Anisotropic elastoplasticity for cloth, knit and hair frictional contact supplementary technical document

Chenfanfu Jiang, Theodore Gast, Joseph Teran

1 QR differentiation

Here we discuss how to compute $\delta \mathbf{Q}$ and $\delta \mathbf{R}$ from \mathbf{F} and $\delta \mathbf{F}$. This is used for computing the linearized force in implicit time integration.

If $\mathbf{F} = \mathbf{Q}\mathbf{R}$ where \mathbf{Q} is orthonormal with $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$, and

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ & r_{22} & r_{23} \\ & & r_{33} \end{bmatrix}$$

is upper triangular, and we define the function $\Psi(\mathbf{F}) = \hat{\Psi}(\mathbf{R})$ then we have

$$\delta \mathbf{F} = \mathbf{Q} \delta \mathbf{R} + \delta \mathbf{Q} \mathbf{R}$$
$$\delta \Psi(\mathbf{F}) = \delta \hat{\Psi}(\mathbf{R})$$
$$\delta \mathbf{Q}^T \mathbf{Q} + \mathbf{Q}^T \delta \mathbf{Q} = \mathbf{0}$$
$$\delta \mathbf{R} \text{ is upper triangular}$$

$$\mathbf{Q}^{T} \delta \mathbf{F} = \delta \mathbf{R} + \mathbf{Q}^{T} \delta \mathbf{Q} \mathbf{R}$$
$$\mathbf{\Omega} = \mathbf{Q}^{T} \delta \mathbf{Q} = \begin{pmatrix} 0 & -\omega_{3} & \omega_{2} \\ \omega_{3} & 0 & -\omega_{1} \\ -\omega_{2} & \omega_{1} & 0 \end{pmatrix}$$
$$\mathbf{Q}^{T} \delta \mathbf{F} = \delta \mathbf{R} + \begin{pmatrix} 0 & -\omega_{3} & \omega_{2} \\ \omega_{3} & 0 & -\omega_{1} \\ -\omega_{2} & \omega_{1} & 0 \end{pmatrix} \mathbf{R}$$
$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} + \begin{pmatrix} 0 & -\omega_{3} & \omega_{2} \\ \omega_{3} & 0 & -\omega_{1} \\ -\omega_{2} & \omega_{1} & 0 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{pmatrix}$$

This implies

$$d = \omega_3 r_{11}$$

$$g = -\omega_2 r_{11}$$

$$h = -\omega_2 r_{12} + \omega_1 r_{22}$$

We can use these three equations to solve for $\omega_1, \omega_2, \omega_3$. After that, we can construct $\delta \mathbf{Q} = \mathbf{Q}\Omega$ and then $\delta \mathbf{R} = \mathbf{Q}^T \delta \mathbf{F} - \mathbf{Q}^T \delta \mathbf{Q} \mathbf{R}$.

The corresponding 2D result is

$$a = -\frac{(\mathbf{Q}^T \delta \mathbf{F})_{21}}{r_{11}}$$
$$\delta \mathbf{Q} = a \mathbf{Q} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$\delta \mathbf{R} = \mathbf{Q}^T \delta \mathbf{F} - \mathbf{Q}^T \delta \mathbf{Q} \mathbf{R}$$

2 Computing stress

$$\delta \Psi = \delta \Psi$$
$$\frac{\partial \Psi}{\partial \mathbf{F}} : \delta \mathbf{F} = \frac{\partial \hat{\Psi}}{\partial \mathbf{R}} : \delta \mathbf{R}$$
$$\frac{\partial \Psi}{\partial \mathbf{F}} : (\mathbf{Q}\delta \mathbf{R} + \delta \mathbf{Q}\mathbf{R}) = \frac{\partial \hat{\Psi}}{\partial \mathbf{R}} : \delta \mathbf{R}$$
$$\frac{\partial \Psi}{\partial \mathbf{F}} : (\mathbf{Q}\delta \mathbf{R}) + \frac{\partial \Psi}{\partial \mathbf{F}} : (\delta \mathbf{Q}\mathbf{R}) = \frac{\partial \hat{\Psi}}{\partial \mathbf{R}} : \delta \mathbf{R}$$
(1)

It can be shown that the above holds for any $\delta \mathbf{Q}$ and $\delta \mathbf{R}$ that satisfy $\delta \mathbf{Q}^T \mathbf{Q} + \mathbf{Q}^T \delta \mathbf{Q} = \mathbf{0}$ and $\delta \mathbf{R}$ being upper triangular. Specifically, it can be shown that given arbitrary $\delta \mathbf{Q}, \delta \mathbf{R}$ with $\delta \mathbf{Q}^T \mathbf{Q} + \mathbf{Q}^T \delta \mathbf{Q} = \mathbf{0}$ and $\delta \mathbf{R}$ upper triangular, $\exists \delta \mathbf{F}$ such that

$$\delta \mathbf{R} = \frac{\partial \mathbf{R}}{\partial \mathbf{F}}(\mathbf{F}) : \delta \mathbf{F}, \text{ and } \delta \mathbf{Q} = \frac{\partial \mathbf{Q}}{\partial \mathbf{F}}(\mathbf{F}) : \delta \mathbf{F}.$$

Using null $\left[\frac{\partial \mathbf{Q}}{\partial \mathbf{F}}(\mathbf{F})\right] = \operatorname{span} \{\mathbf{N}_1, \mathbf{N}_2, \mathbf{N}_3, \mathbf{N}_4, \mathbf{N}_5, \mathbf{N}_6\}$, for all upper triangular $\delta \mathbf{R}$, $\exists \delta \mathbf{F}_Q \in \operatorname{null}\left[\frac{\partial \mathbf{Q}}{\partial \mathbf{F}}(\mathbf{F})\right]^{\perp}$ such that $\delta \mathbf{Q} = \frac{\partial \mathbf{Q}}{\partial \mathbf{F}}(\mathbf{F}) : \delta \mathbf{F}_Q = \frac{\partial \mathbf{Q}}{\partial \mathbf{F}}(\mathbf{F}) : \delta(\mathbf{F}_Q + \mathbf{F}_R) \ \forall \mathbf{F}_R \in \operatorname{null}\left[\frac{\partial \mathbf{Q}}{\partial \mathbf{F}}(\mathbf{F})\right]$. Further, it can be shown that $\mathbf{Q}\delta\mathbf{R} + \delta\mathbf{Q}\mathbf{R} - \delta\mathbf{F}_Q \in \operatorname{null}\left[\frac{\partial \mathbf{Q}}{\partial \mathbf{F}}(\mathbf{F})\right]$ and with $\delta\mathbf{F}_R = \mathbf{Q}\delta\mathbf{R} + \delta\mathbf{Q}\mathbf{R} - \delta\mathbf{F}_Q, \ \delta\mathbf{F} = \delta\mathbf{F}_Q + \delta\mathbf{F}_R$ produces

$$\delta \mathbf{R} = \frac{\partial \mathbf{R}}{\partial \mathbf{F}}(\mathbf{F}) : \delta \mathbf{F}, \text{ and } \delta \mathbf{Q} = \frac{\partial \mathbf{Q}}{\partial \mathbf{F}}(\mathbf{F}) : \delta \mathbf{F}.$$

If we choose $\delta \mathbf{Q} = \mathbf{0}$ in Equation (1), then

$$\frac{\partial \Psi}{\partial \mathbf{F}} : (\mathbf{Q} \delta \mathbf{R}) = \frac{\partial \Psi}{\partial \mathbf{R}} : \delta \mathbf{R}$$
$$(\mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}}) : \delta \mathbf{R} = \frac{\partial \hat{\Psi}}{\partial \mathbf{R}} : \delta \mathbf{R}$$

Recall $\delta \mathbf{R}$ is any upper triangular matrix, therefore $(\mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}})$ and $\frac{\partial \hat{\Psi}}{\partial \mathbf{R}}$ have the same upper triangular part. Further more, since \mathbf{R}^T is lower triangular, it is easy to show (entry wise provable) that $\mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^T$ and $\frac{\partial \hat{\Psi}}{\partial \mathbf{R}} \mathbf{R}^T$ have the same upper triangular part. If we choose $\delta \mathbf{R} = \mathbf{0}$ in Equation (1), then

$$\begin{aligned} \frac{\partial \Psi}{\partial \mathbf{F}} : (\delta \mathbf{Q} \mathbf{R}) &= \mathbf{0} \\ (\frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^T) : \delta \mathbf{Q} &= \mathbf{0} \\ (\frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^T) : (\delta \mathbf{Q} \mathbf{Q}^T \mathbf{Q}) &= \mathbf{0} \\ (\frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^T \mathbf{Q}^T) : (\delta \mathbf{Q} \mathbf{Q}^T) &= \mathbf{0} \\ (\frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{F}^T) : (\delta \mathbf{Q} \mathbf{Q}^T) &= \mathbf{0} \end{aligned}$$

Since $\delta \mathbf{Q} \mathbf{Q}^T$ is an arbitrary skew symmetric matrix (due to $\delta \mathbf{Q}^T \mathbf{Q} + \mathbf{Q}^T \delta \mathbf{Q} = \mathbf{0}$), for the above equation to hold, we know $\frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{F}^T$ has to be symmetric. This also proves that Kirchoff stress $\tau = \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{F}^T$ is symmetric without needing to use conservation of angular momentum. Now we have

$$\tau = \tau^{T}$$
$$\frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{F}^{T} = \mathbf{F} (\frac{\partial \Psi}{\partial \mathbf{F}})^{T}$$
$$\frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^{T} \mathbf{Q}^{T} = \mathbf{Q} \mathbf{R} (\frac{\partial \Psi}{\partial \mathbf{F}})^{T}$$
$$\mathbf{Q}^{T} \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^{T} = \mathbf{R} (\frac{\partial \Psi}{\partial \mathbf{F}})^{T} \mathbf{Q}$$

i.e., $\mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^T$ is symmetric.

In summary, $\mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^T$ and $\frac{\partial \Psi}{\partial \mathbf{R}} \mathbf{R}^T$ have the same upper triangular part. $\mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^T$ is symmetric. We further denote this tensor with $\mathbf{A} := \mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^T = \mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{F}^T \mathbf{Q} = \mathbf{Q}^T \tau \mathbf{Q}$. Therefore \mathbf{A} is just τ written in the \mathbf{Q} basis.

3 A curve in 3D

We can construct the upper triangular part of \mathbf{A} with $\frac{\partial \hat{\Psi}}{\partial \mathbf{R}} \mathbf{R}^T$, then fill the rest using symmetry of \mathbf{A} . Assuming

$$\hat{\Psi} = f(r_{11}) + \frac{1}{2}g(r_{12}^2 + r_{13}^2) + h(r_{22}, r_{23}, r_{33}),$$

then

$$\frac{\partial \hat{\Psi}}{\partial \mathbf{R}} = \begin{bmatrix} f' & g' \mathbf{r}^T \\ \mathbf{0} & \hat{\mathbf{P}} \end{bmatrix},$$

where $\mathbf{r} = (r_{12}, r_{13})^T$, $\mathbf{R} = \begin{bmatrix} r_{11} & \mathbf{r}^T \\ \mathbf{0} & \hat{\mathbf{R}} \end{bmatrix}$, $\hat{\mathbf{P}} = \frac{\partial h}{\partial \hat{\mathbf{R}}}$. We can show $\mathbf{A} = \begin{bmatrix} f'r_{11} + \mathbf{r}^T \\ \mathbf{R} \end{bmatrix}$

$$\mathbf{A} = \begin{bmatrix} f'r_{11} + g'\mathbf{r}^T\mathbf{r} & g'\mathbf{r}^T\hat{\mathbf{R}}^T \\ g'\mathbf{r}^T\hat{\mathbf{R}}^T & \hat{\mathbf{P}}\hat{\mathbf{R}}^T \end{bmatrix}$$

Here, we choose $\hat{\mathbf{P}}\hat{\mathbf{R}}^T$ to be the dilational part of the Kirchoff stress from the 2 × 2 Stvk Hencky Drucker-Prager. i.e., assuming we get some $\hat{\tau}$ after the return mapping of dry sand from an input $\mathbf{F} = \hat{\mathbf{R}}$, we replace the bottom right corner of \mathbf{A} with $p\mathbf{I}$, where $p = tr(\hat{\tau})/2$. Under such a choice,

$$\mathbf{A} = \begin{bmatrix} f'r_{11} + g'\mathbf{r}^T\mathbf{r} & g'\mathbf{r}^T\hat{\mathbf{R}}^T \\ g'\mathbf{r}^T\hat{\mathbf{R}}^T & p\mathbf{I} \end{bmatrix}.$$

Mohr friction criteria leads to the following maximization problem:

Maximize $\mathbf{d}^T \tau \mathbf{n} + c_F \mathbf{n}^T \tau \mathbf{n}$ over all possible \mathbf{n} that is perpendicular to the fiber direction, with all \mathbf{d} perpendicular to \mathbf{n} and has unit length.

i.e.,

Maximize $\mathbf{d}^T \mathbf{Q} \mathbf{A} \mathbf{Q}^T \mathbf{n} + c_F \mathbf{n}^T \mathbf{Q} \mathbf{A} \mathbf{Q}^T \mathbf{n}$ over all possible **n** that is perpendicular to the fiber direction, with all **d** perpendicular to **n** and has unit length.

Maximize $\tilde{\mathbf{d}}^T \mathbf{A} \tilde{\mathbf{n}} + c_F \tilde{\mathbf{n}}^T \mathbf{A} \tilde{\mathbf{n}}$ over all possible **n** that is perpendicular to the fiber direction, with all **d** perpendicular to **n** and has unit length, where $\tilde{\mathbf{n}} = \mathbf{Q}^T \mathbf{n}$ and $\tilde{\mathbf{d}} = \mathbf{Q}^T \mathbf{d}$. Since in our discretization, the fiber direction is \mathbf{q}_1 , therefore $\mathbf{q}_1^T \mathbf{n} = 0$, then we know $\tilde{\mathbf{n}} = (0, c, s)$ for some θ .

Maximize $\tilde{\mathbf{d}}^T \mathbf{A} \tilde{\mathbf{n}} + c_F \tilde{\mathbf{n}}^T \mathbf{A} \tilde{\mathbf{n}}$ over all possible **n** that is (0, c, s) over all θ , with all $\tilde{\mathbf{d}}$ perpendicular to $\tilde{\mathbf{n}}$ and has unit length.

Lagrangian multiplier can solve this problem and gives the maximum $\left\|\hat{\mathbf{Rr}}\right\| g' + c_F p$. If we choose g(x) = x,

then we have our yield surface $\|\hat{\mathbf{R}}\mathbf{r}\| + c_F p < 0$. The return mapping is then simply a scaling on \mathbf{r} so that the yield criteria is satisfied.

4 A surface in 3D

Surface is very similar to curve in our framework. With our codimensional discretization, we map the triangle back to x-y plane. If the input 3D triangle at rest is $\hat{\mathbf{A}}, \hat{\mathbf{B}}, \hat{\mathbf{C}}$, we can define $\hat{\mathbf{D}}_1 = \hat{\mathbf{B}} - \hat{\mathbf{A}}$ and $\hat{\mathbf{D}}_2 = \hat{\mathbf{C}} - \hat{\mathbf{A}}$. This forms an imaginary $\hat{\mathbf{D}}_s$, whose QR decomposition gives us the rotation from x-y plane of this triangle $\hat{\mathbf{Q}}$, as well as the top part of $\hat{\mathbf{R}}_{3\times 2}$ being the 2 × 2 version \mathbf{D}_m . The third column of $\hat{\mathbf{Q}}$ is the rotated \mathbf{D}_3 where $\mathbf{D}_3 = \mathbf{e}_3$.

With these precomputations, for any triangle d_1, d_2 in world space, we can construct the full F as

$$\mathbf{F} = \begin{bmatrix} \mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3 \end{bmatrix} \begin{bmatrix} \mathbf{D}_m^{-1} & \\ & 1 \end{bmatrix}.$$

In MPM, we have $\mathbf{d}_3^{n+1} = (\mathbf{I} + \Delta t \nabla \mathbf{v}) \mathbf{d}_3^n$, with $\mathbf{d}_3^0 = \hat{\mathbf{q}}_3$. Keep in mind that \mathbf{D}_m is upper triangular, therefore \mathbf{D}_m^{-1} is upper triangular.

Now do the thin QR decomposition

$$[\mathbf{d}_1, \mathbf{d}_2] = [\mathbf{q}_1, \mathbf{q}_2] \mathbf{\hat{R}}$$

where $\mathbf{\hat{R}}$ is 2 × 2 upper. If we construct $\mathbf{q}_3 = \mathbf{q}_1 \times \mathbf{q}_2$, then

$$\begin{bmatrix} \mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3 \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{R}} & (h_x, h_y)^T \\ \mathbf{0}^T & h_z \end{bmatrix}$$

where $\mathbf{Qh} := \mathbf{d}_3$. Now we have constructed the (unique) QR decomposition of \mathbf{F} as

$$\mathbf{F} = [\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3] \begin{bmatrix} \tilde{\mathbf{R}} & (h_x, h_y)^T \\ \mathbf{0}^T & h_z \end{bmatrix} \begin{bmatrix} \mathbf{D}_m^{-1} & \\ & 1 \end{bmatrix} := \mathbf{Q}\mathbf{R} = \mathbf{Q} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ & r_{22} & r_{23} \\ & & r_{33} \end{bmatrix}$$

We can see $\mathbf{h} = \mathbf{r}_3 = \mathbf{Q}^T \mathbf{d}_3$.

The previous lemma in curve still holds: $\mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^T$ and $\frac{\partial \hat{\Psi}}{\partial \mathbf{R}} \mathbf{R}^T$ have the same upper triangular part. $\mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^T$ is symmetric. We further denote this tensor with $\mathbf{A} := \mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^T = \mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{F}^T \mathbf{Q} = \mathbf{Q}^T \tau \mathbf{Q}$. Therefore \mathbf{A} is just τ written in the \mathbf{Q} basis. We can construct the upper triangular part of \mathbf{A} with $\frac{\partial \hat{\Psi}}{\partial \mathbf{R}} \mathbf{R}^T$, then fill the rest using symmetry of \mathbf{A} .

4.1 Surface elastoplasticity

Recall $\mathbf{D}_3 = \mathbf{e}_3$,

$$\mathbf{F} = \mathbf{Q} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ & r_{22} & r_{23} \\ & & r_{33} \end{bmatrix}$$

Physically, the top left is in plane (x-y) deformation of the triangle, since

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ & r_{22} & r_{23} \\ & & & r_{33} \end{bmatrix} \mathbf{e}_3 = \mathbf{r}_3,$$

we know \mathbf{r}_3 represents the deformation of \mathbf{D}_3 . From $\mathbf{h} = \mathbf{r}_3 = \mathbf{Q}^T \mathbf{d}_3$, we can say $|\mathbf{r}_3|$ is the length change, $r_{13}^2 + r_{23}^2$ is the shearing (or the deviation from being perpendicular to the x-y triangle plane). Note that shearing also pernalizes length change.

From these, we can define

$$\hat{\Psi} = f(r_{33}) + \frac{1}{2}g(r_{13}^2 + r_{23}^2) + h(r_{11}, r_{12}, r_{21}, r_{22})$$

then

$$\frac{\partial \hat{\Psi}}{\partial \mathbf{R}} = \begin{bmatrix} \hat{\mathbf{P}} & g'\mathbf{r} \\ \mathbf{0}^T & f' \end{bmatrix}$$

where $\mathbf{r} = (r_{13}, r_{23})^T$, $\mathbf{R} = \begin{bmatrix} \hat{\mathbf{R}} & \mathbf{r} \\ \mathbf{0}^T & r_{33} \end{bmatrix}$, $\hat{\mathbf{P}} = \frac{\partial h}{\partial \hat{\mathbf{R}}}$. We can show

$$\mathbf{A} = \begin{bmatrix} \hat{\mathbf{P}}\hat{\mathbf{R}}^T + g'\mathbf{r}\mathbf{r}^T & g'r_{33}\mathbf{r} \\ g'r_{33}\mathbf{r}^T & f'r_{33} \end{bmatrix}$$

Mohr friction criteria leads to the following maximization problem:

Maximize $\mathbf{d}^T \tau \mathbf{n} + c_F \mathbf{n}^T \tau \mathbf{n}$ over all possible \mathbf{n} that is perpendicular to the manifold plane, with all \mathbf{d} perpendicular to \mathbf{n} and has unit length.

i.e.,

Maximize $\mathbf{d}^T \mathbf{Q} \mathbf{A} \mathbf{Q}^T \mathbf{n} + c_F \mathbf{n}^T \mathbf{Q} \mathbf{A} \mathbf{Q}^T \mathbf{n}$ over all possible **n** that is perpendicular to the manifold plane, with all **d** perpendicular to **n** and has unit length.

i.e.,

Maximize $\tilde{\mathbf{d}}^T \mathbf{A} \tilde{\mathbf{n}} + c_F \tilde{\mathbf{n}}^T \mathbf{A} \tilde{\mathbf{n}}$ over all possible **n** that is perpendicular to the manifold plane, with all **d** perpendicular to **n** and has unit length, where $\tilde{\mathbf{n}} = \mathbf{Q}^T \mathbf{n}$ and $\tilde{\mathbf{d}} = \mathbf{Q}^T \mathbf{d}$.

n perpendicular to manifold plane means $\mathbf{n} = k(\mathbf{d}_1 \times \mathbf{d}_2)$ for some k (unit length constraint is extra). Recall

$$[\mathbf{d}_1, \mathbf{d}_2] = [\mathbf{q}_1, \mathbf{q}_2]\mathbf{R},$$

where $\tilde{\mathbf{R}}$ is upper triangular 2 × 2, this means $k(\mathbf{d}_1 \times \mathbf{d}_2) = z(\mathbf{q}_1 \times \mathbf{q}_2)$ for some z. Therefore, $\mathbf{n} = \pm \mathbf{q}_3$. Therefore $\tilde{\mathbf{n}} = \mathbf{Q}^T \mathbf{n} = \pm \mathbf{e}_3$.

i.e.,

Maximize $\tilde{\mathbf{d}}^T \mathbf{A} \tilde{\mathbf{n}} + c_F \tilde{\mathbf{n}}^T \mathbf{A} \tilde{\mathbf{n}}$ over $\tilde{\mathbf{n}} = \pm \mathbf{e}_3$, with all $\tilde{\mathbf{d}} = (c, s, 0)$ for some θ

The maximum is

$$\pm g' r_{33} |\mathbf{r}| + c_F f' r_{33}$$

Assume $f(x) = \frac{1}{3}k(1-x)^3$ for $x \le 1, 0$ otherwise. $g(x) = \gamma x$. When $r_{33} > 1, f = 0$, the maximum is

 $\gamma r_{33} |\mathbf{r}|$

. In this case the return mapping is making **r** to be zero. When $r_{33} < 1$, the maximum is

$$\pm \gamma r_{33} |\mathbf{r}| - c_F k (r_{33} - 1)^2 r_{33}$$

. The yield surface is therefore

$$max(\pm\frac{\gamma}{k}r_{33}|\mathbf{r}| - c_F(r_{33} - 1)^2 r_{33}) \le 0$$

If r_{33} is negative (corresponding to inverted collision), the max should choose $-\frac{\gamma}{k}$. The return mapping is setting **r** to be **0**.

Otherwise, try to scale \mathbf{r} (when necessary) to satisfy

$$\frac{\gamma}{k}|\mathbf{r}| - c_F(r_{33} - 1)^2 \le 0$$

5 A curve in 2D

2D derivation follows 3D curve derivation: $\mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^T$ and $\frac{\partial \hat{\Psi}}{\partial \mathbf{R}} \mathbf{R}^T$ have the same upper triangular part. $\mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^T$ is symmetric. We further denote this tensor with $\mathbf{A} := \mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{R}^T = \mathbf{Q}^T \frac{\partial \Psi}{\partial \mathbf{F}} \mathbf{F}^T \mathbf{Q} = \mathbf{Q}^T \tau \mathbf{Q}$. Therefore \mathbf{A} is just τ written in the \mathbf{Q} basis.

The energy choice is

$$\hat{\Psi} = f(r_{11}) + \frac{1}{2}g(r_{12}^2) + h(r_{22})$$

then

$$\frac{\partial \hat{\Psi}}{\partial \mathbf{R}} = \begin{bmatrix} f' & g' r_{12} \\ 0 & h' \end{bmatrix},$$

where $\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{bmatrix}, \hat{\mathbf{P}} = \frac{\partial h}{\partial \hat{\mathbf{R}}}.$ We can show

$$\mathbf{A} = \begin{bmatrix} f'r_{11} + g'r_{12}^2 & g'r_{12}r_{22} \\ g'r_{12}r_{22} & h'r_{22} \end{bmatrix}$$

Mohr friction criteria leads to the following maximization problem:

Maximize $\mathbf{d}^T \tau \mathbf{n} + c_F \mathbf{n}^T \tau \mathbf{n}$ over all possible \mathbf{n} that is perpendicular to the fiber direction, with all \mathbf{d} perpendicular to \mathbf{n} and has unit length.

i.e.,

Maximize $\mathbf{d}^T \mathbf{Q} \mathbf{A} \mathbf{Q}^T \mathbf{n} + c_F \mathbf{n}^T \mathbf{Q} \mathbf{A} \mathbf{Q}^T \mathbf{n}$ over all possible **n** that is perpendicular to the fiber direction, with all **d** perpendicular to **n** and has unit length. i.e.,

Maximize $\tilde{\mathbf{d}}^T \mathbf{A} \tilde{\mathbf{n}} + c_F \tilde{\mathbf{n}}^T \mathbf{A} \tilde{\mathbf{n}}$ over all possible **n** that is perpendicular to the fiber direction, with all **d** perpendicular to **n** and has unit length, where $\tilde{\mathbf{n}} = \mathbf{Q}^T \mathbf{n}$ and $\tilde{\mathbf{d}} = \mathbf{Q}^T \mathbf{d}$. Since in our discretization, the fiber direction is \mathbf{q}_1 , therefore $\mathbf{q}_1^T \mathbf{n} = 0$, then we know $\tilde{\mathbf{n}} = \pm (0, 1)$

i.e., Maximize $\tilde{\mathbf{d}}^T \mathbf{A} \tilde{\mathbf{n}} + c_F \tilde{\mathbf{n}}^T \mathbf{A} \tilde{\mathbf{n}}$ over $\tilde{\mathbf{n}} = (0, \pm 1)$ and $\tilde{\mathbf{d}} = (\pm 1, 0)$ i.e., Maximize $\tilde{\mathbf{d}}^T \mathbf{A} \tilde{\mathbf{n}} + c_F \tilde{\mathbf{n}}^T \mathbf{A} \tilde{\mathbf{n}}$ over $\tilde{\mathbf{n}} = (0, \pm 1)$ and $\tilde{\mathbf{d}} = (\pm 1, 0)$ The maximum is

 $\pm g' r_{12} r_{22} + c_F h' r_{22}$

Assume $g(x) = \gamma x$, $h(x) = \frac{1}{3}s(1-x)^3$ for $x \le 1, 0$ otherwise. When $r_{22} > 1$, h = 0, the maximum is

 $|\gamma r_{12}r_{22}|,$

the return mapping is setting $r_{12} = 0$. When $r_{22} < 1$, the maximum is

$$\pm \gamma |r_{12}| r_{22} - c_F s (1 - r_{22})^2 r_{22}$$

The yield surface is therefore

$$max(\pm \frac{\gamma}{s}|r_{12}|r_{22} - c_F(1 - r_{22})^2 r_{22}) \le 0$$

If $r_{22} < 0$, the max should choose $-\frac{\gamma}{s}$. The return ampping is setting $r_{12} = 0$. Otherwise, $r_{22} \in [0, 1]$, try to scale r_{12} to satisfy

$$\frac{\gamma}{s}|r_{12}| - c_F(1 - r_{22})^2 \le 0$$

6 Derivative of $\hat{\mathbf{F}}^E$

In the paper we mention that $\frac{\partial \hat{\mathbf{F}}_p^E}{\partial \mathbf{x}_i}$ is a third order tensor, and does not depend on $\hat{\mathbf{x}}$ because $\hat{\mathbf{F}}_p^E$ is linear in $\hat{\mathbf{x}}_i$. Here we give the derivation of computing this derivative. We have by definition

$$\mathbf{\hat{d}}_{p,\beta}^{E}(\hat{\mathbf{x}}) = \hat{\mathbf{x}}_{\text{mesh}(p,\beta)} - \hat{\mathbf{x}}_{\text{mesh}(p,0)}$$
(2)

$$\hat{\mathbf{d}}_{p,\beta}^{E}(\hat{\mathbf{x}}) = (\nabla \hat{\mathbf{x}})_{p} \mathbf{d}_{p,\beta}^{E,n}$$
(3)

$$\hat{\mathbf{x}}_q = \sum_i \hat{\mathbf{x}}_i w_{iq}^n \tag{4}$$

$$\hat{\mathbf{F}}_{p}^{E}(\hat{\mathbf{x}}) = \hat{\mathbf{d}}_{p}^{E} \mathbf{D}_{p}^{-1}$$
(5)

Plugging in

$$\hat{F}_{p,\alpha\epsilon}^{E} = \sum_{i} \left(\sum_{\beta=1}^{\gamma} (w_{i,\text{mesh}(p,\beta)}^{n} - w_{i,\text{mesh}(p,0)}^{n}) \mathbf{x}_{i,\alpha} D_{p,\beta\epsilon}^{-1} + \sum_{\beta=\gamma+1}^{3} \sum_{\kappa=1}^{3} \frac{\partial w_{ip}^{n}}{\partial x_{\kappa}} d_{p,\kappa\beta}^{E,n} \mathbf{x}_{i,\alpha} D_{p,\beta\epsilon}^{-1} \right)$$

Differentiating we have

$$\frac{\partial \hat{F}_{p,\alpha\epsilon}^E}{\partial x_{i\zeta}} = \sum_{\beta=1}^{\gamma} (w_{i,\text{mesh}(p,\beta)}^n - w_{i,\text{mesh}(p,0)}^n) \delta_{\alpha\zeta} D_{p,\beta\epsilon}^{-1} + \sum_{\beta=\gamma+1}^{3} \sum_{\kappa=1}^{3} \frac{\partial w_{ip}^n}{\partial x_{\kappa}} d_{p,\kappa\beta}^{E,n} \delta_{\alpha\zeta} D_{p,\beta\epsilon}^{-1}$$

which doesn't depend on $\hat{\mathbf{x}}$. Note we can think of the undeformed segment or triangle as being aligned with the *x*-axis or *xy*-plane respectively. This will mean that the initial \mathbf{F} is no longer \mathbf{I} , but rather the rotation which maps the axis aligned element to its initial position in space. This is not an issue as our elastic energy density ψ is world space rotation invariant. However this allows us to assume that \mathbf{D}_p is block diagonal of the form

$$\mathbf{D}_{p} = \begin{bmatrix} D_{11} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{D}_{p} = \begin{bmatrix} D_{11} & D_{12} & 0\\ 0 & D_{22} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

for segments and

for triangles. This saves memory for
$$\mathbf{D}_p,$$
 and simplifies computing $\mathbf{D}_p^{-1}.$

7 Computation of Force on the Grid

$$\mathbf{f}_{i}^{(iii)}(\hat{\mathbf{x}}) = -\sum_{p \in \mathcal{I}^{(iii)}} V_{p}^{0} \frac{\partial \psi}{\partial \mathbf{F}} : \frac{\partial \hat{\mathbf{F}}_{p}^{E}}{\partial \mathbf{x}_{i}}$$
(6)

$$\mathbf{f}_{i\zeta}^{(iii)}(\hat{\mathbf{x}}) = -\sum_{p \in \mathcal{I}^{(iii)}} \sum_{\alpha} \sum_{\epsilon} V_p^0 \frac{\partial \psi}{\partial F_{\alpha\epsilon}} \frac{\partial \hat{F}_{p,\alpha\epsilon}^E}{\partial x_{i\zeta}}$$
(7)

$$\mathbf{f}_{i\zeta}^{(iii)}(\hat{\mathbf{x}}) = -\sum_{p \in \mathcal{I}^{(iii)}} \sum_{\epsilon} V_p^0 \frac{\partial \psi}{\partial F_{\zeta\epsilon}} \bigg(\sum_{\beta=1}^{\gamma} (w_{i,\text{mesh}(p,\beta)}^n - w_{i,\text{mesh}(p,0)}^n) D_{p,\beta\epsilon}^{-1} +$$
(8)

$$\sum_{\beta=\gamma+1}^{3} \sum_{\kappa=1}^{3} \frac{\partial w_{ip}^{n}}{\partial x_{\kappa}} d_{p,\kappa\beta}^{E,n} D_{p,\beta\epsilon}^{-1} \right)$$
(9)

$$\mathbf{f}_{i\zeta}^{(iii)}(\hat{\mathbf{x}}) = -\sum_{p \in \mathcal{I}^{(iii)}} \sum_{\epsilon} V_p^0 \frac{\partial \psi}{\partial F_{\zeta\epsilon}} \bigg(\sum_{\beta=1}^{\gamma} (w_{i,\text{mesh}(p,\beta)}^n - w_{i,\text{mesh}(p,0)}^n) D_{p,\beta\epsilon}^{-1} +$$
(10)

$$\sum_{\beta=\gamma+1}^{3} \sum_{\kappa=1}^{3} \frac{\partial w_{ip}^{n}}{\partial x_{\kappa}} d_{p,\kappa\beta}^{E,n} \delta_{\beta\epsilon} \right)$$
(11)

Define

$$\mathbf{f}_{q\zeta}^{(ii)}(\hat{\mathbf{x}}) = -\sum_{p \in \mathcal{I}^{(iii)}} \sum_{\epsilon} V_p^0 \frac{\partial \psi}{\partial F_{\zeta\epsilon}} \sum_{\beta=1}^{\gamma} (\delta_{q,\mathrm{mesh}(p,\beta)} - \delta_{q,\mathrm{mesh}(p,0)}) D_{p,\beta\epsilon}^{-1}$$
(12)

$$= -\sum_{p \in \mathcal{I}^{(iii)}} \sum_{\epsilon=1}^{\gamma} V_p^0 \frac{\partial \psi}{\partial F_{\zeta\epsilon}} \sum_{\beta=1}^{\gamma} (\delta_{q, \operatorname{mesh}(p,\beta)} - \delta_{q, \operatorname{mesh}(p,0)}) D_{p,\beta\epsilon}^{-1}$$
(13)

Then

$$\mathbf{f}_{i\zeta}^{(iii)}(\hat{\mathbf{x}}) = \sum_{p \in \mathcal{I}^{(ii)}} \mathbf{f}_{q\zeta}^{(ii)}(\hat{\mathbf{x}}) w_{ip}^{n} - \sum_{p \in \mathcal{I}^{(iii)}} \sum_{\epsilon} V_{p}^{0} \frac{\partial \psi}{\partial F_{\zeta\epsilon}} \sum_{\beta = \gamma+1}^{3} \sum_{\kappa=1}^{3} \frac{\partial w_{ip}^{n}}{\partial x_{\kappa}} d_{p,\kappa\beta}^{E,n} \delta_{\beta\epsilon}$$
(14)

$$\mathbf{f}_{i\zeta}^{(iii)}(\hat{\mathbf{x}}) = \sum_{p \in \mathcal{I}^{(ii)}} \mathbf{f}_{q\zeta}^{(ii)}(\hat{\mathbf{x}}) w_{ip}^n - \sum_{p \in \mathcal{I}^{(iii)}} \sum_{\epsilon=\gamma+1}^3 V_p^0 \frac{\partial \psi}{\partial F_{\zeta\epsilon}} \sum_{\kappa=1}^3 \frac{\partial w_{ip}^n}{\partial x_\kappa} d_{p,\kappa\epsilon}^{E,n}$$
(15)

8 Pseudocode

Algorithm 1 Simulate 1: procedure TIME_STEP 2: TRANSFER_TO_GRID 3: GRID_STEP TRANSFER_TO_PARTICLES 4: UPDATE_PARTICLE_STATE 5: 6: PLASTICITY procedure TRANSFER_TO_GRID 1: 2: for all grid nodes *i* do
$$\begin{split} & m_i^n \leftarrow \sum_p w_{ip}^n m_p \\ & \mathbf{v}_i^n \leftarrow \frac{1}{m_i^n} \sum_p w_{ip}^n m_p \big(\mathbf{v}_p^n + \mathbf{C}_p^n (\mathbf{x}_i - \mathbf{x}_p^n) \big) \end{split}$$
3: 4: procedure GRID_STEP 1: $\begin{array}{l} \langle \mathbf{v}_{i}^{\star} \rangle \leftarrow \langle \mathbf{v}_{i}^{n} \rangle + \text{Force_increment}(\langle \mathbf{F}_{p}^{E,n} \rangle) \\ \langle \overline{\mathbf{v}}_{i}^{n+1} \rangle \leftarrow \text{Grid_collisions}(\langle \mathbf{v}_{i}^{\star} \rangle) \\ \langle \widetilde{\mathbf{v}}_{i}^{n+1} \rangle \leftarrow \text{Friction}(\langle \overline{\mathbf{v}}_{i}^{n+1} \rangle, \langle \overline{\mathbf{v}}_{i}^{n+1} - \mathbf{v}_{i}^{\star} \rangle) \end{array}$ 2: 3: 4: procedure TRANSFER_TO_PARTICLES 1:for all particles p of type (i) and (ii) do 2: $\mathbf{v}_p^{n+1} \leftarrow \sum_i w_{ip}^n \tilde{\mathbf{v}}_i^{n+1}$ 3: for all particles p of type (*iii*) do 4: $\mathbf{v}_p^{n+1} \leftarrow \sum_{\beta=0}^{\gamma} \frac{1}{\gamma} \mathbf{v}_{\mathrm{mesh}(p,\beta)}^{n+1}$ 5: $\begin{array}{l} \textbf{for all particles } p \ \textbf{do} \\ \mathbf{C}_p^{n+1} \leftarrow \sum_i w_{ip}^n \tilde{\mathbf{v}}_i^{n+1} (\mathbf{x}_i - \mathbf{x}_p^n)^T \end{array}$ 6: 7: 1: procedure UPDATE_PARTICLE_STATE for all particles p of type (i) do $\mathbf{x}_{p}^{n+1} \leftarrow \sum_{i} w_{ip}^{n} (\mathbf{x}_{i}^{n} + \Delta t \overline{\mathbf{v}}_{i}^{n+1})$ $\nabla \mathbf{v}_{p} \leftarrow \sum_{i} \overline{\mathbf{v}}_{i}^{n+1} (\nabla w_{ip}^{n})^{T}$ 2: 3: 4: $\hat{\mathbf{F}}_{p}^{E,n+1} \leftarrow (\mathbf{I} + \Delta t \nabla \mathbf{v}_{p}) \mathbf{F}_{p}^{E,n}$ 5: for all particles p of type (ii) do $\mathbf{x}_p^{n+1} \leftarrow \sum_i w_{ip}^n(\mathbf{x}_i^n + \Delta t \overline{\mathbf{v}}_i^{n+1})$ 6: 7: 8: for all particles p of type (iii) do $\mathbf{x}_p^{n+1} \leftarrow \sum_{\beta=0}^{\gamma} \frac{1}{\gamma} \mathbf{x}_{\operatorname{mesh}(p,\beta)}^{n+1}$ 9: $\nabla \mathbf{v}_p \leftarrow \sum \overline{\mathbf{v}}_i^{n+1} (\nabla w_{ip}^n)^T$ 10: $\begin{array}{l} \mathbf{for} \ \beta = 1 \ \mathbf{to} \ \gamma \ \mathbf{do} \\ \mathbf{\hat{d}}_{n.\beta}^{E,n+1} \leftarrow \mathbf{x}_{\mathrm{mesh}(p,\beta)}^{n+1} - \mathbf{x}_{\mathrm{mesh}(p,0)}^{n+1} \end{array}$ 11:12: $\begin{aligned} & \mathbf{for} \ \beta = \gamma + 1 \ \text{to} \ 3 \ \mathbf{do} \\ & \hat{\mathbf{d}}_{p,\beta}^{E,n+1} \leftarrow (\mathbf{I} + \Delta t \nabla \mathbf{v}_p) \mathbf{d}_p^{E,n} \\ & \hat{\mathbf{F}}_p^{E,n+1} \leftarrow \hat{\mathbf{d}}_p^{E,n+1} \mathbf{D}_p^{-1} \end{aligned}$ 13:14: 15:procedure **PLASTICITY** 1: 9 for all particles p of type (i) and (iii) do $\mathbf{F}_{p}^{E,n+1} \leftarrow \operatorname{RETURN_MAPPING}(\hat{\mathbf{F}}_{p}^{E,n+1})$ 2: 3: