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Abstract. Pericardial fat volume (PFV) is emerging as an important parameter for cardiovascular risk stratification.
We propose a hybrid approach for automated PFV quantification from water/fat-resolved whole-heart noncontrast
coronary magnetic resonance angiography (MRA). Ten coronary MRA datasets were acquired. Image reconstruc-
tion and phase-based water-fat separation were conducted offline. Our proposed algorithm first roughly segments
the heart region on the original image using a simplified atlas-based segmentation with four cases in the atlas. To
get exact boundaries of pericardial fat, a three-dimensional graph-based segmentation is used to generate fat and
nonfat components on the fat-only image. The algorithm then selects the components that represent pericardial fat.
We validated the quantification results on the remaining six subjects and compared them with manual quantifi-
cations by an expert reader. The PFV quantified by our algorithm was 62.78� 27.85 cm3, compared to 58.66�
27.05 cm3 by the expert reader, which were not significantly different (p ¼ 0.47) and showed excellent correlation
(R ¼ 0.89,p < 0.01). The mean absolute difference in PFV between the algorithm and the expert reader was
9.9� 8.2 cm3. The mean value of the paired differences was −4.13 cm3 (95% confidence interval: −14.47 to
6.21). ThemeanDice coefficient of pericardial fat voxels was 0.82� 0.06. Our approachmay potentially be applied
in a clinical setting, allowing for accurate magnetic resonance imaging (MRI)-based PFV quantification without
tedious manual tracing. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.1.014002]
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1 Introduction
Recent studies have shown that pericardial fat is strongly asso-
ciated with coronary artery disease (CAD), coronary calcium
scores, severity of detected CAD, biochemical markers of
systemic inflammation, risk of future adverse cardiovascular
events, and myocardial ischemia.1–5 Pericardial fat includes
both epicardial and paracardial adipose tissues. Our study is
focused on the quantitative analysis of pericardial (sum of epi-
cardial and paracardial) fat, which can be consistently measured
by our magnetic resonance imaging (MRI) sequence with a
voxel size of 1 mm3.

Most previous studies on pericardial and epicardial fat quan-
tification relied on computed tomography (CT) for three-dimen-
sional (3-D) imaging of the heart.1–9 Compared with CT, MRI is
an attractive alternative, as it imposes no ionizing radiation on
patients and can generate fat-water separated images from a
single acquisition.10–12 To date, pericardial fat quantification
in MRI was reported on manually outlined regions of interest
(ROI),13,14 which is time-consuming and subject to interobserver
variability. While distance measurements can also be performed,
pericardial fat volume (PFV) is a whole-heart measure of fat

surrounding the heart, and may therefore be more accurate for
assessment of risk for an individual patient. In particular, for
epicardial fat, volumetric measurements have been shown to
identify significant coronary artery disease more accurately than
distance measurements and also to be more reproducible.15

Thus, it is highly desirable to develop an automated algo-
rithm for pericardial fat quantification that provides fast and
consistent results with minimal human intervention.

In this paper, we propose an algorithm for automated peri-
cardial fat quantification from water/fat-resolved whole-heart
coronary magnetic resonance angiography (MRA). The algo-
rithm combines the advantages of multiatlas-based segmenta-
tion6,16 and graph-based segmentation17 to achieve voxel-level
segmentation accuracy. Our algorithm selects components gen-
erated by a 3-D graph-based segmentation with certain intensity
features and overlap rate with the heart region masks.

2 Materials and Methods

2.1 Magnetic Resonance Acquisition

MR data were collected on a clinical 1.5 T scanner (MAGNETOM
Avanto, Siemens AG Healthcare, Erlangen, Germany) using
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a free-breathing, electrocardiograph-gated, balanced steady-
state free-precession (bSSFP) pulse sequence with 3-D radial
k-space trajectory. To suppress respiratory motion, an additional
superior-inferior projection is acquired in each heartbeat to
track the translational motion of the heart due to respiration.
During reconstruction, the raw data are segmented into several
respiratory bins, from which a low-resolution respiratory phase-
resolved image series is reconstructed to facilitate image-
based affine motion correction.18 After motion correction, the
complex imaging volume is reconstructed using a self-calibrat-
ing, non-Cartesian sensitivity encoding method.19 The pulse
sequence parameters were as follows: repetition/echo time 3.2∕
1.6 ms; field of view 400 mm × 400 mm × 400 mm; matrix
size 384 × 384 × 384; voxel size 1 mm × 1 mm × 1 mm; flip
angle 90 deg; readout bandwidth 900 Hz∕pixel; total number
of lines 10,000, corresponding to an imaging time of ∼5 min,
depending on the subject’s heart rate. No magnetization
preparation pulses, such as fat-saturation and T2-preparation,
were played out. Image reconstruction was completed offline
using a standalone workstation. A major advantage of our
approach is that it permits noninvasive assessment of pericardial
fat as well as coronary artery stenosis from the same image data.
Water-only IwðpÞ and fat-only IfðpÞ images were calculated
based on the pixel-by-pixel complex phase of the raw image
IwfðpÞ, exploiting the chemical shift between water and fat and
the frequency response profile of bSSFP sequences.11 A sample
dataset is shown in Fig. 1.

With IRB approval and written consent obtained before the
study, we scanned 10 healthy subjects, of which four were used
to create the atlas [body mass index (BMI) 17, 22, 28, 35] and
the remaining six for testing (BMI 18, 20, 20, 24, 25, 35, mean
BMI 23.7). To compare the automatic quantification results with

expert manual delineation, an expert radiologist manually seg-
mented the pericardial fat for all the subjects. The time required
to perform these manual tracings was ∼20 to 30 min per case.
The absolute and percent difference, correlation, and Dice coef-
ficient between the two segmentation results were calculated.

2.2 Image Segmentation

On the basis of multiatlas-based segmentation and efficient
graph-based segmentation, we propose a quantification tech-
nique divided into two steps. First, heart region initialization is
performed using a simplified multiatlas segmentation with local
decision fusion16 on water-fat fused images [Fig. 2(a)]. The
heart region includes the heart as well as the pericardial fat.
Voxels are segmented into components on fat-only images using
an efficient graph-based segmentation method17 [Figs. 2(b)
and 2(c)], which we generalized from two-dimensional (2-D)
space to 3-D space in this work. To increase the chances that
boundaries of importance have been extracted, our method
does so at the cost of creating many insignificant boundaries.
The fat components with certain intensity features and overlap
rate with the heart region masks are selected as pericardial fat
[Fig. 2(d)]. A flowchart of our algorithm is presented in Fig. 3.

2.2.1 Simplified multiatlas-based heart region
segmentation

The multiatlas segmentation determines the initial location and
shape of the heart. The atlas was created from multiple subject
scans (water-fat fused images) with a wide BMI range (N ¼ 4;
two men and two women). For atlas creation, on all transverse
slices, 2-D pericardial contours were manually traced by an

Fig. 1 Example transverse slices of MRA data: (a) water-only image Iw, (b) fat-only image I f, and
(c) water-fat fused image Iwf.

Fig. 2 Main steps of our algorithm: (a) multiatlas-based segmentation of the heart region, (b) perform
3-D graph-based segmentation on fat-only image, (c) fat components and nonfat components, and
(d) pericardial fat component selection (white components).
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expert reader (radiologist) within the superior and inferior limits
of the heart. A 3-D binary volume mask was generated from the
2-D contours. The binary volume mask for the i’th subject in the
atlas is defined as the label of this subject, which is denoted as
Si. Target image segmentation was achieved by one-to-all image
registration between the target image and atlas images.

The rigid and nonrigid registration problem is formulated as
an optimization problem with respect to combined affine and
B-spline transformations μ minimizing the difference between
the target images and the reference image.

EQ-TARGET;temp:intralink-;e001;63;410μ̂ ¼ arg min
μ
C½μ;UwfðpÞ; AwfðpÞ�; (1)

where μ̂ is the transformation aligning the water-fat fused atlas
Awf ½μðpÞ� to the target water-fat fused image UwfðpÞ, where p
denotes a voxel and C is the negative mutual information.20

To obtain the rough binary segmentation of the heart region
SðpÞ [Fig. 2(a)], the labels Si are propagated to the test image
according to spatially varying decision fusion weights16 that
define the contribution of each atlas by measuring the similarity
between the transformed moving atlas after registration and the
target image. The similarity is measured by the absolute differ-
ence Di between the transformed moving atlas and the target
image.

EQ-TARGET;temp:intralink-;e002;63;252DiðpÞ ¼ jAwfi½μðpÞ� − UwfðpÞj; ∀i: (2)

To determine how much a propagated label in each atlas image
should contribute to the segmentation, weights λi were calcu-
lated as follows:

EQ-TARGET;temp:intralink-;e003;63;188λiðpÞ ¼
1

DiðpÞ × gσ1ðpÞ þ ϵ
; (3)

where gσ1ðpÞ is a Gaussian kernel of scale sigma that smooths
the local estimate of the registration, and ϵ is a small value to
avoid division by zero. The resulting propagation label is deter-
mined by a weighted average of the transformed binary segmen-
tation SjðμÞ.

EQ-TARGET;temp:intralink-;e004;326;520SðpÞ ¼ 1P
N
i¼1 λiðpÞ

XN
j¼1

λjðpÞSj½μjðpÞ�; (4)

where N is the total number of subjects in the atlas.
The results of multiatlas segmentation provide global locali-

zation of the heart region with limited accuracy at the boundaries
of the pericardial fat due to the global registration scheme and
the small atlas. The next graph-based segmentation step can
generate the exact boundaries of the pericardial fat.

2.2.2 Three-dimensional graph-based fat component
segmentation and selection

We construct a fully connected undirected 3-D graph G ¼
ðV; EÞ on the 3-D fat-only image IfðpÞ with vertices vi ∈ V
located on each voxel and edges ðvi; vjÞ ∈ E corresponding to
pairs of neighboring vertices. For each vertex, 13 out of the 26
edges were constructed to connect with neighbor vertices, as
illustrated in Fig. 4, to avoid overlapped edges. Each edge
ðvi; vjÞ ∈ E has a corresponding weight wðvi; vjÞ, which is a
non-negative measure of the dissimilarity between neighboring
elements vi and vj. A segmentation S is a partition of V into
components such that each component C in S corresponds to
a connected component in a graph G 0 ¼ ðV; E 0Þ. The algorithm
starts with initial segmentation Sinit, where each vertex vi is in its
own component.

In this formulation, we want the voxels in a component to be
similar and voxels in different components to be dissimilar, i.e.,
to have either fat voxels or nonfat voxels in one component. We
define a predicate D based on the work of Felzenszwalb and
Huttenlocher17 for evaluating whether or not there is evidence
for the boundary between two components in the segmentation.
The predicate compares the intercomponent differences to the
within-component differences and is thereby adaptive with
respect to the local characteristics of the data, hence dealing
with intensity variation and noise in the MRA image.

The internal difference of a component C ⊆ V is defined as

EQ-TARGET;temp:intralink-;e005;326;107IntðCÞ ¼ max
e∈MSTðC;EÞ

wðeÞ; (5)

Fig. 3 Flowchart of the algorithm. First, heart region initialization is performed on water-fat fused images.
Voxels are segmented into components on fat-only images. The fat components with certain intensity
features and overlap rate with the heart region masks are selected as pericardial fat.
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the largest weight in the minimum spanning tree MSTðC;EÞ of
the component. The difference between two components C1,
C2 ⊆ V is defined as the minimum weight edge connecting
the two components.

EQ-TARGET;temp:intralink-;e006;63;433DiffðC1; C2Þ ¼ minvi∈C1;vj∈C2;ðvi;vjÞ∈Ewðvi; vjÞ: (6)

If there is no edge connecting C1 and C2, we let
DiffðC1; C2Þ ¼ ∞. The pairwise comparison predicate is

EQ-TARGET;temp:intralink-;e007;63;378DðC1; C2Þ ¼
�
true if DiffðC1; C2Þ > MIntðC1; C2Þ;
false otherwise;

(7)

where the minimum internal difference MInt is defined as

EQ-TARGET;temp:intralink-;e008;63;309MIntðC1; C2Þ ¼ min½IntðC1Þ þ k∕jC1j; IntðC2Þ þ k∕jC2j�;
(8)

where jCj denotes the size of C and k is a constant parameter
that sets a scale of observation. A larger k causes a preference

for larger components, but k is not a minimum component
size.

After we obtain all the 3-D segment components Ci
[Fig. 2(c)] using the iterative algorithm in Ref. 17, the mean
intensity of each component ti and overlap rate oi with the
heart region from the last step are calculated. Components Ci
with ti > T and oi > O are selected as pericardial fat compo-
nents [Fig. 2(d)], where T and O are threshold values for com-
ponent mean intensity and overlap rate, respectively, with the
heart region masks. Based on the properties of the fat-only
image, we set T ¼ 0.5 and O ¼ 0.7. A quantitative color bar of
the fat-only image is shown in Fig. 5 to illustrate the effectiveness
of this T value. The statistics of the color bar show that 78.2% of
the voxels are zero value (nonfat voxels), and the minimum value
for the rest of the nonzero voxels is 3.18. Hence, any T value >0
and <3.18 can successfully distinguish fat and nonfat compo-
nents. The PFV can be calculated by multiplying the total number
of pericardial fat voxels by the voxel size. Paired t-test, Pearson
correlation, and Dice coefficient were used to measure the perfor-
mance of the algorithm compared to the expert reader. A p value
of 0.05 was considered statistically significant.

3 Results
The PFV for the six test datasets was quantified as
62.78 ðmeanÞ � 27.05ðstandard deviationÞ cm3, compared to
58.66 ðmeanÞ � 27.85 ðstandard deviationÞ cm3 by the expert
reader, which were not significantly different (p ¼ 0.47) and
showed excellent correlation (R ¼ 0.89, p < 0.01). The mean
absolute difference in PFV between the algorithm and the
expert reader was 9.9� 8.2 cm3. The mean value of the paired
differences was −4.13 cm3 (95% confidence interval: −14.47
to 6.21).

The mean Dice coefficient of pericardial fat voxels was
0.82� 0.06 (median 0.85). Figure 6 shows three views (trans-
verse, coronal, and sagittal) of the image data with pericardial fat
segmentation result by our algorithm as red overlay, and the
3-D model of pericardial fat voxels. Table 1 lists the PFVs of
all the six testing cases, measured by expert and algorithm,
respectively.

To evaluate the variability due to the atlas, we also evaluated
our algorithm with different training datasets by grouping the
subjects into atlas groups based on 40 to 60% training-testing
samples with consecutive subject numbers in the atlas, while
ensuring equal representation of male and female genders in the
atlas groups. Each atlas group was then tested on the remaining

Fig. 5 (a) Fat-only image example and (b) its 256-bin intensity histogram.

Fig. 4 3-D graph edge construction. For every vertex, 13 out of the 26
edges were constructed to connect with neighboring vertices. Center
vertex: current vertex; surrounding vertices: 26 neighboring vertices;
dashed lines that connect with the center vertex: edges were con-
structed for the current vertex.
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six subjects. There are in total seven possible training and testing
set combinations. The results of seven extended experiments are
shown in Table 2. The algorithm achieved similar performance
with different atlas cases. The PFVs calculated by the algorithm
are close to the manual quantification results, with high corre-
lation (R ranges from 0.82 to 0.94, p < 0.01). The mean Dice
coefficient of pericardial fat voxels ranges from 0.79 to 0.81
(median 0.80).

4 Discussion
Our imaging protocol is a needle-free noncontrast whole-heart
MRA imaging technique, using a standard 1.5 T MR scanner,19

which allows direct visualization of the coronary artery stenosis.
To our knowledge, our method is the first study showing

feasibility of automated measurement of pericardial fat, a
known cardiovascular risk factor, from these whole-heart images.

Dey et al.6 and Ding et al.9,21 also used multiatlas-based algo-
rithms for automated segmentation of the heart region and epi-
cardial fat in CT images. With a sufficient number of atlas
images that capture major variations in different patients, multi-
atlas-based methods can accurately segment the boundaries of
the heart region without postrefining processing on cardiac CT,
mainly due to the high-resolution and high-contrast character-
istics of those images. However, pure multiatlas-based algo-
rithms could not achieve the same promising performance on
finding the boundaries of the heart on our water/fat-resolved
whole-heart noncontrast coronary MRA images due to lower
image resolution and higher noise level. Further, the work at this
time is based on a limited number of atlas cases. Our hybrid
algorithm with graph-based segmentation and fat component
selection after multiatlas registration is highly tolerant of
error in the heart region masks from multiatlas-based segmen-
tation. Pericardial fat voxels and boundaries can be correctly
labeled with heart region initialization. This initialization pro-
vides only rough heart position and shape, without accurate
boundaries of the pericardial fat. The above performance was
achieved on multiatlas-based heart region masks, which have
a mean surface distance of 4.16 mm and a Hausdorff distance
of 7.5 mm compared to the heart region masks drawn by the
expert reader.22 Without the 3-D graph-based pericardial fat
component selection (Sec. 2.2.2), the fat voxel overlap given by
the mean Dice coefficient decreased from 0.82 to 0.62 when
only the multiatlas segmentation mask was used.

In the literature regarding pericardial fat quantification from
MR images, Wong et al.13 quantified pericardial fat by tracing

Fig. 6 Case example with algorithm segmentation overlay. Red overlay represents pericardial fat seg-
mentation result by our algorithm: (a) transverse view, (b) coronal view, (c) sagittal view, and (d) 3-D
model of pericardial fat voxels.

Table 1 Pericardial fat volumes of the six testing cases.

Patient # PFV expert (cm3) PFV algorithm (cm3)

1 60.438 62.574

2 99.11 81.52

3 80.765 100.47

4 30.151 32.544

5 52.864 67.627

6 28.614 31.959

Table 2 Results of 40 to 60% training-testing experiments with different combinations of atlas cases.

# PFV expert (cm3) PFV algorithm (cm3) p value Correlation (R) Dice coefficient

1 50.24� 25.17 52.78� 18.28 0.59 0.91, p < 0.01 0.80� 0.05

2 55.28� 25.88 66.02� 38.55 0.21 0.91, p < 0.01 0.79� 0.07

3 53.52� 22.42 57.31� 32.09 0.52 0.94, p < 0.01 0.79� 0.06

4 56.83� 25.04 55.69� 24.60 0.86 0.82, p < 0.01 0.80� 0.08

5 56.72� 25.06 61.07� 28.03 0.37 0.92, p < 0.01 0.79� 0.08

6 56.79� 24.98 60.60� 26.87 0.50 0.87, p < 0.01 0.81� 0.06

7 68.54� 25.64 70.96� 32.36 0.70 0.89, p < 0.01 0.80� 0.09
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the ROI manually using commercially available software (Argus,
Siemens Medical Solutions). The images used were sequential
steady-state free-precession short-axis cine sequences that were
acquired with 6-mm slice thickness and no interslice gaps
through the atria and 6-mm slice thickness with 4 mm gaps
through the ventricles. Our approach may be more accurate by
acquiring true 3-D volume images with a slice thickness of
1 mm and no gap between slices. In addition, the fat signal is
also separated by the pixel-by-pixel complex phase of the raw
image,11 which is more reliable than human tracing. Though
Wong et al.13 achieved low intraobserver and interobserver
variation (3.5 and 4.9%, respectively), our operator-free algo-
rithm can produce no such variations and can save time-consum-
ing manual quantification by expert readers.

The mean fat measurement was similar to that observed in
normal BMI individuals with CT (Ref. 1). (The mean BMI
of our testing subjects was 23.7 and mean pericardial fat volume
measured was 62.78� 27.85 cm3 on MRI.)

Having water-fat resolved images was critical for the pro-
posed method to accurately segment the pericardial fat. In this
work, we used the bSSFP-based phase detection method due to
its simplicity and being readily available from a modified coro-
nary MRA protocol. Future works are warranted to evaluate the
ability of Dixon-type multiecho methods10,12 to provide such
images, which may offer more robust performance, especially
at higher field strengths.

A major limitation of this work is that we studied a small
number of cases. Multiatlas segmentation performance may
improve with larger numbers of atlas images, particularly
with larger variation in BMI; this needs to be further evaluated
in future studies. There was only one expert reader’s manual
quantification results available; thus, interobserver variability
could not be evaluated in this study.

5 Conclusion
The quantification of PFV from noncontrast whole-heart coro-
nary MRA images is feasible via a hybrid approach using multi-
atlas-based heart region initialization and 3-D graph-based
segmentation and selection of pericardial fat components. Our
preliminary results demonstrate that the PFV can be calculated
directly from water-fat separated MRA images, which also
provide coronary MRA data. Our approach may potentially be
applied in a clinical setting, allowing for accurate MRI-based
PFV quantification without tedious manual tracing.
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