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SUPPLEMENTARY MATERIAL

Supplementary Note 1: Detailed description of the non-associative Cam-Clay model for ice

The hyperelastic model, yield surface and hardening law are defined in the main text. Here, we more specifically
describe the plastic flow and the definition of the deviatoric hardening variable. Concerning the plastic flow
rule, let us define bE = FE(FE)T as the elastic left Cauchy-Green strain tensor, and CP = (FP )TFP as
the plastic right Cauchy-Green strain tensor. Combining this with our multiplicative decomposition of the
deformation gradient, F = FEFP , we have the following properties: FE = FF−P and FE

T
= FP

−T
FT .

We may then rewrite bE as bE = FF−PFP
−T

FT . Taking the inverse of CP as C−P = F−PFP
−T reveals a

more useful expression: bE = FC−PFT . Combining these, we can then consider the evolution of bE :
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Dt
=
DF

Dt
C−PFT + FC−P

DFT

Dt
+ F

DC−P

Dt
FT . (S.1)

We follow the operator splitting scheme proposed by Simo (1988) in which we first integrate the first two
terms while ignoring the third (noting that only the third term depends on plastic flow). This can be thought of
as taking a ”trial” elastic step from bE,n to an intermediate state, bE,tr; in practice, we achieve this through
evolving F from tn to tn+1 while ignoring plasticity. We then use this as an initial value condition for solving
the remaining integration. We further simplify this by defining the material Lie derivative, LvbE , to be this
remaining term, giving the following:

DbE

Dt
= F

DC−P

Dt
FT = LvbE = −2γGbE . (S.2)

Here, γ is a scalar related to the magnitude of plastic dissipation and G is the direction of plastic flow; in this
context, G can be thought of as the direction we must project along to return material points back to feasible
stress states, while γ is related to the distance. Inspired by the principle of maximum plastic dissipation, Gaume
et al. (2018) chose an associative flow rule which projects stress states orthogonally to the yield surface and
uses G = ∂y

∂τ where y is the yield surface and τ is the Kirchoff stress. However, recall that this approach is
inadequate for a non-porous material such as ice. As such, we choose a non-associative flow rule which instead
projects orthogonally to the hydrostatic axis using G = dev(∂y∂τ ).

We discretize Eq. (S.2) using the recent backward Euler approach of Wolper et al. (2019):

bE,n+1 − bE,tr = −2δγG(bE,n+1)bE,n+1 (S.3)

where δγ := γ∆t in our discretization. We further expand this expression by decomposing bE into its devia-
toric and dilational components:

bE = dev(bE,n+1) +
1

d
tr(bE,n+1)I. (S.4)

Combining this split with Eq. (S.3) of this supplement and Eq. (4) of the paper (definition of s) and taking
the deviatoric part of each side reveals that for relatively stiff materials, str and sn+1 are vectors in the same
direction (this is leveraged in Simo (1988) as well):

str

||str||
=

sn+1

||sn+1||
. (S.5)

With this theory in place we may now outline our return mapping approach. The return mapping entails
first computing the trial elastic step for each particle to get FE for each particle. Then, we use the definition of
p := −1

d tr(τ) = −JEΨκ′(JE) to compute ptr for each particle (the intermediate pressure after the first step of
the operator splitting scheme). Based on the trial stress state, we may determine which of the three cases each
particle lies in. In Fig. 1 we illustrate these three cases by color:



Supplementary Figure 1: Cohesive Cam Clay yield surface in the p− q space illustrating our new q-based
hardening approach. Red points represent the p−q state of a given particle before and after return mapping in
each case. Note that in cases 1 and 2, return mapping simply projects the trial stress to the ellipsoid tips. These
tips are analytically well defined, and as such we can simply use the quantities ∆p(1) and ∆p(2) for hardening
in cases 1 and 2, respectively. However, for case 3, we apply non-associative return mapping and, as such, lack
any change in p that could be used to compute the new consolidation pressure. To avoid this issue, our new
q−hardening approach proposes to instead use ∆q(3) to update p0 for particles undergoing case 3 stresses.

• Case 1: ptr < −βp0 and pn+1 = −βp0

• Case 2: ptr > p0 and pn+1 = p0

• Case 3: −βp0 < ptr < p0 and pn+1 = ptr

Notice that in cases 1 and 2 the trial pressure is entirely outside of the range of feasible pressures outlined
by the CCC yield surface. As such, we directly project these stress states to the corresponding ellipsoid tips.
Furthermore, because qn+1 = 0 in these cases, we have a closed form expression (from our definition of p) for
JE,n+1 and directly know that pn+1 is either −βp0 or p0 in cases 1 and 2, respectively:

JE,n+1 =

√
−2pn+1

κ
+ 1. (S.6)

Using JE,n+1 we can easily reconstruct the projected elastic deformation gradient: FE,n+1 = U(JE,n+1
1
d I)VT

where U and V are from FE,tr = UΣVT . However, in case 3 projection we have a non-zero qn+1, and this
requires computing bE,n+1. We accomplish this by separately computing the deviatoric and dilational compo-
nents as in Eq. (S.4). First, dev(bE,n+1) can be found using the yield surface equation with the assumptions
our non-associative flow rule provides us: pn+1 = ptr (in case 3). Specifically, we first combine the definition

of q :=
√

6−d
2 ||s|| with Eq. (5) of the paper (yield surface definition) to compute ||sn+1||:

||sn+1|| = M

√
2(ptr + βp0)(ptr − p0)

(d− 6)(1 + 2β)
(S.7)

We use ||sn+1|| and Eq. (S.5) to compute sn+1, and then, using Eq. (4) of the paper (definition of s), we have
an expression for dev(bE,n+1):

dev(bE,n+1) =
sn+1

µJ
−2
d

(S.8)

As for the dilational component, we get this easily from taking the trace of both sides of Eq. (S.5):

tr(bE,n+1) = tr(bE,tr) (S.9)

Finally, we construct the case 3 updated elastic deformation through FE,n+1 = U
√
bE,n+1VT .



The final step in our return mapping approach is to update the hardening/softening of each particle. Intu-
itively this can be thought of as absorbing the influence of FP (and any associated plastic dissipation) into a
hardening variable, α, that is used to compute the material consolidation pressure (recall that p0 is computed
using Eq. (6) of the paper). Changes in p0 change the size of the yield surface, and as such, particles either
harden or soften based on these updates; note that this material softening is what allows the ice to fracture in
our model. Fortunately, it is trivial to compute hardening updates for cases 1 and 2, and in fact, changes in α
for cases 1 and 2 correspond exactly to changes in log(JP ). We simply take the determinant of both sides of
FE,trFP,tr = FE,n+1FP,n+1 to formulate a direct update for α (in cases 1 and 2):

αn+1 = αn + log(
JE,tr

JE,n+1
) (S.10)

We use ptr and pn+1 with Eq. (S.6) to compute this update. We illustrate this in Fig. 1: for case 1 and 2
hardening we use the change in p to compute hardening; however, case 3 poses a problem: there is no change
in p for our non-associative flow rule. Wolper et al. (2019) successfully perform case 3 hardening using a fairly
complex geometric intersection approach that has little physical grounding. As such, we propose to instead
focus on the change in q for case 3.

We design our q−hardening approach based on the observation that p and J have a quadratic relationship:
p = C(J2 − 1) where C is a constant. Inspired by this, we design the quantity ζ to have a similar quadratic
relationship to q. Specifically, we let ||dev(b)|| = ζ2 − 1 which in turn, combined with the definition of q,
gives:

ζ∗ =

√√√√√ q∗J tr
2
d
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√

6−d
2

+ 1 (S.11)

where ∗ ∈ {tr, n + 1}. This allows us to use a similar hardening update to Eq. (S.10), but instead of J tr and
Jn+1, we compare ζtr and ζn+1. However, this has one further complication: log( ζtr

ζn+1 ) is always positive
(this is clear from Fig. 1). As such, in order to correctly model both hardening and softening in case 3 we
check which side of the yield surface center ptr is on to determine whether the particle should harden or soften
(pc = (1− β)p0/2). More specifically, our case 3 hardening rule is as follows:

αn+1 =

{
αn − log( ζtr

ζn+1 ) ptr ≥ pc (hardening)

αn + log( ζtr

ζn+1 ) ptr < pc (softening)

At last, this allows us to model both hardening and softening in case 3 while obviating the need for any non-
physical geometric solutions as in Wolper et al. (2019).



Supplementary Figure 2: Calving characteristics for low ice tensile strength. The following parameters were
used: D/Hi = 0.2, βp0 = 10 kPa, M = 1.4 and N = 5. Failed ice particles are colored in grey. In this case
with low tensile strength, multiple small icebergs are released.

Supplementary Figure 3: Calving characteristics for very low ice tensile strength and friction. The follow-
ing parameters were used: D/Hi = 0.8, βp0 = 1 kPa, M = 0.13 and N = 5. In this case with low tensile
strength and low friction, the glacier flows in a ductile manner. The red area has a positive velocity meaning
that the ice is lifted up due to buoyancy.
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