitates more stable
phase transition, as opposed to using a hard threshold on Up.

5.10 Process particle collisions and positions

We complete our time integration by enforcing collisions on our
particles. Since we did sticking collisions with the grid, we do
sticking collisions on particles as well. A particle is registered as
colliding if a collision body registers a negative level set value at
the location of the particle. If this occurs, the particle’s velocity is
set to the velocity of the collision body at that location. Finally, we
update particle positions as xn+1

p = xnp + ∆tvn+1
p .

6 Results and examples

We have generated a number of visually interesting results using
our method. Our novel splitting and rasterization techniques facili-
tate handling mixtures with extreme variations of material parame-
ters. This can be seen in Figure 9 where we drop elasto-plastic SIG-
GRAPH letters with material properties ranging from compressible
to almost incompressible with varying stiffness and plasticity pa-
rameters.

Further, our simplified yet practical heat model allows us to achieve
compelling phase transition effects. Figure 10 shows hot liquid
chocolate pouring on a cold solid chocolate bunny. During the pro-
cess some solid melts and some liquid freezes producing intricate
shapes. Figures 8 and 2 demonstrate how we can use external sur-
face heat sources and sinks (like hot/cold air and cold frying pan)
to melt and freeze different objects. Our careful treatment of the
physics of phase transition using latent heat allows us to maintain
sharp, yet stable, interfaces between solid and fluid phases, as can
be seen in the butter melting example in Figure 3. By varying ma-
terials’ thermal parameters such as heat conductivity, heat capacity
and latent heat, we can control the heat flow and thus (indirectly)
affect the dynamics of melting and freezing, as shown in Figure 5.
To create believable lava flow solidifying into pāhoehoe shown in
Figure 1, we varied the temperature of the mountain based on the
distance to the lava source (the heat exchange with the air was not
simulated). This way the lava would freeze more gradually, form-
ing attractive layered shapes. We also added some variation to the
particles’ freezing temperature to give it a more amorphous look.

The simulation times for each of the examples are shown in Ta-
ble 2. For each of those the timestep size was ∆t ' 3 × 10−4 s.
To achieve convergence, the conjugate residual solvers for MPM,
projection and heat diffusion steps normally would take under 10,
300 and 50 iterations, respectively.

Example Particles Grid min/frame
SIGGRAPH letters 1.0× 106 96× 144× 96 18.5
Bunny and hot stream 1.2× 106 170× 170× 170 8.4
Bunny and hot air 1.2× 106 160× 160× 160 11.4
Apple dip 0.8× 106 64× 128× 64 11.0
Melting butter 4.2× 106 128× 128× 128 14.5
Lava 3.5× 106 300× 150× 300 29.7

Table 2: Particle counts, grid resolutions and simulation times per
frame for each of our examples. Simulations were performed on a
16-core Xeon E5-268 2.67GHz machine.

7 Discussion and Limitations

MPM. While MPM yields automatic collision and topology
changes, it incurs some difficulties. For example, the grid intro-
duces numerical plasticity, and it is difficult to represent sharp in-
terfaces between materials. One down-side of our cubic interpolant
is that we have a wider stencil compared to what most incompress-
ible FLIP solvers use. This leads to additional numerical viscosity
as well as increased computational expense. While it is tempting
to use quadratic B-splines for rasterization paired with trilinear in-
terpolation, low-order interpolation with MPM is known to have
stability problems [Steffen et al. 2008]. Additionally, for this pa-
per we focused on sticky boundaries because the materials we were
simulating were typically sticky. Thus, deriving a free-slip bound-
ary condition would be interesting future work. It would be inter-
esting to consider alternative integration strategies that would yield
bigger time steps, though our time steps tend to be commensurate
with [Stomakhin et al. 2013].

Projection. Although the projection-like decoupling of pressure
from MPM discretized deviatoric terms is valid away from the
boundary, there is still coupling through the free surface boundary
condition σ ·n = σµ ·n−pn = 0. In order to separate the MPM-
based solution of the deviatoric terms from the pressure equations,
we implicitly assume σµ ·n = 0 during the MPM solve and p = 0
during the projection (at the surface). While this does guarantee
that σ · n = σµ · n− pn = 0, it removes some flexibility as it is
akin to enforcing a + b = 0 with a = 0 and b = 0. Note that the
boundary condition σµ ·n = 0 is automatically enforced at the free
surface with an MPM discretization since it is the “natural” bound-
ary from the variational principle on which MPM is based. While
this decoupling certainly causes errors in both pressure and the ve-
locities (see e.g. [Hirt and Shannon 1968] for discussion), this sim-
plification is commonly done in both computer graphics [Carlson
et al. 2002; Goktekin et al. 2004; Rasmussen et al. 2004; Losasso
et al. 2006b; Batty and Bridson 2008] and engineering [Harlow and
Welch 1965].

Performance. Our implementation was parallelized and has shown
good scaling results with increasing number of CPU cores. How-
ever, the performance still remains an issue. In particular, the grid
rasterization step (including matrix-vector multiplication in the im-
plicit MPM solve), constitutes a significant portion of runtime.
In the future, we might consider acceleration via CPU SIMD or
GPGPU techniques to improve the performance. Also, employ-
ing simulation level of detail techniques could reduce run times in
areas where the particles have settled. Alternatively, Lagrangian
techniques such as [Solenthaler et al. 2007] have achieved material
variation and melting effects with less computational cost. Never-
theless, we believe our formulation remains interesting because it
provides a theoretical unification between two popular algorithms
while also allowing formalized constitutive modeling.

Sampling. Particle methods can suffer from poor sample quality
under large deformation. Even though pure Lagrangian methods
can avoid drift when returning to a rest configuration, under sig-
nificant plastic deformation, conditioning, sample density, and ac-
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Figure 10: Bringing a hot fluid stream in contact with a cold solid produces compelling phase transition effects. The image demonstrates
both: simulated particle view with temperature distribution (top) and the rendering of our final meshed geometry (bottom). c©Disney.

curacy may degrade, requiring remeshing (see e.g. [Bargteil et al.
2007]) or resampling. While we note that in the presence of less
liquid-like behavior, drift is less of an issue, we plan to experiment
with resampling techniques in the future.

Rendering. While modeling and simulation is simplified with par-
ticle methods, obtaining high quality rendering becomes more chal-
lenging. Since MPM naturally produces a density rasterization,
index-of-refraction matched volume renderers can sometimes be
applied (e.g. for snow). For most of the materials in this paper,
however, we needed to render an interface, thus we turned to mesh-
ing solutions. Such techniques are common for liquid rendering and
typically involve rasterizing particles to a grid using some (usually
spherically symmetric) basis function followed by grid smoothing,
contouring and final surface smoothing. These steps typically re-
quire per-example tuning and it is often impossible to recover as
much detail as the particles seem to possess. This can be seen
in Figure 10. We also experimented with anisotropic kernel tech-
niques such as [Yu and Turk 2010], but we found that while they
are very successful for liquids with visible surface tension, in our
case they created more artifacts than they removed. Thus, any tech-
niques that improve meshing will improve the final quality of our
results.

8 Conclusion
In summary, we introduced a novel material point method for melt-
ing and solidifying materials using a heat solver to capture the un-
derlying thermodynamics and alter mechanical parameters. The
method is implicit and capable of simulating nearly incompress-
ible materials using a Chorin-like projection solve. Hence, we have
widened the range of materials MPM can handle, and we have
demonstrated this span with several compelling melting and solidi-
fying examples.
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