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Abstract

Accurate liver segmentation is essential for surgery planning and diagnosis of liver abnormality with algorithms. We propose

and validate a multi-atlas segmentation approach with local decision fusion for fast automated liver (with/without abnormality)

segmentation on computational tomography angiography (CTA). Thirty-five patients were enrolled in this study. A co-registered

segmented CTA atlas is constructed with 20 CTA scans, normal and abnormal subjects with wide range of body-mass index (BMI).

Liver segmentation candidates are achieved by a multi-atlas registration algorithm which propagates the segmentation label on

each atlas image to the test image by image registration. The final segmentation result is calculated by applying local decision

fusion weights to each propagated candidate segmentation. We applied our algorithm on the rest 15 patients and compared them

with manual segmentation by two expert readers. Voxel overlap by Dice coefficient between the algorithm and expert readers

was 0.93 (range 0.89 - 0.94). The mean surface distance and Hausdorff distance in millimeters between manually drawn contours

and the automatically obtained contours were 1.1 ± 0.9 mm and 5.9 ± 1.7 mm respectively. Using our approach, physicians can

accurately segment liver from CTA without tedious manual tracing. Our automated algorithm for liver segmentation achieved

accurate segmentation with/without abnormality.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Liver segmentation is essential for surgery planning and computer-aided diagnosis. Liver segmentation from CT

images is more challenging compared to other abdominal organ segmentation. First, intensity distributions between

∗ Corresponding author. Tel.: +1-310-499-3064 ;

E-mail address: xiaowei@cs.ucla.edu

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of MIUA 2016

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.07.028&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.07.028&domain=pdf


88   Xiaowei Ding et al.  /  Procedia Computer Science   90  ( 2016 )  87 – 92 

(a) (b) (c)

(d) (e) (f)

Fig. 1. Example of atlas images and manual tracing of liver region. (a)-(e) 2D contours on transverse slices within upper and lower limits of liver,

(f) 3D mask created from the 2D contours.

the liver and its nearby organs are similar. Moreover, diffident livers, especially abnormal ones, have varied shapes.

Thus, fully-automated liver segmentation is still an open problem.

Several investigators have reported methods for liver segmentation on CT data. Gao1 extracted information from

the global histogram of abdominal CT images and combined morphological operators to define the liver area. This

intensity-based method is unstable in the area of the liver boundary where fuzzy voxel intensity is present. Luo2

extracted pixel-level features of wavelet coefficients and Haralick texture descriptors3, classified the data into pixel-

wised liver or non-liver by support vector machines and combined morphological operations to delineate the liver.

Militzer4 designed strong and compact classifiers for feature classification based on the AdaBoost algorithm and

Probabilistic Boosting Trees to get high accuracy for liver tumors segmentation. These methods are relatively simple

in the process of target region refinement, and only based on morphological filtering. Statistical shape models are

also applied to liver segmentation to overcome the over-segmentation problem of intensity and texture based methods.

Zhang5 used a statistical shape model driven by optimal surface detection. Okada6 fused a probabilistic atlas and

multilevel statistical shape model to integrate global shape and appearance features of abdominal CT images for liver

segmentation.

In this paper, we present an automated liver segmentation method that can handle livers with/without abnormality

based on a fast multi-atlas based method. The experimental results demonstrate that compared to expert manual

tracing, the proposed method is significantly effective and robust for the segmentation of liver from CTA images.

2. Method

In this section, we first describe the image acquisition protocol, followed by the creation of the liver CTA atlases.

Next, we present the proposed liver segmentation algorithm.
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Fig. 2. Flowchart of the atlas creation procedure.

2.1. Image data

We analyzed CTA data collected for liver screening, at the Peking Union Medical College Hospital, China. Each

CT dataset comprised 50 to 60 image slices with a resolution of 512 × 512 pixels of size 0.68 × 0.68 mm2 and a

slice thickness of 5.0 mm. The datasets were selected from consecutive, both symptomatic and symptomatic patients

undergoing liver screening, and they were free of motion artifacts.

2.2. Algorithm

2.2.1. Overview
A CTA atlas was first created from multiple co-registered CTA datasets (N=20; 10 men and 10 women) in which

the liver region were manually segmented (Figure 2 a-e) in the following way: on all transverse slices, 2D contours

were manually traced by expert readers within the superior and inferior limits of the liver; a 3D binary volume mask

was generated from the 2D contours (Figure 2 f). After the atlas was created, the algorithm registers the primary atlas

to the test CTA data to get the non-rigid transformation for segmentation label propagation. The implementation of the

multiple registrations is largely based on the earlier work on multi-atlas-based methods7,8. To get the final segmen-

tation result, labels on all the atlases were propagated to the test data by applying the same non-rigid transformation,

and the fusion of those propagated labels on the test CTA data are calculated according to spatially varying decision

fusion weights7,9,10,11,12.

2.2.2. Multiple atlas registration
The rigid and nonrigid registration problem is formulated as an optimization problem with respect to combined

affine and B-spline transformations μ minimizing the difference between the target images and the reference image:

μ̂ = arg min
μ

C[μ; U(p), A(p)], (1)

where μ̂ is the transformation aligning atlas A(μ(p)) to target image U(p), p denotes a voxel, and C is the negative

mutual information13. Image registration is used in both atlas creation and target image segmentation.7 used a one-to-

all registration scheme between the target image and the atlas; however, the time required to register the target image

to every image in the atlas is prohibitive for clinical practice. To speed up the registration process, we co-register the

atlas images to a single primary image when the atlases are created, and then the computed transform between target

image and the atlas primary image is applied to all the images in the atlas in order to segment the target image. This

will cost only 1/N of the time that one-to-all registration needs, where N is the number of subjects in the atlas. The
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atlases incorporate prior information and may be modified by users who need something closer to their own data.

This registration step determines the location and shape of the liver. To obtain the rough binary segmentation of the

liver S (p), the labels S i are propagated to the test image using weights that are related to the contribution of each atlas

by measuring the similarity of their registration results after transformation μ7. The relative importance of each atlas

image is measured by the absolute difference Di between the transformed moving atlas and the target image:

Di(p) = |Ai(μ(p)) − U(p)|,∀i. (2)

To determine how much a propagated label in each atlas image should contribute to the segmentation, weights λi

were calculated as follows:

λi(p) =
1

Di(p) × gσ1
(p) + ε

, (3)

where gσ1
(p) is a Gaussian kernel of scale sigma that smooths the local estimate of the registration, and ε is a small

value to avoid division by zero. The resulting propagation label is determined by a weighted average of the transformed

binary segmentation S i(μ):

S (p) =
1∑N

i=1 λi(p)

N∑
i=1

λi(p)S i(μi(p)) (4)

To obtain a closed contour (Figure 4a-c), S (p) was first blurred with a Gaussian kernel followed by thresholding at

value 0.5.

Fig. 3. Flowchart of the segmentation algorithm
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Fig. 4. Example of segmentation results on 2D transverse image slices and rendering of the reconstructed 3D liver mask of four patients. Each row

represents one patient.

3. Results

To compare the automatic segmentation results with expert manual ones, two experienced radiologists, using con-

sensus reading, manually traced the liver region for all 35 test CT datasets. Twenty were used to create the CTA atlas

and the rest 15 for testing. Dice coefficient, surface distance and Hausdorff distance were used to compare the liver

region obtained by our algorithm to the ground truth determined by expert manual tracing.

The mean Dice coefficient was 0.93 (range 0.89 - 0.94). The mean surface distance and Hausdorff distance in

millimeter between manually drawn contours and the automatically obtained contours were 1.1 ± 0.9 mm and 5.9 ±
1.7 mm respectively. Four examples of segmentation results are shown in Figure 4, with rendering of the 3D liver

mask. These cases with different extend of abnormality are well handled by our algorithm. The segmentation takes

approximately 25 seconds of compute time on a standard workstation.

4. Conclusion

We have demonstrated that a fast algorithm for liver segmentation from contrast-enhanced CT is feasible and that it

achieves 0.9316 Dice overlap with expert manual tracing in approximately 25 seconds of compute time on a standard

workstation. Our fast atlas registration and proves to be effective for the accurate segmentation of weak image features

such as similar intensity distribution between liver and its nearby organs, while it preserves the location and shape of

the anatomical structure of interest.
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4. Militzer, A., Hager, T., Jäger, F., Tietjen, C., Hornegger, J.. Automatic detection and segmentation of focal liver lesions in contrast

enhanced ct images. In: Pattern Recognition (ICPR), 2010 20th International Conference on. IEEE; 2010, p. 2524–2527.

5. Zhang, X., Tian, J., Deng, K., Wu, Y., Li, X.. Automatic liver segmentation using a statistical shape model with optimal surface detection.

Biomedical Engineering, IEEE Transactions on 2010;57(10):2622–2626.

6. Okada, T., Shimada, R., Hori, M., Nakamoto, M., Chen, Y.W., Nakamura, H., et al. Automated segmentation of the liver from 3d ct

images using probabilistic atlas and multilevel statistical shape model. Academic radiology 2008;15(11):1390–1403.

7. Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M.A., van Ginneken, B.. Multi-atlas-based segmentation with local decision

fusion: Application to cardiac and aortic segmentation in CT scans. Medical Imaging, IEEE Transactions on 2009;28(7):1000–1010.

8. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.. Nonrigid registration using free-form deformations:

Application to breast MR images. Medical Imaging, IEEE Transactions on 1999;18(8):712–721.

9. Ding, X., Slomka, P.J., Diaz-Zamudio, M., Germano, G., Berman, D.S., Terzopoulos, D., et al. Automated coronary artery calcium

scoring from non-contrast CT using a patient-specific algorithm. In: SPIE Medical Imaging. International Society for Optics and Photonics;

2015, p. 94132U–94132U.

10. Ding, X., Terzopoulos, D., Diaz-Zamudio, M., Berman, D.S., Slomka, P.J., Dey, D.. Automated epicardial fat volume quantification from

non-contrast CT. In: SPIE Medical Imaging. International Society for Optics and Photonics; 2014, p. 90340I–90340I.

11. Ding, X., Pang, J., Ren, Z., Diaz-Zamudio, M., Berman, D.S., Li, D., et al. Automated pericardial fat quantification from coronary

magnetic resonance angiography. In: Medical Image Understanding and Analysis. MIUA; 2015, p. 80–85.

12. Ding, X., Terzopoulos, D., Diaz-Zamudio, M., Berman, D.S., Slomka, P.J., Dey, D.. Automated pericardium delineation and epicardial

fat volume quantification from noncontrast CT. Medical Physics 2015;42(9):5015–5026.
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