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1 QR differentiation

Here we discuss how to compute 6Q and JR from F and dF. This is used for computing the linearized force
in implicit time integration.
If F = QR where Q is orthonormal with QTQ =1I, and

R = T2 T23
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is upper triangular, and we define the function ¥(F) = ¥(R) then we have

JF = QIR + JQR
SU(F) =00 (R)

sQ"Q+Q"Q =0
O0R is upper triangular

QT6F =R + QT6QR
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This implies

d = W3Tr11
g = —WwaT11
h = —waria + wira

We can use these three equations to solve for wy,ws,ws. After that, we can construct 6Q = Q2 and then

SR = QT6F — QT6QR.



The corresponding 2D result is

(Q"0F)a1
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SR = QT6F — QT5QR

2 Computing stress

o0 = 60
Z—i :0F = gli :0R
gi’ (QSR + 5QR) = ZE{ . OR
OV @R+ 22 oaRr) = 2F om M)

It can be shown that the above holds for any 6Q and dR that satisfy 6Q7Q + Q76Q = 0 and SR being
upper triangular. Specifically, it can be shown that given arbitrary 6§Q,dR with Q7 Q + Q76Q = 0 and
0R upper triangular, 30F such that

OR 0Q
6R = S (F) : 0F, and 0Q = S=(F) : oF.
Using null[gF( )] = span{Ny,Ng, N3, Ny, N5,Ng}, for all upper triangular dR, I0F¢g € null[g—g(F)]J—
such that 6Q = 8 55 (F) : 0Fqg = g—?(F) :0(Fg +Fg) VFR € null[g—?(F)]. Further, it can be shown that
QJ/R + QR — 5FQ € null[8(F)] and with 0Fp = QSR + QR — 6F, 0F = §Fg + 6F produces
OR BQ

If we choose §Q = 0 in Equation (1), then

ov ov
7 : (QIR) = R : R
ov o
T-—).R=— :6R
@ 8F) OR
Recall 4R is any upper triangular matrix, therefore (QT ) and have the same upper triangular part.

Further more, since R” is lower triangular, it is easy to show (entry wise provable) that QT WRT and

8RRT have the same upper triangular part.



If we choose 6R = 0 in Equation (1), then

ov

ot (6QR) = 0
(P2RT):5Q =0
(P2RT): (}QQ7Q) =
(GeRTQ"): (FQQ") = 0
(F2F7): (5QQ") =0

Since /QQT is an arbitrary skew symmetric matrix (due to §QTQ + Q76Q = 0), for the above equation
to hold, we know 2 SF YFT has to be symmetric. This also proves that Kirchoff stress 7 = ag FT is symmetric
without needing to use conservation of angular momentum. Now we have

r=1T
oV . A,
awr P
OO RTQ" = QR(o)"

ov
QTa?RT = R(a—F)TQ

ie. QTa—‘PRT is symmetric.
In summary, QT 9 RT and 8‘1' RT have the same upper triangular part. QT 9ERT is symmetric. We further

denote this tensor w1th A = QT WRT = QT FTQ QT rQ. Therefore A is just 7 written in the Q
basis.

3 A curve in 3D

We can construct the upper triangular part of A w1th RT then fill the rest using symmetry of A.
Assuming

1
U = f(ri1) + zg(riy + ris) + h(raz, 723, 733),

2

then
@_ f/ g/I‘T
OR |0 P |’

T [T S dh
where r = (r12,713)", R = 0 R P =R
We can show o

fT11+91'1' g RY
A= TRT PRT

Here, we choose PR to be the dilational part of the Kirchoff stress from the 2 x 2 Stvk Hencky Drucker-
Prager. i.e., assuming we get some 7 after the return mapping of dry sand from an input F = R, we replace
the bottom right corner of A with pI, where p = tr(7)/2.



Under such a choice,
B f/rll + g/I'TI' g/rTRT
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Mohr friction criteria leads to the following maximization problem:

Maximize d”7n + c¢pn” mn over all possible n that is perpendicular to the fiber direction, with all d perpen-
dicular to n and has unit length.

ie.,

Maximize dTQAQ"n + c;nTQAQTn over all possible n that is perpendicular to the fiber direction, with
all d perpendicular to n and has unit length.

ie.,

Maximize d”An + ¢’ An over all possible n that is perpendicular to the fiber direction, with all d
perpendicular to n and has unit length, where n = Q”n and d = Q”d. Since in our discretization, the fiber
direction is q, therefore g7 n = 0, then we know n = (0, c, s) for some 6.

ie.,

Maximize d” An + cznT An over all possible n that is (0, ¢, s) over all §, with all d perpendicular to i and
has unit length.

Lagrangian multiplier can solve this problem and gives the maximum HRrH g+ cpp. If we choose g(z) = z,

then we have our yield surface Hf{rH + c¢pp < 0. The return mapping is then simply a scaling on r so that

the yield criteria is satisfied.

4 A surface in 3D

Surface is very similar to curve in our framework. With our codimensional discretization, we map the triangle
back to x-y plane. If the input 3D triangle at rest is A B C we can define D; =B — A and D, = C — A.
This forms an imaginary Ds, whose QR decomposition gives us the rotation from x-y plane of this triangle
Q, as well as the top part of Ry being the 2 x 2 version D,,,. The third column of Q is the rotated Dj3
where D3 = e3.

With these precomputations, for any triangle d;, ds in world space, we can construct the full F as

D71
F:[dl,dg,dg][ m 1].

In MPM, we have dj ™! = (I+AtVv)d%, with dJ = ¢3. Keep in mind that D,,, is upper triangular, therefore
D, ! is upper trlangular
Now do the thin QR decomposition

[dl, dz] = [Q17 Q2]R

where R is 2 x 2 upper.
If we construct q3 = q1 X g2, then

R (hs, hy>T]

[dl,d27d3] = [Q17Q27(l3] |:0T hz

where Qh := d3. Now we have constructed the (unique) QR decomposition of F as

R By, h T D=1 11 Ti2 T13
F = [q1,492,q3] [OT ( }Ly) ] [ m 1] =QR=Q T2 T23
N 733

We can see h = r3 = QTd;.



The previous lemma in curve still holds: QT WRT and 3 RT have the same upper triangular part.
QT 9¥RT is symmetric. We further denote thls tensor Wlth A = QT WRT — QT FTQ QT rQ.

Therefore A is just 7 written in the Q basis. We can construct the upper trlangular part of A with 8\1’ RT
then fill the rest using symmetry of A.

4.1 Surface elastoplasticity
Recall D3 = e3,

i1 Ti2 Ti13
F=Q T22 T23
33

Physically, the top left is in plane (x-y) deformation of the triangle, since

11 Ti2 Ti3
T22 T23| €3 =TI3,
33

we know r3 represents the deformation of D3. From h = r3 = QTd3, we can say |r3| is the length change,
r?5 + r2; is the shearing (or the deviation from being perpendicular to the x-y triangle plane). Note that
shearing also pernalizes length change.

From these, we can define

1
U = f(rss3) + 59(’”%3 + 7’%3) + h(r11, 712,721, T22),

then

where r = (r13,723)7, R = B{T 7“;3} P = %'

We can show o
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Mohr friction criteria leads to the following maximization problem:
Maximize d”mn + cyn”rn over all possible n that is perpendicular to the manifold plane, with all d
perpendicular to n and has unit length.
ie.,
Maximize dTQAQ”n + crnTQAQTn over all possible n that is perpendicular to the manifold plane, with
all d perpendicular to n and has unit length.
ie.,
Maximize d” An + cpn” An over all possible n that is perpendicular to the manifold plane, with all d
perpendicular to n and has unit length, where i = Q"n and d = Q”d.
n perpendicular to manifold plane means n = k(d; x dz) for some k (unit length constraint is extra). Recall

[d17 d2] = [qla q2]R7

where R is upper triangular 2 x 2, this means k(d; x d2) = 2(q1 X qg2) for some z. Therefore, n = +qs.
Therefore it = Q'n = +e3.

ie.,

Maximize d” An + cpn” An over i = +e3 , with all d = (c, s, 0) for some 6



The maximum is
+g'rs3lr| + cpfirss

Assume f(x) = 2k(1 — z)3 for z < 1, 0 otherwise. g(z) = yz. When r33 > 1, f = 0, the maximum is

1
3
7r33|r\

. In this case the return mapping is making r to be zero.
When rg3 < 1, the maximum is
:|:’y7‘33|1'| — CF]{J(T33 — 1)2’/‘33

. The yield surface is therefore
max(:t%r33|r| —cp(rss —1)%r33) <0

If r33 is negative (corresponding to inverted collision), the max should choose —7. The return mapping is
setting r to be 0.
Otherwise, try to scale r (when necessary) to satisfy

%|I‘| —cp(rss —1)2 <0

5 A curve in 2D

2D derivation follows 3D curve derivation: QT?)—%’RT and g—l‘l{RT have the same upper triangular part.
QT‘g—gRT is symmetric. We further denote this tensor with A := QT‘?)—%RT = QT‘?)—%FTQ = QTrQ.
Therefore A is just 7 written in the Q basis.

The energy choice is

B = () + 590%) + ),

then

T r -
where R= | 1 "12| p— 9k
0 29 oR

We can show

A — frri+g'ris g'riars

g'r12r22 h'rao

Mohr friction criteria leads to the following maximization problem:
Maximize d”7n + cyn?7n over all possible n that is perpendicular to the fiber direction, with all d perpen-
dicular to n and has unit length.
ie.,
Maximize d”QAQ™n + crnTQAQTn over all possible n that is perpendicular to the fiber direction, with
all d perpendicular to n and has unit length.
ie.,
Maximize d”An + cpn” An over all possible n that is perpendicular to the fiber direction, with all d
perpendicular to n and has unit length, where 1 = Q”n and d = Q”d. Since in our discretization, the fiber
direction is q, therefore g7 n = 0, then we know n = +(0, 1)
ie., ~ ~
Maximize d” Af + cpnT Afi over i = (0,+1) and d = (+1,0)
ie.,



Maximize d” An + cpn” Af over i = (0,41) and d = (+1,0)
The maximum is
+9'r12r22 + cph'rag
Assume g(z) = vz, h(z) = £5(1 — )3 for # < 1, 0 otherwise.
When 735 > 1, h = 0, the maximum is
|’77‘127‘22|7
the return mapping is setting r15 = 0.
When 795 < 1, the maximum is
£7|r12lros — ers(l — 192)%r02
The yield surface is therefore
max(i%vlg\rm —cp(1 —199)%rg) <0
If r95 < 0, the max should choose —%. The return ampping is setting r15 = 0.
Otherwise, 92 € [0, 1], try to scale ri2 to satisfy

g|7’12| —cp(1—12)*<0

6 Derivative of FF

E
In the paper we mention that i‘f is a third order tensor, and does not depend on X because FE is linear

in x;. Here we give the derivation of computing this derivative. We have by definition

d; (%) = Ximesh(p,8) ~ Xmesh(p,0) (2)
3 ~ ~ En
4z ,(%) = (V),d2; 3)
X, =Y Xiwj, (4)
i
NE(oy _ 4By -1
F, (x) = d,D, (5)
Plugging in
ol 3 3 ™ 5.
E n n . ’Lp n —1
By = Z Z(wi,mesh(nm = W] mesn(p,0) Xi 0Dy e + Z Z dp weXiaDp g
i \B=l1 =41 k=1
Differentiating we have
OFE Y 3 3 o
p,oe n n —1 ZIJ n
Oz Z(wi,mesh(nﬁ) ~ Wi mesh(p,0))9a¢ Dy ge + Z Z dp wi0ac Dy e
i¢ B=1 B=~y+1k=1

which doesn’t depend on x. Note we can think of the undeformed segment or triangle as being aligned with
the x-axis or xy-plane respectively. This will mean that the initial F is no longer I, but rather the rotation
which maps the axis aligned element to its initial position in space. This is not an issue as our elastic energy
density v is world space rotation invariant. However this allows us to assume that D, is block diagonal of
the form

D1 0 0
D,=|0 10
0 0 1
for segments and
Diyy D12 O
D,=| 0 Dy 0
0 0 1

for triangles. This saves memory for Dy, and simplifies computing D, L



7 Computation of Force on the Grid
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Pseudocode

Algorithm 1 Simulate

—_

o

>

10:
11:
12:

13:
14:

15:

1:
2:
3:

procedure TIME_STEP
TRANSFER_TO_GRID
GRID_STEP
TRANSFER_TO_PARTICLES
UPDATE_PARTICLE_STATE
PrLAsTICITY
procedure TRANSFER_TO_GRID
for all grid nodes i do
mi < Yo, wimy
v <——Z wimy (Vi + Cp(x; — x7))

procedure GRID_STEP

(vi) « (v}") + FORCE_INCREMENT((F}""))

(")« GRID_COLLISIONS({v?))
(VI < FricTION((F)1), (¥ — vi))

procedure TRANSFER_TO_PARTICLES
for all particles p of type (i) and (i) do

n+1 n+1
— E wzp i

for all partlcles p of type (#ii) do

n+1 n+1
< Z Vinesh(p,5)

s=0 )
for all particles p do
1 1 T
C”Jr — wa i (x - x,)

procedure UPDATE_PARTICLE_STATE
for all particles p of type (i) do

n+1 . wa Xn + At—n+1)
Vv, ZV?-H(VU)%)

7
FPrtl o (I+ AtVv,)FD"

for all particles p of type (i¢) do
xp > i (x7 + At

K3
for all particles p of type (#ii) do
+1 +1
x Z X heah(r.5)
Vv, Z V;H_l (Vwp)"

i
for =1 to v do
TE.n+1 n+1 n+1
dp,B A Xmesh(p,B) - Xmesh(p,o)

for § =y +1to3do

do it (T4 AtVv,)dE"
nE.n+1 TJEn+11y—1
F, +—d, D,

procedure PLASTICITY
for all particles p of type (i) and (ii7) do
FZntl « RETURN_MAPPING(FEn+1)




