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Fig. 1. (Left) A liquid jet hits a hyperelastic bear, pushing it down. (Right) Three hyperelastic frogs with different densities are lifted by liquid fountains,
creating vibrant splashes. Our novel formulation properly enforces the free-slip boundary condition, while allowing for strong two-way coupled dynamics.

We propose a novel scheme for simulating two-way coupled interactions
between nonlinear elastic solids and incompressible fluids. The key ingredi-
ent of this approach is a ghost matrix operator-splitting scheme for strongly
coupled nonlinear elastica and incompressible fluids through the weak form
of their governing equations. This leads to a stable and efficient method
handling large time steps under the CFL limit while using a single monolithic
solve for the coupled pressure fields, even in the case with highly nonlinear
elastic solids. The use of the Material Point Method (MPM) is essential in
the designing of the scheme, it not only preserves discretization consistency
with the hybrid Lagrangian-Eulerian fluid solver, but also works naturally
with our novel interface quadrature (IQ) discretization for free-slip boundary
conditions. While traditional MPM suffers from sticky numerical artifacts,
our framework naturally supports discontinuous tangential velocities at the
solid-fluid interface. Our IQ discretization results in an easy-to-implement,
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fully particle-based treatment of the interfacial boundary, avoiding the addi-
tional complexities associated with intermediate level set or explicit mesh
representations. The efficacy of the proposed scheme is verified by various
challenging simulations with fluid-elastica interactions.
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1 INTRODUCTION
Modern day applications thrive on the dynamic interactions be-
tween solids and fluids, such as air-filled rubber tires, hydraulics, a
flying airplane, a floating ship, windmills, etc. Apart from the nat-
ural appeal of modeling rich physics-based interactions in virtual
environments for more realistic visual effects, there is a growing
need for fast methods for solid-fluid coupling due to emerging ap-
plications in virtual surgery [Lee et al. 2018; Mitchell et al. 2015],
digital fabrication [Ma et al. 2017], and soft robotics [Hu et al. 2019].
The simplest approach to solid-fluid coupling is via the use of

partitioned schemes, that iterate separately between the solid and
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Fig. 2. Balls. Our framework supports two-way coupling of incompressible fluids with linear and nonlinear elastic solids. Water-filled perforated spheres with
different hyperelastic constitutive models are dropped on the ground; water gushes out of the spheres as they undergo large deformation and contact.

the fluid, and use one to define appropriate boundary conditions
on the other [Arash et al. 2003; Guendelman et al. 2005]. While
straightforward to implement, such an approach is known to suffer
from stability issues, mandating the need for small time steps. Thus,
researchers have explored the design of strongly-coupled or mono-
lithic schemes, that exhibit better stability properties and allow for
large time steps [Akbay et al. 2018; Batty et al. 2007; Chentanez et al.
2006; Robinson-Mosher et al. 2011, 2008; Teng et al. 2016; Zarifi and
Batty 2017]. The design of monolithic systems is strongly influenced
by the representations employed for the solid and the fluid. Solids,
by definition, have a well-defined “rest” shape, and a Lagrangian
mesh is commonly used for their evolution [Sifakis and Barbic 2012].
In contrast, fluids do not have a rest shape, and standard practice is
to use an Eulerian grid [Bridson 2015]. This makes it challenging to
enforce the constraint that the solid-fluid interface shouldmovewith
the same normal velocity, which is either enforced only discretely at
grid faces [Batty et al. 2007; Chentanez et al. 2006; Robinson-Mosher
et al. 2011, 2008], or with expensive cut-cell formulations [Zarifi
and Batty 2017]. To circumvent these issues, researchers have in-
vestigated the use of the same representation for both the solid and
the fluid. Although impressive results were achieved, these methods
may require expensive remeshing [Clausen et al. 2013] or particle
resampling operations [Akinci et al. 2012], or suffer from increased
numerical dissipation [Levin et al. 2011; Teng et al. 2016].

Another challenge arises due to nonlinear constitutive models for
solids, which are conventionally solved using linear approximations
(e.g., Newton’s method), requiring outer iterations for converging
to the exact solution for the nonlinear problem [Narain et al. 2016;
Sifakis and Barbic 2012]. Prior work has exclusively focused on
formulating monolithic systems for two-way coupling using instan-
taneous linear approximations, which necessitates outer iterations
for solving the nonlinear system [Chentanez et al. 2006; Robinson-
Mosher et al. 2011, 2008; Teng et al. 2016; Zarifi and Batty 2017].
However, this can be computationally very expensive.

In light of the above, the versatile Material Point Method (MPM)
[Gao et al. 2018a,b; Hu et al. 2018; Jiang et al. 2015, 2016] presents an
attractive alternative, that treats both solids and fluids in a unified
fashion. Lagrangian particles are used to carry material information,
and a background Eulerian grid is used for force computations. The
use of particles avoids the numerical dissipation characteristic of
grid-based schemes, while the use of a grid allows for regular finite-
element stencils. MPM has been successfully used for simulating a
wide variety of material behaviors [Daviet and Bertails-Descoubes

2016; Fang et al. 2019; Gao et al. 2018a; Guo et al. 2018; Nagasawa
et al. 2019; Ram et al. 2015; Stomakhin et al. 2014; Wolper et al. 2019;
Yue et al. 2015, 2018]. While MPM naturally supports automatic
grid-based collision-handling and two-way coupling, the dynamic
multi-material interactions are inherently sticky, as pointed out
in [Stomakhin et al. 2014]. Traditional MPM [Jiang et al. 2016] does
not support discontinuous tangential velocities at the multi-material
interface, which leads to numerical stickiness. Visually, this can be
quite disturbing, as shown by a water jet colliding with a deformable
dragon [Fang et al. 2018]. To allow tangentially discontinuous veloc-
ities, researchers have considered using different grids per material,
and enforce continuity of normal velocities as a post-process [Yan
et al. 2018], but this is limited to explicit time integration and cannot
capture incompressible fluids. Implicit integration with tangentially
discontinuous velocities has been addressed in prior work using
cut-cell methods [Boyd and Bridson 2012; Zarifi and Batty 2017] that
carefully alter the topology of the simulation mesh and compute
physical quantities accordingly to ensure that velocity and force
profiles are continuous in the normal direction, but discontinuous
tangentially. Clearly, such an approach requires delicate floating-
point operations, is computationally expensive, and assumes that
directions normal to the solid-fluid interface can be easily computed.
Standard practice is to construct an intermediate level set represen-
tation for computing normal vectors, and manually move particles
around if necessary to ensure consistency [Boyd and Bridson 2012].
Such an approachmay be feasible for FLIP/PIC schemes, where parti-
cles are merely passive markers indicating the presence (or absence)
of material, but can be disastrous for MPM (e.g., violate momentum
conservation), where particles carry material information (such as
mass, momentum, strain, etc.) and the particle distribution strongly
influences the resulting forces.

1.1 Contributions
Motivated by these issues, our work makes several new contribu-
tions that significantly advance the state of the art for MPM simula-
tions. We present a new ghost matrix operator-splitting scheme for
monolithic coupling of nonlinear elastic solids with incompressible
fluids. Specifically, we assume that an air-like, massless matrix skele-
ton material is applied to the solid MPM particles to enforce strong
two-way coupling with the fluid through a mixed-FEM pressure
field that is continuous at the solid-fluid interface by construction.
Our monolithic system allows for stable solutions and large time
steps under the CFL limit, while the operator-splitting approach
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requires a single monolithic solve, even for highly nonlinear elastic
solids. To the best of our knowledge, ours is the first method that sat-
isfies all these properties. Unlike traditional MPM [Jiang et al. 2016],
which suffers from sticky numerical artifacts, our framework natu-
rally supports discontinuous tangential velocities at the solid-fluid
interface.
For properly enforcing the free-slip boundary condition at the

moving interface, we design a novel interface quadrature (IQ) cut-cell
MPM formulation that is derived using the variational weak form
principle. Our IQ discretization is easy to implement and leads to a
fully particle-based treatment of the interfacial boundary conditions,
without requiring additional level set or explicit mesh representa-
tions (as employed in FLIP schemes [Boyd and Bridson 2012]). We
demonstrate the efficacy of our method on challenging examples
with complex solid-fluid interactions.

2 RELATED WORK
While our focus is on MPM simulations [Jiang et al. 2016], we review
all the different approaches proposed in prior work for two-way
coupling rigid and deformable bodies with incompressible fluids.

Coupling Lagrangian Solids to Eulerian Fluids: Eulerian fluid sim-
ulation typically uses the marker-and-cell (MAC) grid discretiza-
tion [Harlow andWelch 1965], first introduced to computer graphics
by [Foster and Metaxas 1996]. Grid-aligned boundaries were readily
handled in this work, but curved boundaries resulted in significant
voxelization artifacts. Proper treatment of solid boundary conditions,
particularly for advection, was subsequently addressed by [Foster
and Fedkiw 2001; Rasmussen et al. 2004], although issues with the
voxelized pressure solve remained unaddressed. Conforming vol-
umetric meshes were used in [Feldman et al. 2005] for accurately
treating irregular boundaries, and this work was also extended to
dynamic coupling with rigid bodies [Klingner et al. 2006]. However,
frequent remeshing operations were a major bottleneck.
An alternative “rigid-fluid” approach for two-way coupling was

proposed in [Carlson et al. 2004], which momentarily treats the
rigid body as a fluid, but this can cause the fluid to leak through the
solid. A more accurate “leakproof” treatment was later proposed
in [Guendelman et al. 2005] using one-sided interpolation during
advection. The popular class of “cut-cell” methods, which formu-
late a modified Poisson system by clipping Eulerian grid voxels to
conform to irregular object boundaries, was introduced in [Roble
et al. 2005]. Batty et. al [2007] built upon this idea for two-way
coupling fluids with rigid bodies, by casting the pressure solve as
an energy minimization that accounts for the partial cell volumes.
This approach was extended to two-way coupling with volumetric
and thin shell deformable bodies in [Robinson-Mosher et al. 2011,
2008], where an explicit approach was used for the elastic forces,
and the damping forces were solved together with the incompress-
ible pressure in a monolithic, symmetric system. A Multigrid-based
solver for two-way coupling rigid bodies with incompressible flu-
ids was recently proposed by Aanjaneya [2018]. These techniques
were preceded by the work of [Chentanez et al. 2006], who also
formulated a monolithic system, albeit asymmetric. A symmetric
positive definite (SPD) system that strongly couples both elastic
and damping forces with the incompressible pressure was proposed

in [Zarifi and Batty 2017]. In contrast to the above works, a stream
function approach for two-way coupling voxelized rigid bodies with
incompressible fluids was proposed in [Ando et al. 2015], which
requires the solution of a vector Poisson system, but yields perfectly
divergence-free velocities, even in the unsimulated air phase.

Coupling Lagrangian Solids to Lagrangian Fluids: Many of the
challenges encountered by Eulerian grid-based fluids, such as vol-
ume preservation, support for implicit surface tension, or stable
solid-fluid coupling, can be overcome by using a conforming La-
grangian mesh representation [Clausen et al. 2013; Misztal et al.
2012]. However, this entails the computational expense of frequent
remeshing operations, and gases cannot be readily supported by
such an approach. In contrast, particle-based methods [Akinci et al.
2012; Gissler et al. 2019; Macklin et al. 2014; Mazhar et al. 2015;
Peer et al. 2018; Solenthaler et al. 2007] allow for a mesh-free im-
plementation and avoid this overhead; however, their unstructured
nature leads to expensive neighbor-lookups and poorly conditioned
implicit systems, and foregoes the benefits of cache-locality and
parallelism, as offered by grid-based methods [McAdams et al. 2010].
Inspired by solid-fluid coupling, there has also been some work on
collision-handling between rigid and deformable bodies. Sifakis et
al [2008] carefully formulated a Poisson-like system by meshing
the air region between two colliding surfaces to apply globally-
coupled impulses. A similar idea was later proposed in [Müller et al.
2015], although they used mesh optimization instead to enforce
non-inversion of tetrahedra.

Coupling Eulerian Solids to Eulerian Fluids: An Eulerian discretiza-
tion for elastic solids was first proposed in [Levin et al. 2011], which
has the benefit of directly simulating volumetric data from CT scans,
with full support for contact and collisions. This idea was later ex-
tended to thin strands [Sachdeva et al. 2015; Sueda et al. 2011], cloth
and skin simulation [Li et al. 2013; Weidner et al. 2018], moving
grids [Fan et al. 2013, 2014], as well as two-way coupling with in-
compressible fluids [Teng et al. 2016]. Eulerian discretizations have
the benefit of employing the computational machinery of immersed
boundary methods [Peskin 2002] for straightforward two-way cou-
pling of different materials, as is evident from the impressive results
achieved by the above works. However, they suffer from increased
numerical dissipation, which can result in noticeable visual artifacts,
such as volume loss. These issues can be mitigated (although not
completely resolved) through the use of adaptivity [Aanjaneya et al.
2017; Ando et al. 2013; Chentanez and Muller 2011; Ferstl et al. 2014;
Gao et al. 2017; Losasso et al. 2004; Setaluri et al. 2014], which places
more resolution in regions of interest, and less resolution elsewhere.

Hybrid Particle-Grid Methods: Since the seminal work of [Zhu
and Bridson 2005], extensive research has been done on hybrid
particle-grid methods [Gao et al. 2009; Hong et al. 2008a; Lee et al.
2009; Losasso et al. 2008; Raveendran et al. 2011; Zhu et al. 2010].
Patkar et al. [2013] proposed a monolithic system for sub-grid scale
bubbles, inspired by the earlier work of [Hong et al. 2008b]. More
tight Voronoi diagram-based coupling approaches have also been
proposed [Brochu et al. 2010; d. Goes et al. 2015; Sin et al. 2009]. Our
work builds upon the Material Point Method (MPM) [Sulsky et al.
1995], first introduced to computer graphics by [Stomakhin et al.
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Fig. 3. Flush rubber. Pouring water on a rubber mat with fixed corners reveals intricate coupling behavior, without suffering from any stickiness issues.

2013]. MPM naturally supports automatic grid-based collision han-
dling and two-way coupled interactions, albeit with a no-slip bound-
ary condition at the colliding interface. Different grids have been
used per material to enforce a free-slip boundary condition [Han
et al. 2019; Yan et al. 2018], where the normal velocity is made contin-
uous as a post-process, but this is limited to explicit time integration
and requires small time steps for stability. Hu et al. [2018] proposed
CPIC which modifies MPM transfers to enable velocity discontinu-
ity using a single grid. Daviet et al. [2016] coupled MPM and rigid
bodies with accurate frictional contact. MPM has been extended to
model wet sand [Pradhana et al. 2017] and sediment mixtures [Gao
et al. 2018a]. These latter works adopt a mixture theory approach, by
applying a drag force to the discrete particles that is computed using
the continuum phase. However, these formulations also correspond
to a no-slip boundary condition, preventing the fluid from freely
sliding against the solid. Fei et al. [2018] use an anisotropic drag
force with separate velocity grids, and achieve more flexible cloth
fluid interaction. Hybrid Lagrangian-Eulerian methods have also
been used for collision handling in hair simulation [McAdams et al.
2009].

In particular, none of these prior works address strong two-way
coupling of incompressible fluids with nonlinear elastic solids with-
out requiring multiple monolithic solves. Our approach is inspired
by the flux-splitting approach in [Stomakhin et al. 2014] for sep-
arately treating the deviatoric and dilational components of the
stress tensor. However, we derive our method from first principles
to support arbitrary constitutive models for nonlinear elastic solids,
properly enforce the free-slip boundary condition, and also avoid
the use of a MAC grid, which would require wider interpolation
kernels and lead to increased numerical dissipation.

0.2 0.7 1.2

Fig. 4. Buoyancy. (From left to right) Soft creatures with increasing density
ratios compared to water are dropped and achieve stable floating behavior.

Solid particle quadrature

Fluid particle quadrature

Full �uid element

Fig. 5. (Left) A coupled solid-fluid system with a free-slip interface. (Right)
MPM allows us to discretize the system using a combination of particle
quadratures and analytic finite elements on a Cartesian background grid.

While coupling can be done with different approaches, we choose
MPM for its ease of handling self-collision, topology change, plas-
ticity, and multi-material interaction. Our examples are designed to
demonstrate these benefits. By solving the stickiness issue in MPM’s
implicit solid-fluid coupling, we increase the types of phenomena
that can be simulated with MPM.

3 GOVERNING EQUATIONS
Consider a coupled solid-fluid system (Fig. 5) where each domain is
labeled with 𝑘 ∈ {𝑠, 𝑓 }. For domain Ω𝑘 , the single material govern-
ing equations [Bonet and Wood 2008] are

𝐷𝜌𝑘

𝐷𝑡
+ 𝜌𝑘∇ · v𝑘 = 0, x ∈ Ω𝑘 , (1)

𝜌𝑘
𝐷v𝑘

𝐷𝑡
− ∇ · 𝜎𝑘 − 𝜌𝑘g = 0, x ∈ Ω𝑘 (2)

𝜎𝑘 · n𝑘 = b, x ∈ 𝜕Ω𝑘
𝑁 (3)

v𝑘 · n𝑘 = 𝑣𝑘𝑆 , x ∈ 𝜕Ω𝑘
S (4)

v𝑘 = v𝑘NS, x ∈ 𝜕Ω𝑘
NS (5)

where g is gravity, n𝑘 is the outward pointing normal of Ω𝑘 , 𝜌𝑘 is
the density, v𝑘 is the velocity, 𝜎𝑘 is the Cauchy stress, b, 𝑣𝑘

𝑆
and v𝑘

𝑁𝑆
are prescribed free surface, slip, and no-slip boundary conditions.
Note that Eq. (1) reduces to ∇ · v𝑘 = 0 for incompressible materials.
For inviscid fluids, we have 𝜎𝑘 = 𝑝I, where 𝑝 denotes the pressure.
For simulations with different materials, MPM [Stomakhin et al.

2013] and augmented MPM [Stomakhin et al. 2014] discretize these
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equations on an entire continuum domain and, as such, momentum
exchanges between different materials can be achieved automati-
cally since particles exchange information through the same grid.
Such convenience comes at a great cost: the automatic MPM cou-
pling is inherently restricted to sticky and no-slip interac-
tions. As a result, solid-solid interfaces experience infinite friction,
while solid-fluid interfaces experience numerical stickiness.Without
the ability to support free-slip boundary conditions, the practical
versatility of MPM is greatly limited, producing animations with
visual artifacts under certain setups.

To remedy this issue, we propose a method to allow for the free-
slip boundary condition at the interface Γ between Ω𝑠 and Ω𝑓 by
only enforcing the normal velocity continuity

(v𝑠 − v𝑓 ) · n𝑠 = 0, x ∈ Γ (6)

and pressure continuity

𝑝𝑠 − 𝑝 𝑓 = 0, x ∈ Γ. (7)

Since the normal vector can usually be estimated with greater accu-
racy in the solid domain, we choose the interface normal as n𝑠 . To
switch back to a no-slip boundary condition, we can either require
v𝑠 − v𝑓 = 0, or revert to single domain MPM.

4 METHOD
In this section we propose a ghost matrix strategy (§4.1) for con-
tinuum solid materials. By assuming the existence of an air-like
massless matrix material, nonlinear elastic solids can be strongly
coupled with fluids with a slip interface through a pressure-only
linear system. Combined with a unified weak form MPM discretiza-
tion (§4.3), the resulting monolithic system resembles an elliptic
PDE discretization, thus benefiting from efficient linear solvers.

4.1 Ghost matrix for nonlinear solids
Let’s first look at one single material and omit the superscript 𝑘
in previous equations. For materials near the incompressible limit,
directly solving for velocities in Eq. (2) will result in kinematic lock-
ing [Mast et al. 2012]. In finite elements, a velocity-pressure (v − 𝑝)
formulation is usually adopted [Bonet and Wood 2008], where 𝑝
serves as the Lagrangian multiplier for the divergence-free veloc-
ity constraint. As demonstrated by Stomakhin et al. [2014], it is
possible to reformulate Eqs. (1) and (2) into a pressure projection
problem if there is a linear relationship between pressure and den-
sity 𝑝 = −𝜆(𝐽 − 1) where 𝐽 = det(F) = 𝜌0

𝜌 is the determinant of
the deformation gradient F and 𝜆 is Lamé’s first parameter. Corre-
spondingly, one can show that the evolution equation of pressure is
[Gonzalez and Stuart 2008]

𝐷𝑝

𝐷𝑡
= −𝜆𝐽∇ · v. (8)

During time integration from 𝑡𝑛 to 𝑡𝑛+1 and assuming an interme-
diate velocity field v∗, Stomakhin et al. [2014] first integrate v𝑛 to
an intermediate velocity field by only applying the deviatoric stress,
and then solve for the dilational stress to find the pressure, through
which the velocity is advanced to v𝑛+1 by applying the pressure
gradient. Unfortunately, doing so strongly limits the choices of non-
linear solid constitutive models and imposes a high computational

cost in the Jacobian and Hessian computations of the deviatoric
elastic potential energy.

To support arbitrary nonlinear hyperelastic constitutive models,
we adopt a different splitting strategy by viewing each infinitesimal
material domain as a combination of a hyperelastic component and
a mass-less ghost matrix material that acts similarly to compressible
air (Fig. 7). In particular, we express the total energy density as

Ψ(F𝑠 , 𝐽𝑔) = Ψ𝑠 (F𝑠 ) + Ψ𝑔 (𝐽𝑔), (9)

where Ψ𝑠 (F𝑠 ) is a standard nonlinear solid constitutive model and

Ψ𝑔 (𝐽𝑔) = 1
2
𝜆𝑔 (𝐽𝑔 − 1)2 (10)

describes the air-like response of the ghost matrix. To compensate
for the extra volumetric response introduced by Ψ𝑔 , we set Lamé’s
first parameter 𝜆𝑠 (in Ψ𝑠 ) and 𝜆𝑔 to be half of the traditional solid’s
Lamé’s first parameter computed from the Young’s modulus and the
Poisson’s ratio (Fig. 6). Here 𝐽𝑔 and F𝑠 are completely independent
of each other and evolve using their own discretized evolution rules.
Since the massless ghost matrix material is colocated with the solid,
it shares the same velocity field with the solid domain. Note that we
use the matrix as a purely conceptual mathematical tool for deriving
our solid-fluid coupling scheme. The massless and colocation nature
of the matrix enforces the equivalence of our solid-matrix mixture
to a traditional solid in terms of mass conservation, momentum
conservation, and strain-stress relationship.

4.2 Time-stepping the coupled equations
Taking into consideration the hybrid solid-matrix constitutive model
Ψ(F𝑠 , 𝐽𝑔) and the ghost matrix pressure evolution from Eq. (8), we
can discretize the solid governing equations from time 𝑡𝑛 to 𝑡𝑛+1 as

𝜌𝑠,𝑛v𝑠,𝑛+1

Δ𝑡
− ∇ · 𝜎𝑠,𝑛+1 + ∇𝑝𝑔,𝑛+1 = 𝜌𝑠,𝑛v𝑠,𝑛

Δ𝑡
+ f 𝑓 𝑠,𝑛+1, (11)

∇ · v𝑠,𝑛+1 + 𝑝𝑔,𝑛+1

𝜆𝑔 𝐽𝑔,𝑛Δ𝑡
=

𝑝𝑔,𝑛

𝜆𝑔 𝐽𝑔,𝑛Δ𝑡
, (12)

where we have discretized the non-convective part of 𝐷𝑝𝑔/𝐷𝑡 as
(𝑝𝑛+1 − 𝑝𝑛)/Δ𝑡 . For notational simplicity, we assume an energy
based solid-wall collision treatment (§6.2.4), and absorb the cor-
responding stress into 𝜎𝑠,𝑛+1. Eq. (12) adopts v𝑠,𝑛+1 rather than
v𝑔,𝑛+1 because during discretization we enforce the ghost matrix
continuum to be colocated with the solid continuum, thus v𝑠 = v𝑔

throughout the simulation domain. We use f 𝑓 𝑠,𝑛+1 to denote the un-
known strong coupling force exerted from the fluid to the solid, and
enforce it to be a normal pressure force through f 𝑓 𝑠,𝑛+1 = ℎ𝑛+1n𝑠,𝑛 ,

(a) (b)

Fig. 6. Volumetric compensation. We demonstrate that compensating
the volumetric response by modifying 𝜆 does not introduce any instability.
(a) modified 𝜆, (b) original 𝜆.

ACM Trans. Graph., Vol. 39, No. 4, Article 51. Publication date: July 2020.



51:6 • Yu Fang, ZiyinQu, Minchen Li, Xinxin Zhang, Yixin Zhu, Mridul Aanjaneya, and Chenfanfu Jiang

ghost matrix continuum

hyperelastic solid continuum

Fig. 7. Ghost matrix. We view the solid continuum as a combination of a
hyperelastic solid component and an air-like massless ghost matrix contin-
uum. Solid-fluid interaction is novelly reformulated as the pressure only
interaction between the matrix and the fluid.

where ℎ𝑛+1 is the unknown pressure at the solid-fluid interface
(𝑝𝑠 = 𝑝 𝑓 = ℎ at Γ is thus implicitly enforced), and n𝑠,𝑛 is the solid
interface normal at time 𝑡𝑛 . According to Newton’s third law, we
have f𝑠 𝑓 ,𝑛+1 = −ℎ𝑛+1n𝑠,𝑛 as the force exerted from the solid to the
fluid.
Assuming no viscosity, the incompressible fluid domain can be

described similarly, while taking the incompressibility assumption
that 𝜆 = ∞:

𝜌 𝑓 v𝑓 ,𝑛+1

Δ𝑡
+ ∇𝑝 𝑓 ,𝑛+1 = 𝜌 𝑓 v𝑓 ,𝑛

Δ𝑡
+ f𝑠 𝑓 ,𝑛+1 + f𝑤,𝑛+1, (13)

∇ · v𝑓 ,𝑛+1 = 0, (14)

where f𝑤,𝑛+1 = −𝑦𝑛+1n𝑓 ,𝑛 captures the pressure from the slip
boundary through 𝑦𝑛+1. Note that 𝜌 𝑓 does not change over time.
We allow the fluid to touch slip boundary walls by requiring

v𝑓 ,𝑛+1 |
𝜕Ω

𝑓

𝑆

·n𝑓 = 𝑣
𝑓

𝑆
, (15)

while 𝑝 |
𝜕Ω

𝑓

𝑆

= 𝑦𝑛+1 acts as the Lagrangian multiplier. The solid and

the fluid are implicitly coupled through the interface pressure ℎ𝑛+1,
which, together with v𝑠,𝑛+1, 𝜎𝑠,𝑛+1, 𝑝𝑔,𝑛+1, v𝑓 ,𝑛+1, 𝑝 𝑓 ,𝑛+1, and 𝑦𝑛+1,
needs to be solved for while satisfying impenetrability

(v𝑠,𝑛+1 |Γ −v𝑓 ,𝑛+1 |Γ) · n𝑠,𝑛 = 0. (16)

4.2.1 Splitting. The fully coupled constrained nonlinear system is
extremely impractical to solve. We draw inspirations from Teng et
al. [2016]’s treatment of linear systems to cast the fully coupled
system into easier substeps with operator splitting. We first advance
the solid velocity with a fully nonlinear Newton solve (v𝑠,𝑛 → v𝑠,∗)
ignoring the matrix and the fluid:

𝜌𝑠,𝑛v𝑠,∗

Δ𝑡
− ∇ · 𝜎𝑠,∗ = 𝜌𝑠,𝑛v𝑠,𝑛

Δ𝑡
, (17)

then v𝑠,∗ replaces v𝑠,𝑛 in the fully linear coupled equations

𝜌𝑠,𝑛v𝑠,𝑛+1

Δ𝑡
+ ∇𝑝𝑔,𝑛+1 − ℎ𝑛+1n𝑠,𝑛 =

𝜌𝑠,𝑛v𝑠,∗

Δ𝑡
. (18)

As shown in §5 a Galerkin weak form discretization of this v − 𝑝 −
𝑦 −ℎ system leads to a reduced pressure-only discrete linear system
on 𝑝𝑔,𝑛+1, 𝑝 𝑓 ,𝑛+1, 𝑦𝑛+1 and ℎ𝑛+1. We solve for the pressures and
substitute them back into Eq. (18) (by approximately delaying their
non-orthogonal influence on 𝜎𝑠 ) and Eq. (13) to compute the new
velocities v𝑠,𝑛+1 and v𝑓 ,𝑛+1.

4.3 Weak form
4.3.1 Nonlinear elasticity step. We advance solid velocity from v𝑠,𝑛

to v𝑠,∗ through the nonlinear solid constitutive model Ψ𝑠 (F𝑠 ) where
𝜎𝑠,∗ = 1

det(F𝑠,∗)
𝜕Ψ𝑠

𝜕F F𝑠,∗𝑇 in the momentum equation (Eq. (17)). We
follow the MLS-MPM weak form discretization by Hu et al. [2018]
and solve the spatial-temporal discretization using the projected
Newton-Ralphson solver [Gast et al. 2015; Wang et al. 2020], where
the nonlinear hyperelastic stress derivative tensors are projected to
be SPD so that preconditioned Conjugate Gradient can be used as
the inner linear solver together with the backtracking line search
[Nocedal and Wright 2006]. Since this step is standard for implicit
MPM, we skip the derivation and refer to Jiang et al. [2016] for more
details on the weak form discretization and Teran et al. [2005] for
more details on the positive definiteness projection.

4.3.2 Weak form of the strong coupling system. We solve Eqs. (12)
to (16) and (18)) using a Galerkin weak form approach. In turn, we
multiply test functions q𝑠 (x), 𝑟𝑠 (x), q𝑓 (x), 𝑟 𝑓 (x), 𝑢 𝑓 (x), and𝑤 (x)
onto the equations, and integrate over their corresponding domains
to get∫

Ω𝑠

𝜌𝑠,𝑛q𝑠 · v𝑠,𝑛+1
Δ𝑡

𝑑x +
∫
Ω𝑠

q𝑠 · ∇𝑝𝑔,𝑛+1𝑑x −
∫
Γ
q𝑠 · n𝑠,𝑛ℎ𝑛+1𝑑𝑠

=

∫
Ω𝑠

𝜌𝑠,𝑛q𝑠 · v𝑠,∗
Δ𝑡

𝑑x, (19)∫
Ω𝑠

𝑟𝑠∇ · v𝑠,𝑛+1𝑑x +
∫
Ω𝑠

𝑝𝑔,𝑛+1

𝜆𝑔 𝐽𝑔,𝑛Δ𝑡
𝑟𝑠𝑑x

=

∫
Ω𝑠

𝑝𝑔,𝑛

𝜆𝑔 𝐽𝑔,𝑛Δ𝑡
𝑟𝑠𝑑x, (20)∫

Ω𝑓

𝜌 𝑓 q𝑓 · v𝑓 ,𝑛+1
Δ𝑡

𝑑x +
∫
Ω𝑓

q𝑓 · ∇𝑝 𝑓 ,𝑛+1𝑑x +
∫
𝜕Ω

𝑓
𝑠

q𝑓 · n𝑓 𝑦𝑛+1𝑑𝑠

+
∫
Γ
q𝑓 · n𝑠,𝑛ℎ𝑛+1𝑑𝑠 =

∫
Ω𝑓

𝜌 𝑓 q𝑓 · v𝑓 ,𝑛
Δ𝑡

𝑑x, (21)∫
Ω𝑓

𝑟 𝑓 ∇ · v𝑓 ,𝑛+1𝑑x = 0, (22)∫
𝜕Ω

𝑓
𝑠

v𝑓 ,𝑛+1 · n𝑓 𝑢𝑑𝑠 =
∫
𝜕Ω

𝑓
𝑠

𝑣
𝑓
𝑠 𝑢𝑑𝑠, (23)∫

Γ
(v𝑠,𝑛+1 − v𝑓 ,𝑛+1) · n𝑠,𝑛𝑤𝑑𝑠 = 0, (24)

which describes a continuous and symmetric system for unknown
fields v𝑠,𝑛+1, 𝑝𝑔,𝑛+1, v𝑓 ,𝑛+1, 𝑝 𝑓 ,𝑛+1, 𝑦𝑛+1, ℎ𝑛+1.
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IQ-MPM (Ours) Traditional MPM Augmented MPM

Frame 30 Frame 60 Frame 180 (end) Frame 180 (end) Frame 180 (end)

Fig. 8. Bunny. Our method achieves stable, monolithic two-way coupling between MPM-based nonlinear compressible elasticity and incompressible free
surface fluids. Guaranteeing a free-slip interface with discontinuous tangential velocities, our method does not suffer from the notorious numerical stickiness
artifacts in multi-material interactions, unlike traditional MPM [Jiang et al. 2016; Stomakhin et al. 2013] and augmented MPM [Stomakhin et al. 2014].

5 THE INTERFACE QUADRATURE METHOD
There are many possible interpolation kernels for the continuous
quantities and test functions in the weak form. In traditional v − 𝑝
mixed Finite Elements [Hughes 2012], it is well known that for
incompressible materials, velocities usually should be discretized
with higher-order polynomials than the pressure to satisfy inf-sup
stability and to prevent kinematic locking. Traditional MAC-grid
based fluids, which are popular in computer graphics [Bridson 2015],
correspond to a piecewise constant interpolation of pressure at cell
centers and piecewise linear interpolation at cell faces – leading
to gradient and divergence operators that are equivalent to central
finite-difference. Inappropriate choices of the velocity-pressure pair,
such as adopting fully colocated linear interpolations for both, suffer
from spurious modes like odd-even decoupling.

In the context of MPM, we have more limited choices. For MPM
solids, the velocities require at least 𝐶1 continuous functions to
prevent the cell-crossing instability caused by discontinuous forces
[Steffen et al. 2008]. Since mass lumping is typically needed (to

Fig. 9. Dam jello ball. A hyperelastic ball with density 500𝑘𝑔/𝑚3 experi-
ences dam break and eventually stably stays calm on the water surface with
half of its volume immersed.

prevent a singular mass matrix [Love and Sulsky 2006]), the particle-
grid interpolation function in MPM also needs to always be nonneg-
ative. Resultingly, MPM typically uses quadratic or cubic B-splines
for discretizing the velocity field on the grid, and many advanced
particle-grid information transfer schemes also assume such choices
[Fu et al. 2017; Hu et al. 2018; Jiang et al. 2015].
Without loss of generality, we put solid velocity degrees of free-

dom on the nodes of the solid grid. In the meantime, we assume the
fluid grid has the same origin and resolution as the solid grid. We
use 𝑁 𝑠/𝑓 ,𝛾

𝜇 (x) to denote B-spline interpolation kernels of degree 𝛾
on the solid (𝑠) or the fluid (𝑓 ) grid, where 𝜇 ∈ 𝑖, 𝑗 corresponds to a
nodal kernel, and 𝜇 ∈ 𝑏, 𝑐 corresponds to a cell-centered kernel.
We can then spatially discretize all continuous functions v(x),

q(x), 𝑟 (x), 𝑝 (x), 𝑦 (x), ℎ(x), 𝑢 (x), and𝑤 (x) through particular com-
binations of B-spline kernels. We limit the B-spline degree to be
less than or equal to 2, and explore the space of stable choices.
To prevent cell-crossing noise, we always expand solid velocities
using quadratic B-splines v𝑠 (x) = ∑

𝑖 v𝑠𝑖𝑁
𝑠,2
𝑖
(x). To satisfy the inf-

sup condition in mixed FEM [Hughes 2012], we can discretize the
pressure-like quantities using either linear or constant kernels.
The first choice is to pick linear kernels. A resulting scheme

that unifies the discretization of solid and fluid is then to use 𝑁 2 for
velocities and𝑁 1 for matrix, fluid, boundary, and interface pressures.
Following standard notations in mixed finite elements [Elman et al.
2014], we label this approach “B2B1-B1-B2B1” since both the solid-
ghost system and the fluid system are discretized using quadratic
B-spline velocities at nodes and linear pressures at cell centers,
while the coupling pressure is also linear (thus the “B1” in between),
see Fig. 12 (a). Such a “node-center” layout is usually referred to
as semi-staggered and proven useful for fluid dynamics [Gagniere
et al. 2020; Zhang et al. 2017]). Note that the closely related Q2Q1
element with Lagrangian polynomials (also known as the Taylor-
Hood element) was first proposed by Taylor and Hood [1974] for
solving the Navier-Stokes equations on quadrilateral elements. As
pointed out by Rüberg and Cirak [2012], a colocated B2B1 B-spline

ACM Trans. Graph., Vol. 39, No. 4, Article 51. Publication date: July 2020.



51:8 • Yu Fang, ZiyinQu, Minchen Li, Xinxin Zhang, Yixin Zhu, Mridul Aanjaneya, and Chenfanfu Jiang

Fig. 10. Shaving cream. (left) Elastoplastic shaving cream (simulated using Saint Venant-Kirchhoff elasticity paired with von Mises plasticity following Gao
et al. [2017]) is squeezed onto a tank of water, undergoing topology change and two-way coupling at the same time. (right) Comparing shaving creams with
different densities, ranging from small to large in top right, bottom left, and bottom right.

kernel choice for Stokes leads to checker-board modes. The semi-
staggered layout we use does not cause visually noticeable issues. A
deeper exploration of its inf-sup conditions could be a promising
future work.
Even though B2B1-B1-B2B1 provides a natural discretization, it

also leads to a wide gradient operator and a dense pressure sten-
cil for a corresponding discrete Laplacian operator. For efficiency
and storage considerations, we prefer to discretize the fluid with a
piecewise linear (B1) velocities paired with piecewise constant (B0)
pressures, and couple with the solid through piecewise constant
(B0) interface pressures. Accordingly, the ghost matrix pressure is
also discretized with piecewise constant (B0) functions. We label
the resulting new scheme as “B2B0-B0-B1B0” (Fig. 12 (b)).

5.1 B2B0-B0-B1B0 scheme
Adopting quadratic velocities for the solid, we expand v𝑠 and q𝑠

using 𝑁
𝑠,2
𝑖
(x):

v𝑠,{𝑛,𝑛+1} (x) =
∑
𝑖

v𝑠,{𝑛,𝑛+1}
𝑖

𝑁
𝑠,2
𝑖
(x), (25)

q𝑠 (x) =
∑
𝑗

q𝑠𝑗𝑁
𝑠,2
𝑗
(x). (26)

The fluid velocity, v𝑓 , and the momentum test function, q𝑓 , in-
stead get discretized using linear kernels defined at cell centers
𝑁

𝑓 ,1
𝑏
(x):

v𝑓 ,{𝑛,𝑛+1} (x) =
∑
𝑏

v𝑓 ,{𝑛,𝑛+1}
𝑏

𝑁
𝑓 ,1
𝑏
(x), (27)

q𝑓 (x) =
∑
𝑐

q𝑓𝑐 𝑁
𝑓 ,1
𝑐 (x) . (28)

All other scalar pressure-like quantities (𝑝 , 𝑟 , 𝑦, 𝑢, ℎ,𝑤 ) are dis-
cretized at nodes using 𝑁

𝑠/𝑓 ,0
𝑖
(x) as piecewise constant fields. As

extensively investigated in the CFD community, the B1B0 fluid ele-
ment contains weakly singular modes that can be stabilized through
regularization or damping [Christon 2002; Zhang et al. 2017]. In
practice we do not visually observe spurious artificial velocities in
any of our examples.

By letting test functions to in turn take nodal deltas, the weak
form equations reduce to a symmetric linear system

©­­­­­­­­«

1
Δ𝑡𝑀

𝑠 𝐺𝑠 0 0 0 −𝐻𝑠𝑇

𝐺𝑠𝑇 − 1
Δ𝑡 𝑆

𝑠 0 0 0 0
0 0 1

Δ𝑡𝑀
𝑓 𝐺 𝑓 𝐵𝑇 𝐻 𝑓 𝑇

0 0 𝐺 𝑓 𝑇 0 0 0
0 0 𝐵 0 0 0
−𝐻𝑠 0 𝐻 𝑓 0 0 0

ª®®®®®®®®¬

©­­­­­­­«

𝑣𝑠,𝑛+1

𝑝𝑔,𝑛+1

𝑣 𝑓 ,𝑛+1

𝑝 𝑓 ,𝑛+1

𝑦𝑛+1

ℎ𝑛+1

ª®®®®®®®¬
= 𝑟 (29)

with 𝑟 =
(
1
Δ𝑡𝑀

𝑠𝑣𝑠,𝑛,− 1
Δ𝑡 𝑆

𝑠𝑝𝑔,𝑛, 1
Δ𝑡𝑀

𝑓 𝑣 𝑓 ,𝑛, 0, 𝑏, 0
)𝑇

,wherewe have
concatenated velocity and pressure unknowns into long column
vectors. Here𝑀𝑠 is the lumped diagonal solid mass matrix with

𝑀𝑠
𝑖𝛼 𝑖𝛼

=

∫
Ω𝑠

𝜌𝑠,𝑛𝑁
𝑠,2
𝑖
(x)𝑑x, (30)

where 𝛼 = 0, 1, 2 denotes a coordinate component. 𝐺𝑠 is the solid
domain gradient operator (after applying divergence theorem on∫
Ω𝑠 ) with

𝐺𝑠
𝑖𝛼 𝑗

= −
∫
Ω𝑠

𝑁
𝑠,0
𝑗
(x) (∇𝑁 𝑠,2

𝑖
(x))𝛼𝑑x. (31)

The scaling matrix 𝑆𝑠 for ghost air pressure is given by

𝑆𝑠𝑖 𝑗 =

∫
Ω𝑠

1
𝜆𝑔 𝐽𝑔,𝑛

𝑁
𝑠,0
𝑖
(x)𝑁 𝑠,0

𝑗
(x)𝑑x, (32)

which we can lump into a diagonal matrix similarly to the mass:

𝑆𝑠𝑖𝑖 =

∫
Ω𝑠

1
𝜆𝑔 𝐽𝑔,𝑛

𝑁
𝑠,0
𝑖
(x)𝑑x. (33)

The fluid lumped mass, gradient, and boundary operators are given
by

𝑀
𝑓
𝑐𝛼𝑐𝛼 = 𝜌 𝑓

∫
Ω𝑓

𝑁
𝑓 ,1
𝑐 (x)𝑑x, (34)

𝐺
𝑓

𝑐𝛼 𝑖
= −

∫
Ω𝑓

𝑁
𝑠,0
𝑖
(x) (∇𝑁 𝑓 ,1

𝑐 (x))𝛼𝑑x, (35)

𝐵𝑐𝛼 𝑖 =

∫
𝜕Ω

𝑓
𝑠

𝑁
𝑓 ,1
𝑐 (x)𝑁

𝑓 ,0
𝑖
(x)𝑛𝑓𝛼𝑑𝑠 (36)
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Fig. 11. Bear bath. Unlike the “dragon bath” example in Fang et al. [2018] where water numerically sticks to the dragon in a visually incorrect manner (an
expected result from standard MPM), the bear couples with water in a fully waterproof way, allowing water to slide naturally along its body.

(a) B2B1-B1-B2B1 (b) B2B0-B0-B1B0

Fig. 12. MPM mandates a quadratic or higher-order velocity kernel for
solids. Stable possibilities for discretizing the coupled system include (a)
quadratic velocities with linear pressures for both domains and the interface,
(b) (our choice) quadratic velocities for solids, linear velocities for fluids, and
constant (discontinuous) pressures for both domains and the interface.

where 𝜌 𝑓 is a constant (unlike in the solid domain). Finally, the
coupling terms are

𝐻𝑠
𝑗𝑖𝛼

=

∫
Γ
𝑁
𝑠,2
𝑖
(x)𝑁 𝑠,0

𝑗
(x)𝑛𝑠,𝑛𝛼 𝑑𝑠, (37)

𝐻
𝑓

𝑗𝑐𝛼
=

∫
Γ
𝑁

𝑓 ,1
𝑐 (x)𝑁

𝑓 ,0
𝑗
(x)𝑛𝑠,𝑛𝛼 𝑑𝑠, (38)

and constructed using different velocity kernels, but both using a
piecewise constant interface pressure.

5.2 Particle quadrature for the solid and matrix
As commonly done in MPM [Jiang et al. 2016], we discretize all
integrals that are only associated with solid and matrix using par-
ticle quadratures, since particles naturally encode mass, volume,
constitutive model parameters, and strain. Specifically, we have

𝑀𝑠
𝑖𝛼 𝑖𝛼

=𝑚𝑠
𝑖 =

∑
𝑝

𝑚𝑠
𝑝𝑁

𝑠,2
𝑖
(x𝑝 ), (39)

𝐺𝑠
𝑖𝛼 𝑗

= −
∑
𝑝

𝑉𝑛
𝑝 𝑁

𝑠,0
𝑗
(x𝑝 ) (∇𝑁 𝑠,2

𝑖
(x𝑝 ))𝛼 , (40)

𝑆𝑠𝑖𝑖 = 𝑠𝑠𝑖 =
∑
𝑝

1
𝜆
𝑔
𝑝

𝑉 0
𝑝 𝑁

𝑠,0
𝑖
(x𝑝 ) . (41)

where𝑚𝑝 is the mass of solid particle 𝑝 , 𝑉𝑛
𝑝 is its current volume

(relating to its original volume 𝑉 0
𝑝 through 𝑉𝑛

𝑝 = 𝑉 0
𝑝 det(F𝑛𝑝 )). We

compute the previous time pressure 𝑝𝑔,𝑛 in the right hand side
taking volume weighted average over all ghost matrix particles

𝑝
𝑔,𝑛

𝑖
=

(∑
𝑝

𝑉 0
𝑝 𝐽

𝑔,𝑛
𝑝 𝑝

𝑔,𝑛
𝑝 𝑁

𝑠,0
𝑖
(x𝑝 )

)
/
(∑

𝑝

𝑉 0
𝑝 𝐽

𝑔,𝑛
𝑝 𝑁

𝑠,0
𝑖
(x𝑝 )

)
, (42)

where 𝑝𝑔,𝑛𝑝 = −𝜆𝑔𝑝 (𝐽
𝑔,𝑛
𝑝 − 1).

Incompressible solid. An additional useful feature of our B2B0
solid formulation is that as we let 𝜆𝑔 = ∞, the only imposed change
on the discretization is to let 𝑆𝑠

𝑖𝑖
= 0. Continuously this can also be

derived if we replace Eq. (12) with the divergence-free constraint
∇ · v𝑠,𝑛+1 = 0. In other words, our B2B0 solid formulation itself
can also serve as a standalone mixed Finite Element scheme for
incompressible solids.

5.3 Subgrid treatment for free surface and interface
For the fluid domain, one standard choice is to analytically inte-
grate the interpolation functions to compute 𝑀 𝑓 ,𝐺 𝑓 and 𝐵. This
results in grid aligned staircase artifacts near the boundaries, as
extensively studied by Gibou et al. [2002] and Batty et al. [2007] on
MAC-grid based fluids. Instead of following standard approaches
by computing level set based cut-cells, we use particle quadratures
for fluid elements near the free surface and the solid-fluid interface
to capture subgrid information.

5.4 Interface quadrature
The major challenge lies in the discretization of 𝐻 , which involves
integration over the solid-fluid interface Γ. A superficially straight-
forward choice is to construct two level sets wrapping the two
domains and reconstruct a sharp interface through averaging. Un-
fortunately, even though this works fine for two-phase fluids [Boyd
and Bridson 2012], it is easy to see that this reconstructed level set
may only partially overlap one of the two domains in the solid-fluid
coupling case. For example, this interfacial codimensional surface
could be influencing grid nodes on the solid grid that does not even
have a solid degree of freedom (i.e., mass). Furthermore, due to the
offset between solid and fluid particles, such an interface would not
influence the same set of pressure degrees of freedom on the two
domains, breaking pressure continuity at the interface.
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solid particle

�uid particle

interface search radius

oriented interface quadrature

interface �uid volume quadrature

Fig. 13. IQ allocation. We sample interface quadratures with areas and
normals at solid particles that are 0.5Δ𝑥 close to fluid particles. At the same
locations, we also sample additional fluid volume quadrature points so that
the fluid domain is closely touching the solid domain at the interface with
no missing degrees of freedom on the grid.

Correspondingly, we emphasize that it is important that the two
domains see not only exactly the same interface but also that each
has a complete set of mass-full degrees of freedom on the grid so
that the interface is fully covered by the union of the interpolation
kernels of the degrees of freedom.
To achieve this goal, we discretize the boundary integral of Γ

through interface quadrature (IQ) points. To ensure the coverage in
the solid domain, we sample IQ points directly at solid particle loca-
tions. At the beginning of each time step, we locate solid particles
that are within 0.5Δ𝑥 to fluid particles. For each such solid particle,
we insert an IQ point 𝑞 with area 𝐴𝑞 and normal n𝑞 (Fig. 13).

To ensure coverage in the fluid domain, we extend the fluid quad-
rature points towards the IQ locations. Continuously, this is equiv-
alent to treating the fluid continuum as closely touching the solid
domain when their material particles are sufficiently close. For each
identified IQ point, we sample an additional fluid volume quadrature
at this location, inheriting the average volume of the fluid particles
that are 0.5Δ𝑥 close-by. Since we already adopt particle quadratures
for the fluid volume integrals near the interface, these additional
volume quadratures can be easily accounted for. By sampling them
at IQ locations, we guarantee that the fluid degrees of freedom on
the grid will have kernel support at IQ points.
With IQ, we discretize the coupling term as

𝐻𝑠
𝑗𝑖𝛼

=
∑
𝑞

𝐴𝑞𝑁
𝑠,2
𝑖
(x𝑞)𝑁 𝑠,0

𝑗
(x𝑞)𝑛𝑛𝑞𝛼𝑑𝑠, (43)

𝐻
𝑓

𝑗𝑐𝛼
=

∑
𝑞

𝐴𝑞𝑁
𝑓 ,1
𝑐 (x𝑞)𝑁

𝑓 ,0
𝑗
(x)𝑛𝑛𝑞𝛼𝑑𝑠, (44)

Fig. 14. ghost matrix strain update. Updating the ghost matrix strain 𝐽

from the piecewise constant pressure interpolation results in a stable B2B0
solid simulation. Other approaches are not consistent with the weak form
discretization and results in instabilities.

where we approximate IQ area, 𝐴𝑞 , as the cross section area of the
colocating solid particle assuming it is originally shaped as a sphere
and deformed with F. IQ normal, n𝑞 , is evaluated using the mass
gradient of the solid domain (see §6.2.3).

5.5 Pressure-only system
The coupled system Eq. (29) corresponds to a saddle point KKT
system and has extremely bad conditioning. Fortunately, since we
use lumped mass matrices, we can eliminate the velocity degrees of
freedom and solve for the pressure variables first:

©­­­«
𝐴11 0 0 𝐴14
0 𝐴22 𝐴23 𝐴24
0 𝐴𝑇23 𝐴33 𝐴34

𝐴𝑇14 𝐴𝑇24 𝐴𝑇34 𝐴44

ª®®®¬
©­­­«
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𝐺 𝑓 𝑇 𝑣 𝑓 ,𝑛

𝐵𝑣 𝑓 ,𝑛 − 𝑏
𝐻𝑠𝑣𝑠,𝑛 − 𝐻 𝑓 𝑣 𝑓 ,𝑛

ª®®®®¬
(45)

where 𝐴11 = 𝑆𝑠

Δ𝑡 + Δ𝑡𝐺
𝑠𝑇𝑀𝑠−1𝐺𝑠 , 𝐴14 = −Δ𝑡𝐺𝑠𝑇𝑀𝑠−1𝐻𝑠𝑇 , 𝐴22 =

Δ𝑡𝐺 𝑓 𝑇𝑀 𝑓 −1𝐺 𝑓 , 𝐴23 = Δ𝑡𝐺 𝑓 𝑇𝑀 𝑓 −1𝐵𝑇 , 𝐴24 = Δ𝑡𝐺 𝑓 𝑇𝑀 𝑓 −1𝐻 𝑓 𝑇 ,
𝐴33 = Δ𝑡𝐵𝑀 𝑓 −1𝐵𝑇 ,𝐴34 = Δ𝑡𝐵𝑀 𝑓 −1𝐻 𝑓 𝑇 ,𝐴44 = Δ𝑡 (𝐻𝑠𝑀𝑠−1𝐻𝑠𝑇 +
𝐻 𝑓 𝑀 𝑓 −1𝐻 𝑓 𝑇 ). The system is symmetric positive semi-definite up to
constant pressure-mode null space when the fluid has no free surface
(which can be handled by projecting it out in the CG solver, see
§6.2.1). After we solve for these pressure variables, we can substitute
them back into the momentum equation to get the new velocities.

5.6 B2B0 strain update for the ghost matrix
After we get the new velocities, the particles can directly interpolate
the velocity field and advect using APIC [Jiang et al. 2015, 2017].
The solid (together with ghost matrix) particles need to additionally
update their strain. Since we use a quadratic B-spline kernel for the
solid velocity v𝑠,𝑛+1, we can update the solid deformation gradient
using F𝑛+1𝑝 = (I + Δ𝑡 (∇v𝑛+1 (x𝑝 ))F𝑛𝑝 as in traditional MPM.
The ghost matrix particles additionally carry strain 𝐽𝑔 . Natural

choices for updating this include (1) setting it to the determinant
of the updated solid deformation gradient (𝐽𝑔 = det(F𝑠 )), and (2)
evolving it using the velocity divergence (𝐽𝑔,𝑛+1𝑝 = (1 + Δ𝑡 (∇ ·
v𝑛+1) (x𝑝 )) 𝐽𝑔,𝑛𝑝 ) following the MPM treatment of compressible flu-
ids [Pradhana et al. 2017]. However, a very simple experiment with
dropping an elastic cube easily reveals the instability of these two
options, see Fig. 14. Through experiments, we also found that we
could not observe these instabilities if we adopt a 𝐵2𝐵1 solid dis-
cretization. The problem is that with 𝐵2𝐵0, the ghost matrix pressure
is required to be discontinuous, and updating it with the high order
velocity field causes inconsistency with the discretization choice.
Therefore, we instead interpolate the updated pressure field 𝑝𝑔,𝑛+1
using 𝑁 𝑠,0 (x) to transfer back to the ghost matrix particles, and
recompute their strain through 𝑝 = −𝜆(𝐽 −1). Being consistent with
the weak form discretization successfully removes the instability
and results in stable and natural behaviors.

6 ALGORITHM

6.1 Overview
IQ-MPM reuses a considerable amount of standard MPM procedures.
We summarize the pipeline below and in Fig. 15.
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Fig. 15. Algorithm overview. Our method can be performed efficiently by launching standard MPM procedures, see §6.1 for more detailed explanation of
every algorithmic step.

(1) Particle-to-grid transfer. Solid and fluid particles transfer
their time, 𝑛, mass, and velocity, v𝑛 , onto the grids using
APIC [Jiang et al. 2015]; ghost matrix particles transfer their
pressures, 𝑝𝑔,𝑛 , onto the grid.

(2) Projected Newton solver. Solid velocities are integrated
from v𝑠,𝑛 to v∗,𝑛 (see §4.3.1) considering nonlinear hypere-
lasticity and collision objects.

(3) Identify IQ. Following §5.4, interface quadrature points with
areas and normals are identified, as well as additional fluid
volume quadrature points. The fluid velocity field, v𝑛 , is con-
structed with contributions from the additional quadrature
points.

(4) Coupled solve. The coupled pressure-only system Eq. (45)
is constructed and solved. New velocities are reconstructed
using the pressures.

(5) Grid-to-particle transfer. Solid and fluid particles update
their velocities and advect using APIC; ghost matrix particles
update their strain 𝐽𝑔 using the interpolated 𝑝𝑔,𝑛+1.

Overall, all steps other than step (3) can be performed by launching
standard MPM particle-grid transfer kernels. Due to the usage of
particle quadratures, the construction of the system matrix can also
be finished with one particle-to-grid transfer operation through all
particles and quadrature points. We use SPGrid [Setaluri et al. 2014]
as our underlying sparse grid data structure, which enables efficient
cache-friendly neighborhood search during IQ identification.

Fig. 16. Normal estimation. (left) We estimate the normal using B-spline
interpolated mass gradient §6.2.3. (right) A more expensive option is to
estimate the normal using the gradient of a level set constructed with
particles as in Boyd and Bridson [2012].

6.2 More algorithmic details
6.2.1 Multigrid PCG. We solve Eq. (45) with an efficient algebraic
multigrid-preconditioned Conjugate Gradient solver AMGCL [Demi-
dov 2019]. We adopt Chebyshev relaxation and smoothed aggrega-
tion coarsening paired with a w-cycle iteration.

6.2.2 Improving the condition. In level set based cut-cell methods
[Batty et al. 2007], to prevent extremely small mass and bad condi-
tioning in the Poisson system, the nodal distance value at the cut
cell is usually clamped to be larger than some threshold (such as
0.1Δ𝑥). Such clamping is also adopted in the Ghost Fluid Method
[Gibou et al. 2002] for robustly estimating extrapolated ghost pres-
sure near the free surface. Since we use particle quadratures near
the free surface and the solid-fluid interface, we achieve a similar
conditioning improvement by shifting the quadrature point loca-
tions to make sure they are at least component-wise 0.1Δ𝑥 away
from element boundaries. Note that we only imaginarily shift them
while evaluating the integrals in the weak form. During the normal
particle-grid transfers, the material particle positions maintain their
true values. We observe in our examples that doing so eliminates
occasional instability from PCG failures. We collect statistics from
the dam jello example (Fig. 9). With our shifting strategy, the aver-
age per-step PCG iteration reduces from 3.3 to 2.9. However, the
maximum per-step PCG iteration reduces from 81 to 7 with a more
than 6× timing difference.

6.2.3 Normal estimation. Our method requires high quality normal
estimation at interface quadrature locations. For mesh-based solids,
normals can usually be computed from the boundary mesh tessel-
lation. For particles, a common practice is to construct a level set
through a union of spheres [Boyd and Bridson 2012], reinitialize the
signed distance function, and evaluate the level set gradient function
on query points. In our method, we only need accurate normals
near a narrow band of the solid boundary. Therefore we adopt a
much more simple and efficient approach by picking normals to
be the negative mass gradient field evaluated at the particles. After
solid particles transfer their masses onto the grid (𝑚𝑠

𝑖
←𝑚𝑠

𝑝 ), we
compute the mass gradient on each particle

(∇𝑚𝑠 ) (x𝑠𝑝 ) =
∑
𝑖

𝑚𝑠
𝑖 ∇𝑁

𝑠
𝑖 (x

𝑠
𝑝 ) (46)
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Fig. 17. Frogs. Three frogs, ranging from light to heavy, are lifted by fountains while creating beautiful spray patterns during this vibrant two-way coupling.

and let n𝑠𝑝 = −(∇𝑚𝑠 ) (x𝑠𝑝 )/|(∇𝑚𝑠 ) (x𝑠𝑝 ) |. In Fig. 16 we compare the
normal estimation results on a 2D geometry using a quadratic B-
spline kernel versus using a level set. Note that for highly sparse
and isolated particles such as Fig. 19, our normal estimation is more
inaccurate than a high-resolution level-set result. However, such
inaccuracy does not cause stability issues or artifacts in our experi-
ments.

6.2.4 Collision object. The fluid domain collides with kinematic
objects through the free-slip boundary condition defined through
𝜕Ω

𝑓

𝑆
. To support free wall separation (v𝑓 ,𝑛+1 |

𝜕Ω
𝑓
𝑠
·n𝑓 ≥ 𝑣

𝑓
𝑠 ), an

LCP formulation is needed as pointed out by Batty et al. [2007]
and we leave this investigation to future work. There are multi-
ple choices for colliding the solid domain with walls. A standard
way in MPM is to prescribe Dirichlet nodal (normal) velocities on
the grid nodes inside the wall. Another choice is to enforce the
boundary condition through the weak form as we do for the fluids.
Unfortunately, neither of the two methods supports free separation,
which is a much more important concern for solids. We instead
take an energy-based approach following McAdams et al. [2011] by
assigning per solid particle a unilateral anisotropic potential energy
Ψ(x𝑝 , x𝑐 ) = 𝑘 (x𝑝 − x𝑐 )𝑇 nn𝑇 (x𝑝 − x𝑐 )/2 where x𝑐 is the closest
surface point to x𝑛𝑝 and n is the normalized x𝑐 −x𝑛𝑝 . Here “unilateral”
means we change the energy, force, and force derivatives to zeroes
if (x𝑝 − x𝑐 ) · n < 0. We add this energy to all penetrated particles
and integrate the force implicitly using the MPM Lagrangian energy
treatment in Jiang et al. [2015].

6.2.5 Position correction. In traditional hybrid Lagrangian-Eulerian
fluid simulations including FLIP [Zhu and Bridson 2005] and APIC
[Jiang et al. 2015], due to truncation errors in the advection, particles
may get clumpy, sparse, lose/gain volume, or penetrate into collision
objects. Various approaches in computer graphics have targeted this

(a) (b)

Fig. 18. 2D dambreak jello. This example shows a 2D dam jello ball
(zoomed in near the ball) (a) without and (b) with position correction. Po-
sition correction improves particle distibution, reduces volume loss, and
prevents penetration from drifting.

issue by correcting particle positions after advection [Ando et al.
2012; Ando and Tsuruno 2011; Boyd and Bridson 2012; Kugelstadt
et al. 2019]. Our method is not immune to this problem, and we
adopt Kugelstadt et al. [2019]’s method in our framework. The
adaptation is straightforward, andwe refer to Kugelstadt et al. [2019]
for the algorithmic details, a comparison is shown in Fig. 18. One
noteworthy feature is that our MPM particle-based representation
of the solid object directly allows fluid densities near the solid-
fluid interface to be correctly evaluated without suffering from
underestimation.

7 RESULTS
The implementation overhead of ourmethod is minimal since almost
all operations specific to IQ-MPM can be performed and parallelized
by launching standard MPM particle-grid transfer kernels. Our C++
code is released as open soruce. All simulations are performed on
Intel Core i7-9700K with 32GB memory and Nvidia GTX 1050 Ti
GPU for AMGCL. Timing and parameters are reported in Table 1.We
reconstruct fluid surfaces with OpenVDB [Museth et al. 2019, 2013]
and track sharp meshes for the solids following Wang et al. [2019].
Our method enables strong two-way coupling between MPM

nonlinear hyperelastic solids and incompressible fluids, as demon-
strated by shooting a bear with water jet (Fig. 11) and dropping a ball
(Fig. 9) in a dam break. In Fig. 4, we demonstrate achieving a stable
buoyancy effect for elastic solids with different densities relative to
the liquid density. Our method supports arbitrary nonlinear hypere-
lasticity models such as the Fixed Corotated model [Stomakhin et al.
2012], the Neo-Hookean model, and the Saint Vernant-Kirchhoff
model. We couple these three models with water in Fig. 2.
A significant advantage of MPM solids is its natural support for

large deformation, plasticity, and topologically changing events such
as fracturing and splitting-and-merge. We demonstrate these visual
effects by showing a numerically fracturing water-filled armadillo
(Fig. 23), squeezing plastic shaving cream onto water (Fig. 10), and
injecting fluid onto a soil man (Fig. 19).
Traditional MPM [Jiang et al. 2016; Stomakhin et al. 2013] and

augmented MPM [Stomakhin et al. 2014] suffer from numerical
stickiness between different materials due to their interpolation of a
single velocity field. IQ-MPM, on the other hand, allows solids and
fluids to have discontinuous tangential velocities while enforcing
a continuous interfacial pressure, as clearly demonstrated in Fig. 8
where a water ball is dropped onto an elastic bunny whose center
is pinned in place.
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Fig. 19. Soil flush. IQ-MPM can also animate the detailed interaction between fluid and granular media (modeled as an elastoplastic solid as in [Klár et al.
2016; Pradhana et al. 2017]).

(a) (b) (c)

Fig. 20. Time step size. Breaking CFL may result in instability for stiff materials. (a) Δ𝑡 is adaptively chosen by CFL so that no particles move more than
0.4Δ𝑥 (the resulting Δ𝑡 is around 0.001 in this example); (b) Δ𝑡 = 0.002; (c) Δ𝑡 = 0.01 (highly unstable).

Table 1. Parameters and Timings. Time per frame is provided as an average on an Intel Core i7-9700K and Nvidia GTX 1050 Ti GPU. Δ𝑡step refers to the
maximumly allowed time step for a time step. The actual time step is adaptively chosen by CFL so that no particles move more than 0.4Δ𝑥 within a step. This
CFL is necessary for MPM solids to prevent interpenetration [Gast et al. 2015]. We experiment with the Corotated model [McAdams et al. 2011], the fixed
Corotated model★ [Stomakhin et al. 2012], and also the †mixture of fixed Corotated, Neo-Hookean, and Saint Vernant-Kirchhoff models. We use the von
Mises elastoplasticity model‡ [Gao et al. 2017] for the shaving cream example with a plastic yield stress of 100. The soil flush example adopts the granular
elastoplasticity model ⋄ [Stomakhin et al. 2013] with principal stretches restricted in [1 − 2.5 × 10−2, 1 + 7.5 × 10−3 ].

Example min/frame Δ𝑡frame Δ𝑥 Δ𝑡step 𝑁solid 𝑁fluid Young’s Modulus Poisson’s Ratio Solid Density Fluid Density

(Fig. 2) Balls† 12.8 1/48 0.008 0.004 0.78M 1.1M 5 × 105 0.3 0.8 × 103 1 × 103

(Fig. 3) Flush rubber 0.8 1/48 0.008 0.004 0.33M 0.5M 1 × 105 0.3 1 × 103 1 × 103

(Fig. 4) Buoyancy 2.5 1/24 0.01 0.004 0.3M 6.1M 1 × 105 0.4 0.2, 0.7, 1.2 × 103 1 × 103

(Fig. 9) Dam jello ball★ 5.3 1/24 0.0156 0.003 0.14M 2.35M 5 × 104 0.4 0.5 × 103 1 × 103

(Fig. 8) Bunny 3.4 1/48 0.01 0.005 0.5M 0.45M 1 × 105 0.4 1 × 103 0.2, 1, 2 × 103

(Fig. 10) Shaving cream‡ 4.5 1/24 0.01 0.004 0.5M 0.7M 1 × 105 0.4 0.2 × 103 1 × 103

(Fig. 17) Frogs 3.1 1/96 0.01 0.004 0.28M 0.9M 5 × 55 0.3 0.3, 0.6, 0.9 × 103 1 × 103

(Fig. 11) Bear bath 2.4 1/48 0.01 0.004 0.32M 0.34M 1 × 105 0.4 1 × 103 1 × 103

(Fig. 19) Soil flush⋄ 10.9 1/48 0.01 0.001 1.26M 1.15M 1.4 × 105 0.2 1 × 103 0.4 × 103

(Fig. 23) Armadillo toy 3.6 1/24 0.005 0.004 0.2M 0.15M 2 × 104 0.4 1 × 103 1 × 103

In Fig. 21 we show the runtime breakdown for a representative
time step of the “dam jello” example (Fig. 9). AMGCL typically
requires around 25 CG iterations, while the construction of the AMG
preconditioner takes a considerable amount of time. Another major
cost comes from building the system matrix, which we believe can
be largely improved with more optimized sparse matrix operations
in future work. This part also includes a neighborhood search to
detect fluid-elastica interface. After contact, the DOF count increases
and slows down the solve by 30% due to the occurrence of interfacial
pressure unknowns.

Time step size. The coupling based on our splitting scheme is not
unconditionally stable since it is semi-implicit (see also the discus-
sion by Teng et al. [2016]) In Fig. 20, we simulate the interaction
between a stiff elastic bar (with density 900 and Young’s modulus

106) and water following an example in [Chentanez et al. 2006]. We
use Δ𝑥 = 0.2. When we set Δ𝑡 accoring to CFL (such that particles
do not move more than 0.4Δ𝑥 per time step), the resulting Δ𝑡 is
around 0.001 and the simulation remains stable. A large step size
such as 0.01, however, results in instability during coupling.

Choices of interpolation kernels. To illustrate the benefit of “B2B0-
B0-B1B0”, we compare it with “B2B1-B1-B2B1” in a 2D fluid-elastica
interaction simulation (Fig. 22). The elastic object’s density, Young’s
modulus, and Poisson’s ratio are 2000, 105, and 0.4 respectively. The
fluid’s density is 1000. The two simulations give qualitatively simi-
lar visual qualities, but very different computational performance.
While the solid projected Newton steps costs the same amount of
time (0.012s per time step), “B2B0-B0-B1B0” requires around 3× less
time in building (0.016s vs 0.049s) and solving (0.019s vs 0.052s) the
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(a) (b)

Fig. 21. Timing breakdown. In the “dam jello” example (Fig. 9), the aver-
age per-step timing costs before (a) and after (b) contact are 6.84s and 8.53s
respectively. The coupling results in some overhead in building and solving
the system.

coupling system with 4.5× fewer non-zero entries (49051 vs 223024)
in the matrix.

8 DISCUSSIONS AND LIMITATIONS
We presented a novel algorithm for strong two-way coupling of
incompressible fluids with volumetric elastic solids based on MPM.
With CFL-rate time step sizes, our approach yields stable solutions
in various challenging examples, and only requires a single mono-
lithic solve, even for highly non-linear elastic solids. To allow the

(a) (b)

Fig. 22. Choices of kernels. Comparing (a)“B2B0-B0-B1B0” and (b)“B2B1-
B1-B2B1” result in similar visual appearances. But “B2B0-B0-B1B0” is 3×
faster in building and solving the 4.5× sparser coupling system.

Fig. 23. Armadillo toy. A hyperelastic hollow toy armadillo is filled with
water. When getting violently stretched, the elastic structure feels the water
pressure; as it gets torn apart, water flows out naturally and completely.

fluid to freely slide against the solid, we designed a novel interface
quadrature scheme that is simple to implement, and does not require
additional level set or explicit mesh representations for treating the
interfacial boundary conditions, as employed in FLIP schemes [Boyd
and Bridson 2012]. We demonstrated the benefit of our framework
on several end-to-end 3D examples with complex solid-fluid inter-
actions.
There are several avenues for future research, as we list below.

It would be interesting to extend our work to support fluid inter-
actions with co-dimensional solids, such as hair [Fei et al. 2017]
and cloth [Fei et al. 2018]. Our current framework uses the same
grid resolution for both solids and fluids, and allowing for different
grid resolutions [Aanjaneya et al. 2017; Akinci et al. 2013; Ando
et al. 2013; Chentanez and Muller 2011; English et al. 2013; Ferstl
et al. 2014; Gao et al. 2017] could provide richer solid-fluid inter-
actions. The particle distribution inside MPM solids can develop
big gaps in the presence of large deformations (if the solid does not
fracture). In this case, the fluid MPM particles will creep into these
gaps, rather than freely sliding past. Deriving an adaptive version
of our interface quadrature scheme could alleviate such artifacts. It
would also be interesting to develop a narrow band version of our
solver following [Ferstl et al. 2016; Sato et al. 2018]. Incorporating
viscosity similarly to the work of Batty and Bridson [2008] through
a weak form discretization is also an exciting future work.

Our ghost matrix formulation is built on top of the approximation
that we delay the non-orthogonal influence of the matrix pressure
to the solid stress. A more accurate treatment of the velocities af-
ter solving for the pressures would be substituting the pressures
back into Eq. (11) (rather than Eq. (18)) and iterating until conver-
gence. However, for effects focused by this paper, our approximation
achieves visually plausible behaviors with a much smaller computa-
tional cost.

MPM solids suffer from numerical plasticity with large time steps,
while this is not the case for incompressible fluids [Chentanez and
Müller 2012; Lentine et al. 2012]. This can also lead to stability
issues with two-way coupling. At present, we use time steps that
respect the CFL condition for the solids to avoid potential issues,
but it would be beneficial to design methods that do not have any
time step restrictions, for scaling to larger problem sizes. While our
weak form discretization properly enforces the free-slip boundary
condition for solids and fluids, more research is required to allow
two solids to freely slide against one another [Levin et al. 2011]. This
is because we extend the fluid domain to closely touch the solid, to
achieve a consistent interfacial pressure. Such a scheme would have
stability issues for pure solids. Furthermore, to correctly resolve
solid-solid slip interaction in MPM, one must correctly handle self-
collision and new interfaces generated from fracture, which often
belong to the same solid. Finally, while we considered two-way
coupling of MPM solids with MPM liquids, for wide-scale adoption,
it would be interesting to design a consistent discretization for two-
way coupling MPM solids with FLIP-based liquids.
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