
GPU Optimization of Material Point Methods

MING GAO∗†, University of Pennsylvania
XINLEI WANG∗‡, University of Pennsylvania
KUI WU∗, University of Utah
ANDRE PRADHANA, University of Pennsylvania and DreamWorks Animation
EFTYCHIOS SIFAKIS, University of Wisconsin - Madison
CEM YUKSEL, University of Utah
CHENFANFU JIANG, University of Pennsylvania

Fig. 1. How to melt your dragon.Melting an elastoplastic dragon with 4.2million particles on a 2563 grid using our GPU-optimized implicit MPM dynamics
and heat solvers on a Nvidia Quadro P6000 GPU at an average 10.5 seconds per 48Hz frame.

The Material Point Method (MPM) has been shown to facilitate effective
simulations of physically complex and topologically challenging materials,
with a wealth of emerging applications in computational engineering and
visual computing. Borne out of the extreme importance of regularity, MPM is
given attractive parallelization opportunities on high-performance modern
multiprocessors. Parallelization of MPM that fully leverages computing re-
sources presents challenges that require exploring an extensive design-space
for favorable data structures and algorithms. Unlike the conceptually simple
CPU parallelization, where the coarse partition of tasks can be easily applied,
it takes greater effort to reach the GPU hardware saturation due to its many-
core SIMT architecture. In this paper we introduce methods for addressing
the computational challenges of MPM and extending the capabilities of gen-
eral simulation systems based on MPM, particularly concentrating on GPU

∗M. Gao, X. Wang, and K. Wu are joint first authors.
†M. Gao was with the University of Wisconsin - Madison during this work.
‡X. Wang was with the Zhejiang University during this work.

Authors’ addresses: Ming Gao, University of Pennsylvania; Xinlei Wang, University of
Pennsylvania; Kui Wu, University of Utah; Andre Pradhana, University of Pennsylvania
, DreamWorks Animation; Eftychios Sifakis, University of Wisconsin - Madison; Cem
Yuksel, University of Utah; Chenfanfu Jiang, University of Pennsylvania.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0730-0301/2018/11-ART254 $15.00
https://doi.org/10.1145/3272127.3275044

optimization. In addition to our open-source high-performance framework,
we also conduct performance analyses and benchmark experiments to com-
pare against alternative design choices which may superficially appear to
be reasonable, but can suffer from suboptimal performance in practice. Our
explicit and fully implicit GPU MPM solvers are further equipped with a
Moving Least Squares MPM heat solver and a novel sand constitutive model
to enable fast simulations of a wide range of materials. We demonstrate
that more than an order of magnitude performance improvement can be
achieved with our GPU solvers. Practical high-resolution examples with up
to ten million particles run in less than one minute per frame.

CCS Concepts: • Computing methodologies→ Physical simulation;

Additional Key Words and Phrases: Material Point Method, GPU, SPGrid

ACM Reference Format:
Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem
Yuksel, and Chenfanfu Jiang. 2018. GPU Optimization of Material Point
Methods . ACM Trans. Graph. 37, 6, Article 254 (November 2018), 12 pages.
https://doi.org/10.1145/3272127.3275044

1 INTRODUCTION
The Material Point Method (MPM) is a hybrid Lagrangian/Eulerian
computational scheme that has been shown to simulate a large vari-
ety of traditionally challenging materials with visually rich anima-
tions in computer graphics. Recent examples ofMPM-basedmethods
developed for such materials include simulations of snow [Stom-
akhin et al. 2013], granular solids [Daviet and Bertails-Descoubes
2016; Klár et al. 2016], multi-phase mixtures [Gao et al. 2018a; Stom-
akhin et al. 2014; Tampubolon et al. 2017], cloth [Jiang et al. 2017a],

ACM Trans. Graph., Vol. 37, No. 6, Article 254. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275044
https://doi.org/10.1145/3272127.3275044

254:2 • Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang

foam [Yue et al. 2015] and many others. MPM has been shown to
be particularly effective for simulations involving a large number
of particles with complex interactions. However, the size and the
complexity of these simulations lead to substantial demands on
computational resources, thereby limiting the practical use cases of
MPM in computer graphics applications.
Using the parallel computation power of today’s GPUs is an at-

tractive direction for addressing computational requirements of
simulations with MPM. However, the algorithmic composition of
an MPM simulation pipeline can pose challenges in fully leveraging
compute resources in a GPU implementation. Indeed, MPM simula-
tions include multiple stages with different computational profiles,
and the choice of data structures and algorithms used for handling
some stages can have cascading effects on the performance of the
remaining computation. Thus, discovering how to achieve a per-
formant GPU implementation of MPM involves a software-level
design-space exploration for determining the favorable combina-
tions of data structures and algorithms for handling each stage.

In this paper we introduce methods for addressing the computa-
tional challenges of MPM and extending the capabilities of general
simulation systems based on MPM, particularly concentrating on a
high-performance GPU implementation. We present a collection of
alternative approaches for all components of theMPM simulation on
the GPU and provide test results that identify the favorable design
choices. We also show that design choices that may superficially
appear to be reasonable can suffer from suboptimal performance
in practice. Furthermore, we introduce novel methods for thermo-
dynamics and simulation of granular materials with MPM. More
specifically, this paper includes the following contributions:

(1) A novel, efficient, and memory-friendly GPU algorithm for
acceleratedMPM simulation on a GPU-tailored sparse storage
variation of CPU SPGrid [Setaluri et al. 2014].

(2) A performance analysis of crucial MPM pipeline components,
with several alternative strategies for particle-grid transfers.

(3) A collocated, weak form-consistent, MLS-MPM-based im-
plicit heat solver that enables thermo-mechanical effects on
elastoplasticity.

(4) An easy-to-implement unilateral hyperelasticity model with
non-associative flow rule for cohesionless granular media.

Our experiments show that more than an order of magnitude
performance improvement can be achieved using the favorable
choices for data structures and algorithms, as compared to optimized
solutions using different computational models. We demonstrate
that complexMPM simulations with up to 10million particles can be
simulated within a minute per frame using the methods we describe.
We also present results showing that our heat solver can effectively
handle phase transition effects and that our hyperelasticity model
for granular materials allows achieving consistent simulation results
with explicit and implicit integrations.

2 BACKGROUND

2.1 Related Work
Material point method was introduced by Sulsky et al. [1995] as the
generalization of the hybrid Fluid Implicit Particle (FLIP)method [Brack-
bill 1988; Bridson 2008; Zhu and Bridson 2005] to solid mechanics.

Fig. 2. How to stack your dragon. Stacking elastic dragons in a glass.
This simulation contains 9.0million particles on a 5123 grid with an average
21.8 seconds per 48Hz frame.

It has been recognized as a promising discretization choice for an-
imating various solid materials including snow [Stomakhin et al.
2013], foam [Ram et al. 2015; Yue et al. 2015], sand [Daviet and
Bertails-Descoubes 2016; Klár et al. 2016], cloth [Guo et al. 2018;
Jiang et al. 2017a], fracture [Wretborn et al. 2017], cutting [Hu et al.
2018] and solid fluid mixture [Gao et al. 2018a; Stomakhin et al. 2014;
Tampubolon et al. 2017].

For GPU-based simulation methods, many researchers divided
the simulation domain in order to parallelize computation on the
GPU [Chu et al. 2017; Horvath and Geiger 2009; Liu et al. 2016].
Wang [2018] performed a GPU optimization on sewing pattern ad-
justment system for cloth. Others explored solutions to the compu-
tationally heavy task of self-collision detection, using GPUs [Govin-
daraju et al. 2007, 2005] with improved spatio-temporal coherence
and spatial hashing [Tang et al. 2018, 2013, 2016; Wang et al. 2018;
Weller et al. 2017]. In particular, the spatial hashing table [Weller
et al. 2017] has been proposed as both an acceleration structure
and a substitution to the hierarchy of uniform grids for collision
query in order to lower the memory consumption. Furthermore,
the histogram sort (alternative to radix sort) has been proven to be
capable to significantly reduce the overhead of sorting if the number
of bins is adequately smaller than the total count of elements [Wang
et al. 2018]. These practices provided great foundations for our MPM
pipeline as they fit well with the sparse grid structure.
From the Eulerian view, the simulation domain is represented

by a discretized grid. Museth [2013] developed OpenVDB, which
is a tree with a high branching factor that yields a large uniform
grid at leaf nodes. This adaptive data structure has been shown to
be very efficient and broadly used. Inspired by that, Hoetzlein et
al. [2016] proposed GVDB Voxels, a GPU sparse grid structure. The
voxel data is represented in dense n3 bricks allocated from a pool
of sub-volumes in a voxel atlas. The atlas is implemented as a 3D
hardware texture to enable trilinear interpolation and GPU texture
cache. Recently, Wu et al. [2018] extended it with dynamic topology
update and GPU optimized matrix-free conjugate gradient solver for
fluid simulations with tens of millions particles. Although the use of
texture to store volumetric data can benefit performance for general
purpose usage, such as hardware trilinear interpolation and fast
data accessing, it prevents GVDB from using scattering rather than
gathering because atomic operations on textures are not allowed to
be used under current GPU hardware.

ACM Trans. Graph., Vol. 37, No. 6, Article 254. Publication date: November 2018.

GPU Optimization of Material Point Methods • 254:3

Fig. 3. Elasticity simulation of Gelatin bouncing off Gelatin with 6.9million
particles on a 5123 grid at an average 6.72 seconds per 48Hz frame.

SPGrid [Gao 2018; Setaluri et al. 2014] provided an alternative
sparse data structure; it has been adopted in large-scale fluid simula-
tions [Aanjaneya et al. 2017; Liu et al. 2016; Setaluri et al. 2014] and
in the MPM context [Gao et al. 2018a, 2017; Hu et al. 2018]. SPGrid
improves the data locality by mapping from a sparse 2D/3D array
to a linear memory span by following a modified Morton coding
map. Furthermore, it exploits hardware functions to accelerate the
translation between geometric indices and the 64-bit memory off-
sets. The neighborhood accesses can be achieved in O(1), rather
than O(logn) for traditional tree-based sparse storage schemes (n
is the number of the leaf nodes).

2.2 MPM Overview
MPM, as a hybrid spatial discretization method, benefits from the
advantages of both Lagrangian and Eulerian views. MPM uses La-
grangian particles to carry material states including massmp , posi-
tion xp , velocity vp , volume Vp , deformation gradient Fp , etc. The
grid acts as an Eulerian scratchpad for computing stress divergence
and performing numerical integration. Grid nodes represent the
actual degrees of freedom, which store massmi , position xi and
velocity vi on each node i .

A typical first-order MPM time integration scheme for incremen-
tal dynamics from t0 to t1 (with ∆t = t1 − t0) contains the following
essential steps:

(1) Particles-to-grid (P2G) transfer of masses and velocities:
{m0

i , v
0
i } ← {mp , v0p };

(2) Grid velocity update using either explicit or implicit integra-
tion: v1i ← v0i ;

(3) Grid-to-particles (G2P) transfer of velocities and strain incre-
ments: {v1p , F1p } ← v1i ;

(4) Particle-wise stress evaluation and plasticity treatment that
modifies F1p .

Assuming the usage of a matrix-free Krylov solver for the linearized
system (due to its superior efficiency in implicit MPM, where dynam-
ically changing sparsity pattern of the stiffness matrix could cause
significant overhead in explicitly storing the corresponding linear
system), both explicit and implicit Euler time integrations of MPM
break the entire computation procedures in (1)-(3) into particle-grid
transfer operations of physical quantities and their differentials.
As such, the key to high-performance MPM is the optimization of
particle-grid transfer operators.
Unsurprisingly, the algorithmic choice of the transfer scheme

plays a considerable part in affecting the computing performance.

We design our benchmarks based on three possible choices of the
transfer scheme: FLIP [Zhu and Bridson 2005], APIC [Jiang et al.
2015] and the recently proposed MLS-MPM [Hu et al. 2018]. Note
that MLS-MPM provides an additional algorithmic speed-up by
avoiding kernel weight gradient computations in step (2) (discussed
in more detail in §4 and by Hu et al. [Hu et al. 2018]).

2.3 Particle-to-Grid Transfer
As in many other Lagrangian-Eulerian hybrid methods, the particles
carry material states and transfer them to the grid as mentioned in
§2.2 step (1). On the GPU, the two most common approaches for
performing parallel state transfer are gathering and scattering. The
former one gathers states from all nearby particles to one particular
grid node; while the latter one distributes all states of one particular
particle to all influenced grid nodes.
The domain decomposition technique is commonly used in the

gathering strategy [Huang et al. 2008; Parker 2006; Stantchev et al.
2008; Zhang et al. 2010]. Using this strategy the simulation domain
is divided into several small sub-domains such that each node only
needs to check all the particles within the neighboring sub-domains
instead of thewhole domain. Binning is used for avoiding conflicts in
atomic operations and accessing each particle only once [Klár 2014,
2017; Klár et al. 2017], but the precomputation can be very expensive
and having a different number of particles per cell leads to thread
divergence. Ghost particles are introduced to minimize the number
of communications and barriers within sub-domains [Parker 2006;
Ruggirello and Schumacher 2014]. Chiang et al. [2009] maintain and
update particle lists for each node during the simulation. Obviously,
it requires a huge amount of GPU memory as well as the processing
time for updating particle lists. In order to reduce the workload,
Dong et al. [2015] extend the influencing range of the grid nodes and
further adapt their method to multiple GPUs [Dong and Grabe 2018].
Wu et al. [2018] pre-compute a subset of the particles for each grid
cell. However, their method still needs to unnecessarily examine
a large amount of particles within each voxel. Furthermore, for
storing the subsets, it not only requires expensive data movements
but also consumes a large amount of memory. To summarize, all the
fundamental issues of gathering are due to the need for accessing
associated particles of a node. There is no satisfying solution reading
the data efficiently as well as saving the extra memory for particle
lists, etc. The other inherent problem is that the workload of each
GPU thread is closely related to the length of the particle list of each
grid node, thus thread divergence generally exists and slows down
P2G.
On the contrary, the scattering method is free from all these

critical issues, but its performance suffers from write conflicts. Once
the write conflicts are resolved, the scatter-based transfer scheme
should be superior, because it has more balanced workload and it
also avoids the overhead of maintaining particle lists. Both Harada
et al. [2007] and Zhang et al. [2008] introduced parallel scattering
methods to distribute particle attributes to neighboring particles
in SPH. In their methods, particle attributes are written into 2D
texture buffer simultaneously using graphic rasterization pipeline
to solve write-conflicts. However, their scatteringmethods cannot be
easily employed in a 3D Eulerian simulation framework because the
current hardware rasterization technique only works for 2D texture,

ACM Trans. Graph., Vol. 37, No. 6, Article 254. Publication date: November 2018.

254:4 • Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang

Algorithm 1 Sparse MPM simulation on the GPU
1: procedure SparseMPM()
2: P ← initial points
3: P ← sort(P) ▷ Section 3.3
4: for each timestep do
5: dt ← compute_dt(P)
6: V ← GSPGrid structure(P) ▷ Section 3.1
7: M ← particle_grid_mapping(P, V) ▷ Section 3.1
8: V ← particles_to_grid(P, M) ▷ Section 3.2
9: V ← apply_external_force(V)
10: V ← grid_solve(V , dt)
11: P ← grid_to_particles(V , M)
12: P ← update_positions(P, dt)
13: P ← sort(P) ▷ Section 3.3

not to mention the added complexity to build a mapping between a
sparse grid and 2D texture during rasterization. Fang et al. [2018] and
Hu et al. [2018] recently proposed an asynchronousMPM simulation
method for acceleration on the CPU. Their implementation adopted
the parallel scatter-based scheme and thus also suffered from the
data race during the particle-to-grid transfer. To avoid the expensive
per-cell locking and guarantee correctness as well, they partitioned
all the blocks into several sets, in each of which no two blocks
share any overlapping grid node. But this method only prevented
the write conflicts between blocks, since blocks were used as the
scheduling units on the CPU and it cannot resolve the conflicts when
multiple particles are writing to the same grid node simultaneously,
which is the case on the GPU. We propose a novel scatter-based
GPU implementation of transfer kernels, which alleviates the heavy
use of atomic operations by utilizing modern graphics hardware
features, and thus avoids the majority of the overhead.

3 OPTIMIZED GPU SCHEME FOR MPM
In this section we describe our optimized GPU scheme for MPM
using a GPU-tailored sparse paged grid data structure. The overall
algorithm is summarized in Algorithm 1.

3.1 GSPGrid Tailored to MPM
We introduce GSPGrid, the GPU adaptation of the SPGrid [Setaluri
et al. 2014] data structure which facilitates the sparse storage re-
quired for efficient simulations. Though not limited to such a choice,
a 4 × 4 × 4 spatial dissection of the computational domain into
GSPGrid blocks is assumed in our implementation.

We take a similar strategy to [Gao et al. 2017], and briefly summa-
rize it here. We use the quadratic B-spline functions as the weighting
kernel, so each particle is associated with 3×3×3 grid nodes (3×3 in
2D as shown in the Fig. 4). We assign each particle to the cell whose
“min” corner collocates with the “smallest" node in the particle’s
local 3×3×3 grid. All particles whose corresponding cells are within
the same GSPGrid block are attached to that block. Geometrically,
the particles of a particular GSPGrid block all reside in the same dual
block, i.e. the ∆x/2-shifted block (the red dashed block in Fig. 4). All
computations for transferring particles’ properties to/from the grid
will be conducted locally in the same GSPGrid block.

We assign each particle to one CUDA thread. The particles are
sorted such that the computations of particles sharing the same

dual cell are always conducted by consecutive threads. In scenarios
involving high particle densities, the number of particles within a
single GSPGrid block can easily go beyond the maximum number
of threads allowed in a CUDA block under the current graphic
architecture. To solve this issue, we assign each GSPGrid block to
one or several CUDA blocks and generate the corresponding virtual-
to-physical page mapping. In this way, we can treat each CUDA
block separately without considering their geometric connections.
Notice that, for some particles, e.g. the ones in the yellow cell

in Fig. 4, reading and writing will involve nodes from neighboring
blocks. To deal with such particles, the shared memory of each
CUDA block temporarily allocates enough space for all 7 neighbor-
ing blocks (3 in 2D). One CUDA block usually handles hundreds of
particles in parallel, which makes it affordable to allocate enough
shared memory for all neighboring blocks. For example, in grid-to-
particle transfer, we can first fetch all required data into the shared
memory from the global grid, and then update particles’ properties.

As discussed above, it is possible for a particular block to access
data from its neighboring blocks. In SPGrid, the offsets of the neigh-
boring blocks can be easily computed for addressing them. However,
without the support of virtual memory space in GPU, we also need
to store the address information of neighboring blocks. Fortunately,
the spatial hashing algorithm is able to construct the topology of
neighboring blocks in O(1) complexity on the GPU.

3.2 Parallel Particle-to-Grid Scattering
For particle-to-grid transfers, geometrically neighboring particles
can write into the same nodes, making write hazards a critical prob-
lem which has been examined in many Eulerian-Lagrangian hybrid
methods as discussed in §2.3. There are generally two schemes for
resolving this problem, scattering and gathering. Scattering meth-
ods simply use atomic operations to avoid conflicts. On the other
hand, for gathering, usually a list of particles are created and main-
tained during the simulation; thus each node can track down all the
particles within its affecting range.

smallest node

dual cell

block

dual block

node

affected nodes of
particles in dual cell

Fig. 4. Mapping from particles to blocks: All particles in the yellow dual
cell interact with the same set of 27 nodes (9 in 2D). These particles also
distribute states to the grid nodes of the top neighboring block.

ACM Trans. Graph., Vol. 37, No. 6, Article 254. Publication date: November 2018.

GPU Optimization of Material Point Methods • 254:5

lane id 0 1 2 3 4 5 6 7

node id n n+1 n+1 n+1 n+1 n+2 n+2 n+3

boundary mark 1 1 0 0 0 1 0 1

region interval 0 3 2 1 0 1 0 0

region 0 region 1 region 2 region 3

attribute mass 𝒎𝟎 𝒎𝟏 𝒎𝟐 𝒎𝟑 𝒎𝟒 𝒎𝟓 𝒎𝟔 𝒎𝟕

mass sum 𝒎𝟎 𝒎𝟏 +𝒎𝟐 𝒎𝟐 +𝒎𝟑 𝒎𝟑 +𝒎𝟒 𝒎𝟒 𝒎𝟓 +𝒎𝟔 𝒎𝟔 𝒎𝟕

mass sum 𝒎𝟎

(𝒎𝟏+𝒎𝟐)
+

(𝒎𝟑+𝒎𝟒)

(𝒎𝟐+𝒎𝟑)
+𝒎𝟒

𝒎𝟑 +𝒎𝟒 𝒎𝟒 𝒎𝟓 +𝒎𝟔 𝒎𝟔 𝒎𝟕

iteration 0, stride 1

iteration 1, stride 2

node
n

shared memory
node
n+1

node
n+2

node
n+3

Fig. 5. Optimized particles-to-grid transfer. By using CUDA warp in-
trinsics to accelerate attribute summations, results are first written to the
shared memory and then transfered to global memory in bulk.

Almost all previous papers opt for a gathering approach since it
is widely believed that highly frequent atomic operations in scat-
tering can significantly undermine the performance especially in
GPU-based parallel applications. However, we propose a method to
handle most of the write conflicts from scattering without atomic op-
erations, inspired by the concept of parallel reduction sum [Luitjens
2014] and show that the performance is superior to the gathering
ones. As we divide the whole grid domain as well as their corre-
sponding particles into blocks and cells, there are two levels of write
hazards in P2G, within-block hazards and crossing-block hazards.
As observed in practice, the within-block conflicts are the abso-
lute majority. The within-block ones can be further divided into
within-warp and crossing-warp conflicts and our solution particu-
larly tackles the within-warp ones.

As shown in Fig. 5, within a warp, a few groups of particles tend
to add their attributes to the corresponding grid nodes. For particles
of a particular group (e.g., particles 1-4), simultaneous write opera-
tions into the same location are conventionally done through atomic
operations. We exploit the warp-level CUDA intrinsic functions, i.e.
ballot and shfl, to resolve this problem. First, a representative of
each group is chosen (i.e. the left most one whose boundary mark is

Algorithm 2Warp Computation
1: procedure ComputeBoundaryAndInterval(int laneid, int∗ cellids)
2: cell id ← cell ids[laneid]
3: cell idprev ← cell ids[laneid − 1]
4: if laneid = 0 ∨ cell id , cell idprev then
5: boundary ← true
6: mark ← brev(ballot(boundary))
7: interval ← countFollowingZeroes(mark, laneid)
8: str ide ← 1
9: iter ← interval
10: while str ide < 32 do
11: tmp ← shfldown(iter, str ide)
12: iter ← max(tmp, iter)
13: str ide ← str ide << 1 ▷ //move on to a higher level
14: iter ← shfl(iter, 0) ▷ //broadcast the maximum iterations

set on). Then attributes from all the other particles within the same
group are added to the one from the representative by iteratively
shuffling from right to left. The stride of shuffle doubles after each
iteration, and the total number of iterations should be enough to
cover the longest region in the warp by using Algorithm 2. Finally,
the representative particle is responsible for writing the sum to the
target grid node, as illustrated in Algorithm 3. In this way, all warp-
scale write conflicts are eliminated. To further reduce the global
write conflicts across different warps, the shared memory acts as a
buffer for temporarily holding the summation results from differ-
ent warps. Note that this crossing-warp conflicts only infrequently
happen such that the negative impact caused by atomic-adds to the
shared memory is almost negligible.

3.3 Cell-based Particle Sorting
Since the positions of the particles are updated in each time-step, the
GSPGrid data structure should be refreshed accordingly. To build
the new mapping from the GSPGrid blocks to the continuous GPU
memory, we need first to re-sort the particles to help identify all the
blocks occupied or touched by the particles.
SPGrid translates the cell index of each particle to a 64-bit in-

teger offset, which is used as the keyword for sorting. Radix sort
is generally considered the fastest sorting algorithm on GPU. In
our simulations, the count of offsets in use is almost negligible
compared to what a 64-bit integer can represent. We therefore use
spatial hashing to transform these sparse offsets of GSPGrid blocks
into consecutive numbers. Whenever a new block is touched, the
index assigned to the block increments by one (starting from 0). The
transformed block indices of all the particles are thus consecutive,
and the maximum number is usually several orders of magnitude
smaller than the particle number. Furthermore, all particles within
the same block can be partitioned by 4 × 4 × 4 cells. This particular
layout is required by the follow-up computations including pre-
calculating the smallest index of each particle and reducing write
conflicts during P2G transfer (§3.2).

With CPU SPGrid, radix sort facilitates proximity (in memory) of
geometrically neighboring blocks to improve prefetching efficiency.
In GPU, this is not a concern anymore; thus we use histogram sort
instead of the conventional radix sort. The new keyword, which is
a combination of the transformed block index and dense cell index
within the block, works as the reference to the bin. The observed
performance speedup approaches an order of magnitude, and in
collaboration with delayed ordering technique (§3.4), reordering the
particles is no longer a bottleneck.

Algorithm 3 Warp Write
1: procedure GatherAndWrite(T∗ buffer, T attrib, int iter)
2: str ide ← 1
3: val ← attr ib
4: while stride <= iter do ▷ //hierarchical summation
5: tmp ← shfldown(val, str ide)
6: if str ide <= interval then ▷ //only sum within the group
7: val ← val + tmp
8: str ide ← str ide << 1 ▷ //move on to a higher level
9: if boundary then ▷ //only the boundary node needs to write
10: ∗buf f er ← ∗buf f er + val ▷ //AtomicAdd is applied

ACM Trans. Graph., Vol. 37, No. 6, Article 254. Publication date: November 2018.

254:6 • Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang

3.4 Particle Reordering
Given the sorted indices from §3.3, one natural thing to do next
is to reorder all particles’ properties accordingly since coalesced
memory accesses are always preferable in CUDA kernels. However,
for a high-resolution simulation, the reordering itself can be the
bottleneck, since each particle carries various properties such as
positions, velocities, and deformation gradient, etc., and reading and
writing those data in a non-coalesced manner can be time consum-
ing. We propose a practical way to completely dispense with the
reordering. We observe that any functions which take in scattered
data and write back the updated results in order can actually sort
the data as a byproduct. In essence, a reordering function simply
writes unordered inputs back in a different order. If we apply the
reordering function to the particle property optionally rather than
sorting all the properties of a particle, the cost / latency due to the
scattered memory reads can be largely mitigated and the overhead
of reordering is avoided.

The position of a particle is the only property we decide to reorder
since they are essential for almost all kernels that build mappings
between particles and grid blocks / cells, and for all transfer kernels
that needs to compute weights and weight gradients from the posi-
tions. We treat all the other properties accordingly based on how
they are used in the related computations. We list a few of them
as the most typical cases. Note that most CUDA kernels follow the
positions’ order, except for certain material-based computations.

Mass. Since each particle’s mass remains constant, their sequence
will never be changed; for retrieving the correct mass, we only need
to map from the current particles’ order to the original order.

Velocity. Velocities are updated every time-step in the G2P kernel.
The new velocities are forced to follow the order of the threads
/ positions by simply writing them back in a coalesced manner.
However, when the velocities are being used as the inputs to some
kernels in the next time-step, they are not matching with new posi-
tions’ order since we choose only to reorder positions at the end of
each time-step. As a result, a mapping from the current order to the
previous order is required.

Stress. When computing the stresses, we choose not to change
the order of either the inputs F or the outputs P. One reason is that

P2G-FLIP P2G-APIC P2G-MLS G2P-FLIP G2P-APIC G2P-MLS
0

30

60

90

120

GPU Ours150
GPU Naive Scattering GVDB [Wu et al. 2018]

180 ms CPU [Gao et al. 2017] CPU [Hu et al. 2018]

Fig. 6. Transfer benchmark.Comparison of our GPU scattering to a SIMD
CPU implementations of FLIP [Gao et al. 2017] and MLS [Hu et al. 2018]
transfer schemes, a naive GPU scattering implementation using atomic
operations, and a GPU gathering implementation using GVDB [Wu et al.
2018] on Nvidia TITAN Xp.

the GPU SVD function can be optimized (§4.3) so fast that it may
be inefficient to amortize the scattered writes.

4 BENCHMARKS AND PERFORMANCE EVALUATION
To evaluate our GPUMPM algorithm, we create several benchmarks,
starting with the uniform particle distribution (§4.1). Firstly, we com-
pare the performance of the transfer kernels between our method
and one SIMD-optimized multi-core CPU implementation as well
as one gathering-based GPU implementation with GVDB as the
sparse background grid. Secondly, with the total number of particles
being fixed, we vary the particle densities (particles per cell, PPC)
to examine how our pipeline can be affected.

We further evaluate the performance with non-uniform particle
distributions, e.g. Gaussian distributions (§4.2). In this experiment,
we fix both the total number of particles and the total number of
cells being occupied by the particles; while the PPC of each single
cell can vary following particular Gaussian distributions.
In addition to the explicit pipeline, we also measure the perfor-

mance of the key kernels merely used in the implicit time integra-
tion [Stomakhin et al. 2013]. Since the results of the singular value
decomposition (SVD) of the deformation gradient are required in the
computation of the stress derivative in every single iteration, one
can always pre-compute the SVD and store the results in advance.
However, our experiment (§4.3) reveals some interesting findings.

Notice that, as mentioned before, the three-dimensional GSPGrid
block with 16 channels is of resolution 4 × 4 × 4 and eight particles
per cell are usually required for stability considerations in MPM
applications. Hence, we choose to allow each CUDA block to process
at most 512 particles, due to the limitation of the current hardware
architecture.
Unless otherwise stated, all of our GPU tests are performed on

Quadro P6000 and all CPU tests are performed on an 18-core Intel
Xeon Gold 6140 CPU.

4.1 Uniform Distribution Benchmarks
4.1.1 Comparisons with two state-of-the-art implementations. We
create a benchmark with ∆x = 1

128 . The particles are uniformly
sampled on a grid from (18 ,

1
8 ,

1
8) to (

7
8 ,

7
8 ,

7
8) with spacing 1

256 . The
total number of the particles is just over 7 million particles. For this
test, the CPU benchmark was performed on an 18-core Intel Xeon
Gold 6140 CPU and all GPU measurements were performed on a
NVIDIA TITAN Xp. The results are in Fig. 6.

Comparison with CPU implementation. We compare our scatter-
based GPU implementation of particle-grid transfers to SIMD opti-
mized CPU implementations of FLIP [Gao et al. 2017] and MLS [Hu
et al. 2018]. In our tests, our P2G and G2P kernels achieved more
than 16× speedups in comparison to the CPU implementation of
FLIP [Gao et al. 2017], and about 8× and 13× speedups as compared
to the CPU implementation of MLS [Hu et al. 2018], respectively.

Comparison with GPU implementation with atomic operations. We
perform comparisons against an atomic-only scattering implemen-
tation, which is an order of magnitude slower than our proposed
method as shown in Fig. 6. Of course, the fact that we did not find
this route to be attractively efficient in current platforms, is no

ACM Trans. Graph., Vol. 37, No. 6, Article 254. Publication date: November 2018.

GPU Optimization of Material Point Methods • 254:7

PPC-4 PPC-8 PPC-12 PPC-16
0

2

4

Mapping Stress P2G G2P Re-sorting
6 ms

Fig. 7. Particle density benchmark. The total number of particles is ap-
proximately fixed as 3.5M. The stress kernel includes the SVD computation.

indication that the performance of atomics will not be faster in
future generations. However, since MPM for simulating solids needs
quadratic kernels to acquire continuous force fields, the amount of
conflicts encountered is usually much more than expected.

Comparison with GVDB-based implementation. We compare with
one of the most recent GPU gathering implementation with sparse
grid structure [Wu et al. 2018]. Their idea is basically to pre-compute
a subset of particles for each grid cell. All particles influencing the
grid nodes inside the cell will be included in that list. When per-
forming the particle-to-grid transfer, each node needs to check all
particles in the list to determine whether they are close enough.
Therefore, each node has to check much more unnecessary particles
than needed (only 20% utilization for MPM FLIP with subcell size 43).
In order to do a comprehensive comparison, we use three different
transfer schemes, including FLIP, APIC, and MLS. Since their gath-
ering method needs to create lists for all particle attributes, such as
velocity, position, stress, and deformation gradients, it takes half of
the computation time to load and store data. More importantly, it
consumes tremendous amounts of GPU memory.
For our P2G kernels, the computing workload and the memory

access workload are well balanced. Therefore, the timing is bounded
by both memory and computations. FLIP only needs to compute
nodal mass, traditional translational momentum and forces; while
APIC also needs to load one additional matrix for the affine veloc-
ity modes. In contrast, MLS completely avoids the computation of
weight gradients, and the two matrix-vector multiplications of APIC
(i.e. computing the force and the affine modes) can be merged into
one [Hu et al. 2018].

For our G2P kernels, memory is utilized more heavily than com-
puting units. Compared to APIC and MLS, FLIP also needs to load
the nodal velocity increments for updating the particles’ velocities.
However, APIC and MLS have to refresh one extra matrix for record-
ing the affine velocity modes; while MLS can merge the updates
of F and that extra matrix into one to reduce the total cost [Hu
et al. 2018]. GVDB uses a 3D texture to store volume data to uti-
lize the hardware trilinear texture interpolation functions; however
MPM cannot benefit from this because of the higher order B-spline
weighting functions. Furthermore, we exploit the shared memory
to pre-load grid data for all particles within the same block.

4.1.2 Particle density benchmark. In this subsection, while fixing
the total number of particles, we run the benchmarks for cases with
different particle densities (particles per cell, PPC). And we start to
include all other critical kernels in addition to the transfer kernels;

Gaussian_µ = 10 Uniform_µ = 10 Gaussian_µ = 18 Uniform_µ = 18
0

5

10

15 ms

Mapping Stress P2G G2P Re-sorting

Fig. 8. Gaussian benchmark. We compare the performance of each criti-
cal kernel when the particle-per-cell distributions following Gaussian and
uniform distributions The stress kernel also includes the SVD computation.

all tests are conducted using the MLS transfer scheme. As shown
in Fig. 7, it is reasonable to observe that when the particle density
increases, the transfer kernels take less time to finish, since the
higher PPC renders a smaller sparse grid structure. For the other
kernels, which are mostly particle-oriented, i.e. the underlying grid
structure does not really interfere with them, the impacts of the
varying PPC seem to be negligible.
4.2 Gaussian Particle Distribution Benchmarks
To further examine the impacts of non-uniform particle distribu-
tions, we also run some benchmarks in which the particle-per-cell
varies based on a Gaussian distribution. All tests are with MLS. We
use the same box domain from (18 ,

1
8 ,

1
8) to (

7
8 ,

7
8 ,

7
8). For the two

Gaussian distributions, the minimum particle-per-cell are 4 while
the maximums are 16 and 32; while the corresponding uniform
cases are with particle-per-cell being 10 and 18 respectively. As
shown in Fig. 8, the performances are almost identical, proving that
our scheme is not affected by the particle distribution when the
background sparse grid remains the same.
4.3 Implicit Iteration and SVD
We adopt the matrix-free Krylov solver for the implicit step in which
themultiplication of the systemmatrix and a vector can be expressed
by concatenating a G2P transfer and a P2G transfer (ref.[Stomakhin
et al. 2013] for more details). Notice those two transfer kernels are
not the same as the ones used in the explicit MPM solver. We name
them as P2G-Implicit and G2P-Implicit kernels as in Fig. 9. Both
FLIP and APIC (non-MLS) have to compute weight gradients while
MLS approximates weight gradients with weights. From the right
half of Fig. 9, the G2P-MLS is slightly slower than G2P-non-MLS
because G2P-MLS needs to do additional 9 multiplications due to
the extra term (xp − xi) at all 27 nodes.

We also consider the possibility of precomputing and storing the
results of SVD at the beginning of each time step. Whenever the
stress kernel or stress-derivative kernel needs, we simply load the
SVD results from memory. Notice that, for stress kernel, it is faster
to simply re-compute SVD repeatedly; while for stress-derivative
kernel, there is only negligible difference. The main reason for this
discrepant behavior in the two kernels is that the computing work-
load in Stress kernel is already lighter than the memory workload,
loading more data in can significantly impede the performance. On
the other hand, Stress-derivative has enough computing workload
to mitigate the memory cost for loading SVD results.

ACM Trans. Graph., Vol. 37, No. 6, Article 254. Publication date: November 2018.

254:8 • Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang

SVD on-the-fly Precompute SVD MLS Non-MLS
Precompute SVD Stress G2P-Implicit Stress-Derivative P2G-Implicit G2P-Implicit P2G-Implicit
0

2

4

6

8 ms On-the-fly/Load SVD Benchmark MLS Comparison

Fig. 9. On-the-fly/load SVD benchmark and MLS comparison. Left,
when we pre-compute SVD and store the results, the stress and stress-
derivative kernels load the SVD results directly from the memory; otherwise
they recompute SVD on-the-fly ; right, we compare the performance for
one implicit iteration of MLS and non-MLS implicit integrations.

In the same CPU used in Sec. 4.1.1, a AVX512 SVD implementation
of [McAdams et al. 2011] takes about 2.3 ns per particle (SVD) and
implicit symmetric QR SVD [Gast et al. 2016] takes 17.0 ns; while
our GPU implementation takes about 0.37 ns.

4.4 Reorder Benchmark
We compare the performances of 7M particles example with particle
reordering and without particle reordering (i.e. delayed reordering)
using the explicit integration. As shown in Fig. 10, computing stress,
P2G, and G2P are barely affected by reordering, while our method
only reorders the particle positions rather than all attributes such
as velocity and deformation gradient.

Mapping Stress P2G Solver G2P Re-sorting
0

2

4

6

8

10 ms Reorder No Reorder

Fig. 10. Reorder benchmark. Our delayed ordering technique can reduce
sorting time dramatically while all other kernels are barely impacted. Only
colored components are impacted by reordering.

4.5 Integration Benchmark
We compare our explicit integration pipeline with the matrix-free
implicit Krylov solver by simulating the collision between two elas-
tic dragons and list the performance in (Fig. 11). The ∆t of them
are set to be 1 × 10−4 and 1 × 10−3 respectively. Obviously, the
implicit solver spends more time per step to solve a linear system,
but also can use larger time step. The source code of this benchmark
is included in the supplemental materials.

5 MPM HEAT SOLVER WITH MLS SHAPE FUNCTIONS
MPM can be generalized to derive an implicit scheme for solving
the heat equation. We follow Hu et al. [2018] in deriving a moving
least squares (MLS) weak form. The resulting algorithm allows us to
accurately capture heat conduction in virtual materials and enables
us to simulate thermo-mechanical phenomena such as melting.
Stomakhin et al. [2014] also investigated thermo-mechanical

effects in the context of MPM. Their formulation is based on a

(ms) Explicit Integration Implicit Integration

528
628

572
672

1039

839

FLIP APIC MLS

Fig. 11. Integration benchmark.We compare the performance of the two
dragons colliding example (left) with our GPU explicit and implicit solver
along with three different schemes (right). The total number of particles is
775K and the grid resolution is 2563.

staggered-grid finite difference discretization which requires heuris-
tic boundary cell labeling. Our method, in contrast, naturally en-
forces the zero Neumann boundary condition (insulated at the free
surface) when no surface heat flux is specified. This boundary con-
dition is analogous to the zero traction boundary condition in dis-
cretizing the momentum equation with MPM. On the other hand,
Dirichlet boundary temperatures are enforced at nodes by prescrib-
ing the values. Performing a weak form consistent discretization
allows us to treat particles as mass-full quadrature points. Conse-
quently, unlike Stomakhin et al. [2014], we do not need to transfer
particle-wise heat capacity or conductivity to the grid. We also
maintain a consistent discretization function space for both the
momentum and heat equations.
Additionally, our method shares the same collocated MPM grid

and transfer kernels as the ones used for solving the momentum
equation. The existing optimization strategies for velocity and force
transfers on the GPUs directly apply to temperature and “thermal
force” transfers with negligible modifications.

5.1 Continuous Equation
We start from the Eulerian-form heat equation

ρ(x, t) c(x, t) Dθ (x, t)
Dt

− ∇ · κ(x, t) ∇θ + qext = 0,

where x and t are the current position and time, θ is temperature, ρ
is density, c is Eulerian specific heat capacity (with its Lagrangian
counter part C(X, t) and unit J/(kд · K), where X is the reference
position), κ is heat conductivity, qext encodes any external body
heat source such as radiation, and

Dθ (x, t)
Dt

=
∂θ

∂t
+ v(x, t) · ∇θ (x, t)

is the material derivative of θ .

5.2 MLS Discretization
In deriving the weak form of the heat equation, we follow the dis-
cretization strategy of Hu et al. [2018] closely. The backward Euler
discretization (from t0 to t1) of the weak form of the heat equation
is given by

M̂0
i (θ

1
i − θ

0
i)

∆t
= q1 + y, (1)

ACM Trans. Graph., Vol. 37, No. 6, Article 254. Publication date: November 2018.

GPU Optimization of Material Point Methods • 254:9

Fig. 12. Sand constitutive model. The left and right columns depict explicit and semi-implicit simulations respectively. The semi-implicit scheme with the
St. Venant-Kirchhoff constitutive model used in [Klár et al. 2016] introduced a severe numerical viscosity, while the modification proposed by [Tampubolon
et al. 2017] introduced spreading effect and non-physical column-collapse profile. Our proposed energy density functions mitigate these shortcomings.

where q1(x) =
∫
∂Ω0

(
Φiκ

0(x)θ1j ∇Φj
)
· nds(x) encodes the heat flux

Neumann boundary condition,

y(θ1) = −
∫
Ω0
∇Φi ·

(
κ0(x)θ1j ∇Φj

)
dx

is the implicit “thermal force”. M̂0
i =

∑
pmpCpNi (xp) is the lumped

thermal mass, with Ni (x) being the quadratic B-spline interpola-
tion function. MLS shape functions Φi (x) are used to reconstruct
a function space near each particle. The integration domain is fur-
ther expressed as a summation over particle domains, where each
integral over a particle domain is approximated using one point
quadrature. The resulting formulation for an insulated body with
no boundary heat flux is then

1
∆t
(θ1i − θ

0
i)M̂

0
i = −

∑
j

(∑
p
κpV

0
p ∇Φi (xp) · ∇Φj (xp)

)
θ1j , (2)

where θi is temperature of node i , Cp is the specific heat capacity
of particle p, and κp is the heat conductivity of particle p.

Utilizing the MLS shape functions avoids differentiating B-spline
kernels in high dimensions. More specifically, if a linear polynomial
space with quadratic B-spline weighting is chosen for the MLS
reconstruction, we have [Hu et al. 2018]

∇Φi (xp) = D−1p Ni (x0p)(xi − x0p),

where Dp =
1
4∆x

2 for the quadratic B-spline function.
After the temperature increment is solved on the grid, we transfer

it back to the particles during the grid-to-particles step. A more
detailed explanation of the discretization step is provided in [Gao
et al. 2018b].

6 CONSTITUTIVE MODELS

6.1 Temperature Dependent Elasticity
The elastic response of the simulated material is modeled in the
isotropic hyperelasticity framework. In this context, the energy den-
sity function is a function of the singular values of the deformation
gradient whose SVD is given by F = UF̂VT , with F̂ = diag{ f̂0, f̂1, f̂2}.

For temperature dependent physical model, we adopt the fixed coro-
tated energy density function as proposed in [Stomakhin et al. 2012]:

ψ̂ (F̂) = µ(θ)
d−1∑
i=0
(f̂i − 1)2 +

λ(θ)
2 (det(F̂) − 1)

2. (3)

Here, d represents the number of spatial dimensions. We use inter-
polated grid temperature values at particle locations instead of θp
on particles to drive the phase change. This prevents the influence
of the ringing instability [Jiang et al. 2015, 2017b], i.e., particle tem-
perature modes that are invisible to the integrator due to the null
space in the particles-to-grid transfer operator.
We additionally apply a numerical RPIC damping [Gao et al.

2018a; Jiang et al. 2017a] to achieve the look of viscous flow in the
fluid phase.

6.2 Stabilizing Shear Compliant Particles
When a phase change occurs, the shear modulus µ is set to 0. In this
case the energy density only penalizes volumetric change without
penalizing shearing. This process has been shown to cause the
entries of F to grow unbounded quickly (even close to the square root
of FLT_MAX) while its determinant stays close to 1. Floating point
accuracy is correspondingly drastically affected and floating point
overflow can easily get triggered. One solution is to use an equation
of states constitutive model which only depends on the update of
the determinant of F as in [Tampubolon et al. 2017]. Instead, we
adopt a simple solution as in [Stomakhin et al. 2014] by projecting
F to the hydrostatic axis and setting the diagonal entries of it to be
J1/d . This corresponds to a plasticity return mapping that absorbs
the isochoric part of the elastic deformation gradient into the plastic
part while only keeping its dilational part. This strategy improves
the numerical stability of our algorithm significantly.

6.3 Unilateral Model for Cohesionless Granular Material
We simulate cohesionless sand as an elastoplastic material. We pro-
pose a full quartic model whose energy density function is given

ACM Trans. Graph., Vol. 37, No. 6, Article 254. Publication date: November 2018.

254:10 • Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang

Table 1. Average simulation time per frame. All timings are in seconds and frame rate is 48.

Particles # Domain ∆t Mapping Stress P2G Solver* Solver w/ Heat* G2P Sorting Others Total (s)
Dragon Cup 9.0M 5123 1 × 10−4 0.64 0.57 2.30 13.94 - 1.00 1.35 1.15 20.95
Granulation 6.7M 5123 2.5 × 10−4 0.26 1.34 1.88 33.47 - 0.74 0.41 0.32 38.42
Gelatin 6.9M 5123 1 × 10−3 0.08 0.05 0.26 5.50 - 0.10 0.26 0.02 6.27
Melting 4.2M 2563 8 × 10−3 0.02 0.01 0.07 - 10.32 0.02 0.03 0.01 10.48
* Implicit solvers were used for all tests in this table. The time for P2G and G2P used in the solver is not included in this table. Details refer to Table 2.

Table 2. Average percentages for all components in the solver. The
MLS transfer scheme is used for the implicit solver.

Compute
G2P Gradient & SVD P2G Others

Dragon Cup 12.8% 36.8% 43.3% 7.1%
Granulation 13.4% 12.9% 45.3% 28.4%
Gelatin 12.4% 34.2% 42.9% 10.6%
Melting 11.3% 37.0% 39.5% 12.2%

by

ψ̂ (F̂) = aµ
d−1∑
i=0
(log(f̂i))4 +

aλ

2

(
tr(log(F̂))

)4
. (4)

The coefficient a is approximately 6.254 and is obtained by minimiz-
ing the L2-norm of the difference between the quartic function with
the original logarithm function over the interval [0.25, 1].
The above model gives visually pleasing results for the explicit

time integration scheme. Semi-implicit scheme, where plasticity
is treated as a post-process after the elastic response is resolved
implicitly, has been shown to suffer numerical cohesion problems
[Klár et al. 2016]. We propose a unilateral version of the quartic
energy density function which mitigates this problem and improves
the visual result of [Tampubolon et al. 2017], namely

ψ̂ (F̂) = aµ
d−1∑
i=0
(log(f̂i))4H {log(f̂i)<0}(log(f̂i))+

aλ

2

(
tr(log(F̂))

)4
H {tr(log(F̂))<0}(tr(log(F̂))), (5)

where H symbolizes the indicator function.
We use the Drucker-Prager plasticity yield function with a rig-

orously derived return mapping algorithm corresponding to the
quartic model. Unlike the model in [Tampubolon et al. 2017], our
unilateral elasticity does not require additional parameter tuning
and much more closely approximates the visual behavior of the orig-
inal model from [Klár et al. 2016]. The details of our algorithm are
explained in supplemental technical document [Gao et al. 2018b].

7 MORE RESULTS
In addition to the benchmarks, we also demonstrate the efficiency
of our GPU implementation and the efficacy of our new heat dis-
cretization and the semi-definite sand model with several simulation
demos. We list the performance and the parameters used in these
simulations in Table 1. Note that all particles are sampled using
Poisson Disk [Bridson 2007] for uniform coverage. For the Krylov
solver, which are typically used for implicit MPM, each iteration
consists of a call to the P2G kernel and a call to the G2P kernel.

Detailed timings for the solver are shown in Table 2. Others section
includes vector addition, inner-product, and other solver operations,
the time of which depend on the number of activated voxels. Be-
side P2G, computing gradient and SVD also take a large amount
of computation time in the solver, however, for the “Granulation”
example in the Table 2, since sand particles are very sparse, more
voxels are activated. As a results, P2G and others become more ex-
pensive. G2P becomes more expensive too, because the more voxels
data need to be fetched for interpolation. Thus, the percentage of
computing gradient and SVD is reduced, because it only depends
on the particle number. Using either an atomics-only scattering or
optimized gathering, like GVDB does, P2G occupies more than 90%
of the solver time and is the bottleneck of the entire simulation. In
contrast, our proposed P2G-MLS method is 23× faster than atomic-
only scattering and 15× faster than GVDB gathering as shown in
Fig. 6. The P2G time is reduced down to around 40% for the solver.

In Fig. 2, eighteen elastic dragons are stacked together in a glass to
generate interesting dynamics; and in Fig. 13, two arrays of dragon-
shaped jellies are dropped to the ground. We can also simulate a
Gelatin Jello bouncing off another larger one in Fig. 3.
Lava is poured to a cool elastic dragon in Fig. 1. Our heat solver

is capable of accurately capturing the process of heat transport and
phase change. As the temperature of certain parts of the dragon
increases, the dragon liquefies. Finally, we demonstrate in Fig. 14
that our new granular material model manages to produce visually
pleasing dynamics with a semi-implicit solver.

7.1 Memory Footprint
Time performance is not the only concern of our implementation.
The memory consumption should also be dealt with appropriately,
especially in high-resolution animations. In our simulator, the mem-
ory budget is partitioned into three categories.

Particle. This part of the memory is used to store all particles’
attributes. Its size grows linearly with the particle count and the
number of attributes in each particle.

Grid. This part of the memory is used for the sparse grid structure,
where the actual amount of memory in use has a linear correlation
with the number of occupied GSPGrid blocks. The worst case de-
generates to a uniform grid. In our test cases, we mostly set the total
amount of memory allocated to be 60% to that of the uniform grid.

Auxiliary. Logically speaking, this part consists of two blocks of
memory. Since we use spatial hashing for particle sorting and block
topology construction, we need a hash table to perform the task.
Its capacity shares a linear correlation with the number of cells in
use (64× that of sparse GSPGrid blocks). To reduce hash collision
conflicts as well as saving memory, the coefficient is set to 64 (not

ACM Trans. Graph., Vol. 37, No. 6, Article 254. Publication date: November 2018.

GPU Optimization of Material Point Methods • 254:11

Fig. 13. How to collide your dragon. Two arrays of elastic dragons col-
liding with each other.

the same meaning as before) as a trade-off. Note that the key value
of the hash table is a 64-bit integer. The other trunk of memory
works as the storage for other intermediate computations, including
the ordering of particle positions, velocities, deformation gradient
F, etc. Its size is linear with the number of particles.

In the actual implementation, the total amount of auxiliary mem-
ory set in advance for these intermediate computations is decided
by the maximum memory in use at the same time. The hash table
is only used for particle ordering and page topology construction
which are the two beginning tasks of each time step. In the rest
steps, this hash table is no longer needed.
As a result, up to 2.4GB is spent on the cube example with 7M

particles, 900K cells, and 17K GSPGrid blocks, of which the majority
is particle-related, while the memory budget for the dragon collision
example with 95K particles, 6K cells, and 500 blocks is 70MB.

8 LIMITATIONS AND FUTURE WORK
Ourwork focuses at porting the transfer kernels of theMPMpipeline
to the GPU with the least amount of performance compromises. In
addition to our data representation via (G)SPGrid, our analysis iden-
tified the overhead associated with a scatter-approach as a signifi-
cant hindrance, due to the fine-grained atomic operations necessary
to avoid hazards. Rather than avoiding the scatter paradigm, we
introduced an approach that drastically minimizes the need for such
atomics, improving parallel efficiency.
A number of the design choices that led to our demonstrated

performance gains also carry some associated limitations that we
consciously commit to. Our decision to mimic the design of the
CPU-oriented SPGrid data structure in our GPU counterpart allows
for implementations on the respective platforms to use similar se-
mantics and maximize code reuse. However, the explicit use of the
virtual memory system in the CPU version of SPGrid allows for
computational kernels to be implemented (at reasonable, albeit not
fully optimal efficiency) with computations performed at per-node
granularity or, more realistically, SIMD-line granularity; for exam-
ple, accessing a stencil neighbor of any individual grid node can
be done at a reasonable cost, without any set-up overhead. On the
GPU, however, such computations can only reach high efficiency if
performed at a larger scale, e.g. at block granularity, since the over-
head of fetching the neighboring blocks of the one being processed
needs to be borne for each kernel invocation. This is not a prohibi-
tive limitation, as performing computations at block granularity is
by-and-large a necessity for efficiency for any similar GPU kernel.

GSPGrid apparently lacks a defining feature of CPU/SPGrid, its
use of the virtual memory system and translational faculties, i.e. the
TLB. One would hope that this can be a momentary shortcoming,
and future GPUs and associated APIs will provide more direct access
to virtual memory and address translation, on the GPU. But even in
the current version, our implementation, even if it feels more like a
tiled grid, is trivially convertible from/to a CPU/SPGrid structure.
Also, the main benefit that CPU/SPGrid draws from its affinity
to the virtual memory system is its ability to deliver competitive
performance even if one grid index is processed at a time – on the
GPU, we are de facto forced to conduct operations at warp/block
granularity, so the design of fetching a neighborhood of blocks
prior to kernel application might have been the best performing
implementation, even with a virtual memory-assisted data structure.

In addition, for a CPU implementation of SPGrid, accessing a grid
node that has not been referenced before is an operation that can be
done without any requisite setup or pre-processing (any page-faults
that might occur are handled transparently). On the GPU, however,
our need to explicitly allocate all active blocks necessitates that the
set of all active indices be fully known before their data storage can
be allocated and accessed. Once again, we regard this as a reasonable
limitation, since the frequency at which the topology of the compu-
tational domain changes is small relative to the computational cost
of operating on such data during MPM simulation. Also, since the
maximum domain size is determined by the number of valid bits of
a 64-bit offset and the resolution of each cell, it should be enough
for most simulations.
Finally, GPU MPM simulations are still limited by the smaller

amount of on-board memory, and it would be an interesting investi-
gation to explore multi-GPU methods, or heterogeneous implemen-
tations to circumvent the size limitation.
While our optimization strategies greatly utilize computational

resources on the GPU, high fidelity MPM simulations are still far
from being real-time. This is largely due to the strict CFL restric-
tion on time step sizes especially in high resolution. It would be
interesting future work to further combine additional algorithmic
acceleration of MPM time stepping with our GPU framework. We
would also explore possibilities with spatially adaptive GSPGrid
following Gao et al. [2017] for superior performance.

Fig. 14. How to granulate your dragon. Granulated dragons fall on elas-
tic ones. This simulation contains 6.7 million particles on a 5123 grid at an
average 39.4 seconds per 48Hz frame.

ACM Trans. Graph., Vol. 37, No. 6, Article 254. Publication date: November 2018.

254:12 • Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang

ACKNOWLEDGMENTS
We thank Professor Min Tang for offering all the resources needed
and giving his full support for Xinlei Wang in this paper. We also
thank Joshuah Wolper for narrating the accompanying video. This
work was supported in part by NSF Grants CMMI-1538593, IIS-
1253598, IIS-1755544, IIS-1763638, CCF-1533885, CCF-1813624, CCF-
1812944, a gift from Awowd Inc., a gift from SideFX, and NVIDIA
GPU Grants. Kui Wu is supported in part by University of Utah
Graduate Research Fellowship.

REFERENCES
M. Aanjaneya, M. Gao, H. Liu, C. Batty, and E. Sifakis. 2017. Power diagrams and sparse

paged grids for high resolution adaptive liquids. ACM Trans Graph 36, 4 (2017), 140.
J. Brackbill. 1988. The ringing instability in Particle-In-Cell calculations of low-speed

flow. J Comp Phys 75, 2 (1988), 469–492.
R. Bridson. 2007. Fast poisson disk sampling in arbitrary dimensions. InACM SIGGRAPH

2007 Sketches. Article 22.
R. Bridson. 2008. Fluid simulation for computer graphics. Taylor & Francis.
W-F. Chiang, M. DeLisi, T. Hummel, T. Prete, K. Tew, M. Hall, P. Wallstedt, and J.

Guilkey. 2009. GPU acceleration of the Generalized Interpolation Material Point
method. Symp App Accel High Perf Comp (2009).

J. Chu, N. B. Zafar, and X. Yang. 2017. A Schur complement preconditioner for scalable
parallel fluid simulation. ACM Trans Graph 36, 5 (2017), 163:1–163:11.

G. Daviet and F. Bertails-Descoubes. 2016. A semi-implicit material point method for
the continuum simulation of granular materials. ACM Trans Graph 35, 4 (2016),
102:1–102:13.

Y. Dong and J. Grabe. 2018. Large scale parallelisation of the material point method
with multiple GPUs. Comp and Geo 101 (2018), 149–158.

Y. Dong, D. Wang, and M. F. Randolph. 2015. A GPU parallel computing strategy for
the material point method. Comp and Geo 66 (2015), 31–38.

Y. Fang*, Y. Hu*, S. Hu, and C. Jiang. 2018. A Temporally AdaptiveMaterial Point Method
with Regional Time Stepping. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA ’18). Eurographics Association. (*Joint
First Authors).

M. Gao. 2018. Sparse Paged Grid and its Applications to Adaptivity and Material Point
Method in Physics Based Simulations. Ph.D. Dissertation. University of Wisconsin,
Madison.

M. Gao, A.P. Tampubolon, X. Han, Q Guo, G. Kot, E. Sifakis, and C. Jiang. 2018a.
Animating fluid sediment mixture in particle-laden flows. ACM Trans Graph 37, 4
(2018).

M. Gao, A. P. Tampubolon, C. Jiang, and E. Sifakis. 2017. An adaptive Generalized
Interpolation Material Point method for simulating elastoplastic materials. ACM
Trans Graph 36, 6 (2017).

M. Gao, X Wang, K Wu, A. Pradhana, E. Sifakis, C. Yuksel, and C. Jiang. 2018b. Supple-
mental Document: GPU Optimization of Material Point Methods. (2018).

Theodore Gast, Chuyuan Fu, Chenfanfu Jiang, and Joseph Teran. 2016. Implicit-shifted
Symmetric QR Singular Value Decomposition of 3x3 Matrices. Technical Report.
University of California Los Angeles.

N. K. Govindaraju, I. Kabul, M. C. Lin, and D. Manocha. 2007. Fast continuous collision
detection among deformable models using graphics processors. Comp Graph 31, 1
(2007), 5–14.

N. K. Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf, R. Gayle, M. C. Lin, and D.
Manocha. 2005. Interactive Collision Detection Between Deformable Models Using
Chromatic Decomposition. ACM Trans Graph 24, 3 (2005), 991–999.

Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, and J. Teran. 2018. A Material Point Method
for thin shells with frictional contact. ACM Trans Graph 37, 4 (2018).

T. Harada, S. Koshizuka, and Y. Kawaguchi. 2007. Smoothed particle hydrodynamics
on GPUs. In Comp Graph Int, Vol. 40. SBC Petropolis, 63–70.

R. K. Hoetzlein. 2016. GVDB: Raytracing sparse voxel database structures on the GPU.
In Proc of High Perf Graph. Eurographics Association, 109–117.

C. Horvath and W. Geiger. 2009. Directable, high-resolution simulation of fire on the
GPU. ACM Trans Graph 28, 3 (2009), 41:1–41:8.

Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang. 2018. A moving least
squares material point method with displacement discontinuity and two-way rigid
body coupling. ACM Trans Graph 37, 4 (2018).

P. Huang, X. Zhang, S. Ma, and H. K. Wang. 2008. Shared memory OpenMP paralleliza-
tion of explicit MPM and its application to hypervelocity impact. Comp Mod in Eng
and Sci 38 (2008), 119–148.

C. Jiang, T. Gast, and J. Teran. 2017a. Anisotropic elastoplasticity for cloth, knit and
hair frictional contact. ACM Trans Graph 36, 4 (2017).

C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The affine particle-in-
cell method. ACM Trans Graph 34, 4 (2015), 51:1–51:10.

C. Jiang, C. Schroeder, and J. Teran. 2017b. An angular momentum conserving affine-
particle-in-cell method. J Comp Phys 338 (2017), 137–164.

G. Klár. 2014. Speculative Atomics: A Case-Study of the GPU Optimization of the
Material Point Method for Graphics. In GPU Technology Conference.

G. Klár. 2017. Blasting Sand with CUDA: MPM Sand Simulation for VFX. In GPU
Technology Conference.

G. Klár, J. Budsberg, M. Titus, S. Jones, and K. Museth. 2017. Production ready MPM
simulations. In ACM SIGGRAPH 2017 Talks. Article 42, 42:1–42:2 pages.

G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-
prager elastoplasticity for sand animation. ACM Trans Graph 35, 4 (2016), 103:1–
103:12.

H. Liu, N. Mitchell, M. Aanjaneya, and E. Sifakis. 2016. A scalable schur-complement
fluids solver for heterogeneous compute platforms. ACM Trans Graph 35, 6 (2016).

Justin Luitjens. 2014. Faster parallel reductions on Kepler. Nvidia (2014).
A. McAdams, A. Selle, R. Tamstorf, J. Teran, and E. Sifakis. 2011. Computing the singular

value decomposition of 3× 3 matrices with minimal branching and elementary
floating point operations. University of Wisconsin Madison (2011).

K. Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM
Trans Graph 32, 3 (2013), 27.

S. G. Parker. 2006. A component-based architecture for parallel multi-physics PDE
simulation. Fut Gen Comp Sys 22, 1 (2006), 204 – 216.

D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour. 2015.
A Material Point Method for viscoelastic fluids, foams and sponges. In In Proc Symp
Comp Anim. 157–163.

K. P Ruggirello and S. C. Schumacher. 2014. A comparison of parallelization strategies
for the material point method. In 11th World Cong on Comp Mech. 20–25.

R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis. 2014. SPGrid: A Sparse Paged Grid
structure applied to adaptive smoke simulation. ACM Trans Graph 33, 6, Article 205
(2014), 205:1–205:12 pages.

G. Stantchev, D. Dorland, and N. Gumerov. 2008. Fast parallel Particle-To-Grid interpo-
lation for plasma PIC simulations on the GPU. J Par Dis Comp 68, 10 (2008), 1339 –
1349.

A. Stomakhin, R. Howes, C. Schroeder, and J. Teran. 2012. Energetically consistent
invertible elasticity. In In Proc Symp Comp Anim. 25–32.

A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point
method for snow simulation. ACM Trans Graph 32, 4 (2013), 102:1–102:10.

A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented
MPM for phase-change and varied materials. ACM Trans Graph 33, 4 (2014), 138:1–
138:11.

D. Sulsky, S. Zhou, and H. Schreyer. 1995. Application of a particle-in-cell method to
solid mechanics. Comp Phys Comm 87, 1 (1995), 236–252.

A. P. Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. 2017. Multi-
species simulation of porous sand and water mixtures. ACM Trans Graph 36, 4
(2017).

M. Tang, Z. Liu, R. Tong, and D. Manocha. 2018. PSCC: Parallel Self-Collision Culling
with spatial hashing on GPUs. Proc ACM on Comp Graph Int Techn 1, 1 (2018),
18:1–18.

M. Tang, R. Tong, R. Narain, C. Meng, and D. Manocha. 2013. A GPU-based streaming
algorithm for high-resolution cloth simulation. Comp Graph Forum 32, 7 (2013),
21–30.

M. Tang, H. Wang, L. Tang, R. Tong, and D. Manocha. 2016. CAMA: Contact-Aware
Matrix Assembly with unified collision handling for GPU-based cloth simulation.
Comp Graph Forum 35, 2 (2016), 511–521.

H. Wang. 2018. Rule-free sewing pattern adjustment with precision. ACM Trans Graph
37, 4 (2018).

X. Wang, M. Tang, D. Manocha, and R. Tong. 2018. Efficient BVH-based collision
detection scheme with ordering and restructuring. In Comp Graph Forum, Vol. 37.
Wiley Online Library, 227–237.

R. Weller, N. Debowski, and G. Zachmann. 2017. kDet: Parallel constant time collision
detection for polygonal objects. In Comp Graph Forum, Vol. 36. 131–141.

J. Wretborn, R. Armiento, and K. Museth. 2017. Animation of crack propagation by
means of an extended multi-body solver for the material point method. Comp and
Graph (2017).

K. Wu, N. Truong, Yuksel C., and Hoetzlein R. 2018. Fast fluid simulations with sparse
volumes on the GPU. Comp Graph Forum (2018).

Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a
material point method for shear-dependent flows. ACM Trans Graph 34, 5 (2015),
160:1–160:20.

Y. Zhang, B. Solenthaler, and R. Pajarola. 2008. Adaptive sampling and rendering of
fluids on the GPU. In Proc of the Fifth Eurographics / IEEE VGTC Conf on Point-Based
Graph. 137–146.

Y. Zhang, X. Zhang, and Y. Liu. 2010. An alternated grid updating parallel algorithm for
material point method using OpenMP. Comp Modeling in Eng and Sci 69, 2 (2010),
143–165.

Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans Graph 24, 3 (2005),
965–972.

ACM Trans. Graph., Vol. 37, No. 6, Article 254. Publication date: November 2018.

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 MPM Overview
	2.3 Particle-to-Grid Transfer

	3 Optimized GPU Scheme for MPM
	3.1 GSPGrid Tailored to MPM
	3.2 Parallel Particle-to-Grid Scattering
	3.3 Cell-based Particle Sorting
	3.4 Particle Reordering

	4 Benchmarks and Performance Evaluation
	4.1 Uniform Distribution Benchmarks
	4.2 Gaussian Particle Distribution Benchmarks
	4.3 Implicit Iteration and SVD
	4.4 Reorder Benchmark
	4.5 Integration Benchmark

	5 MPM Heat Solver with MLS Shape Functions
	5.1 Continuous Equation
	5.2 MLS Discretization

	6 Constitutive Models
	6.1 Temperature Dependent Elasticity
	6.2 Stabilizing Shear Compliant Particles
	6.3 Unilateral Model for Cohesionless Granular Material

	7 More Results
	7.1 Memory Footprint

	8 Limitations and Future Work
	Acknowledgments
	References

