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Fig. 1. The left figure shows three pieces of cloth with around 1.4M triangles pushed back and forth by a sphere, revealing intricate folds and contact. The
right figure shows 7M colored sand grains coupled with elastic cloth, exhibiting beautiful flow patterns.

The typical elastic surface or curve simulation method takes a Lagrangian
approach and consists of three components: time integration, collision de-
tection and collision response. The Lagrangian view is beneficial because
it naturally allows for tracking of the codimensional manifold, however
collision must then be detected and resolved separately. Eulerian meth-
ods are promising alternatives because collision processing is automatic
and while this is effective for volumetric objects, advection of a codimen-
sional manifold is too inaccurate in practice. We propose a novel hybrid
Lagrangian/Eulerian approach that preserves the best aspects of both views.
Similar to the Drucker-Prager and Mohr-Coulomb models for granular mate-
rials, we define our collision response with a novel elastoplastic constitutive
model. To achieve this, we design an anisotropic hyperelastic constitutive
model that separately characterizes the response to manifold strain as well as
shearing and compression in the directions orthogonal to the manifold. We
discretize the model with the Material Point Method and a novel codimen-
sional Lagrangian/Eulerian update of the deformation gradient. Collision
intensive scenarios with millions of degrees of freedom require only a few
minutes per frame and examples with up to one million degrees of freedom
run in less than thirty seconds per frame.
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1 INTRODUCTION
Physically based animation of elastic surfaces and curves has been
an essential aspect of computer graphics for nearly three decades.
Whether it be different layers of clothing in a virtual garment, in-
dividual strands in a head of hair or even yarns in a knit garment,
collision and contact phenomena of these materials are essential
for the richness and realism provided by physics based simulation.
Unfortunately the thin nature of these materials makes collision
detection and resolution challenging. This process is often the bot-
tleneck in modern visual effects. Building on recent methods that
characterize frictional contact in granular materials via elastoplastic-
ity [Daviet and Bertails-Descoubes 2016; Klár et al. 2016; Narain et al.
2010], we present a new approach for codimensional elasticity that
uses a hybrid Lagrangian/Eulerian Material Point Method (MPM)
[Sulsky et al. 1994] discretization to model frictional contact with
a continuum view. Unlike traditional approaches, our elastoplastic
description completely characterizes all collision/contact response
in the continuum and requires no separate post-processing.
Codimensional elastic objects are naturally represented with a

Lagrangian mesh. Such approaches were pioneered in graphics by
Terzopoulos et al. [1988; 1987] and are still primarily used today.
With the Lagrangian mesh model, individual particles are tracked
and mesh polygons or segments are used to approximate the spatial
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Fig. 2. A shag carpet with 1M particles is pushed by a sphere and folds back, showing detailed folds.

Fig. 3. A piece of cloth with 2M triangles falling onto a rotating sphere.
Low friction on the ground and high friction on the sphere causes detailed
wrinkles and folds.

derivatives of thematerial deformationmapping (often referred to as
the deformation gradient). The mechanics of elasticity are naturally
discretized with this Lagrangian view. However additional modeling
is required to include the effects of self and external contact since
these phenomena may cause interactions between distant regions
in the mesh. For example, mesh facets like points and triangles
or segment pairs must not pass through one another over a time
step. These constraints must be satisfied by some means external
to the elasticity modeling. This can be done in number of ways
including repulsion penalties [Baraff and Witkin 1998; Choi and Ko
2002; Cirio et al. 2014; Harmon et al. 2009; Kaldor et al. 2008, 2010],
impulsive change in momenta [Bridson et al. 2002; Harmon et al.
2008; McAdams et al. 2009; Sifakis et al. 2008; Tang et al. 2016], and
linear complimentary formulations of the constrained dynamics

[Bertails-Descoubes et al. 2011; Daviet et al. 2011; Otaduy et al.
2009].

The Eulerian view is a useful alternative to the Lagrangian view.
In the Eulerian view, discrete samples of the solution are computed
on a stationary background grid as material advects through the do-
main. While Lagrangian methods require two different components
of the algorithm: elasticity modeling and collision/contact resolu-
tion, Eulerian methods typically do not. The constitutive behavior
of contact is expressed as that of the material itself. For example,
for free-surface incompressible flow, no self collision model is im-
posed beyond the velocity divergence condition needed to enforce
incompressibility [Bridson 2008]. Recently, various researchers have
utilized aspects of Eulerian methods to design collision and contact
treatment for elastic materials [Fan et al. 2013, 2014; Levin et al.
2011; Li et al. 2013; Teng et al. 2016]. For elastic objects accurate
treatment of advection is needed to preserve an accurate rest state
of the material, e.g. the impressive treatment for volumetric objects
in Levin et al. [2011]. However, this is difficult for codimensional
elasticity.

Hybrid Lagrangian/Eulerian approaches seek to combine the ben-
efits of both views. For example Particle-In-Cell (PIC) [Harlow 1964]
approaches like FLIP [Brackbill and Ruppel 1986] andMPM combine
a Lagrangian form of advection with a regular grid momentum up-
date. Various researchers have developed approaches of this type to
simplify contact with Lagrangian methods or to improve the advec-
tion accuracy with Eulerian methods. For example, McAdams et al.
[2009] use FLIP and Eulerian incompressibility to efficiently model
self collision for hair. Petrovic et al. [2005] use a hybrid approach
where Lagrangian hair velocities are smoothed on an Eulerian grid.
Faure et al. [2007] also use a hybrid approach defining interaction
penalties and constraints for Lagrangian objects after mapping mass,
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momentum and density to an Eulerian grid. MPM has some sim-
ilarities to this and allows for the simulation of a wide range of
elastoplastic materials in contact without a separate model for col-
lision [Stomakhin et al. 2013; Yue et al. 2015]. Jiang et al. [2015]
simulate volumetric hyperelastic objects in contact with MPM. Re-
cently, various authors have shown that frictional contact for sand
can be modeled with a hybrid discretization of an appropriate plastic
flow [Daviet and Bertails-Descoubes 2016; Klár et al. 2016; Narain
et al. 2010; Zhu and Bridson 2005].

Our approach is a hybrid Lagrangian/Eulerian MPM method. We
build on the recent approaches for contact and collision via elasto-
plasticity of granular materials in [Daviet and Bertails-Descoubes
2016; Klár et al. 2016; Narain et al. 2010; Zhu and Bridson 2005]
and via hybrid Lagrangian/MPM approach for volumetric objects in
Jiang et al. [2015]. Standard MPM updates the deformation gradient
on each particle independently with an Eulerian view. However, this
leads to numerical plasticity and failure. While these phenomena
are useful when simulating elastoplasticity with failure, they are
difficult to prevent when simulating hyperelastic objects. To prevent
this, we track the deformation of codimensional elastic objects in
a Lagrangian way, as in Jiang et al. [2015]. However, while the ap-
proach in Jiang et al. [2015] allows for self-collision with volumetric

Fig. 4. A piece of cloth with 1.14M triangles is twisted by a cylinder. The
simulation runs at 1.3 minutes per frame on average.

Fig. 5. Our method handles detailed contacts between individual yarn
threads under tension as well as macroscopic collision between yarns as
demonstrated by this knitted cloth being twisted. Complex per-yarn motion
is well resolved through elastoplasticity.

objects, it does not work for codimensional objects. This occurs
because for non-volumetric objects, the Lagrangian update of defor-
mation only tracks components in the manifold, it does not capture
deformation in the orthogonal directions. It is the elastic response
to deformation in these directions that allows for frictional contact
with volumetric objects in MPM simulations. We remedy this by
updating the orthogonal components of the deformation gradient
in the standard MPM way. Furthermore, while relying on the elastic
response alone was sufficient for self-collision simulation with volu-
metric objects in Jiang et al. [2015], it can lead to artificial cohesion
(stickiness) and excessive friction for codimensional elasticity. We
fix this with a novel plastic flow that enforces a Coulomb friction
inequality between shear and normal stresses in the directions or-
thogonal to the surface or curve. The approach is similar to the
approach for sand in Klar et al. [2016], but with a modification that
prevents plasticity in the codimensional manifold, which should be
purely elastic. We define the elasticity in an anisotropic way so that
the response in the surface or curve cleanly relates to the response
in the orthogonal directions.
Our approach is computationally efficient, largely due to the

simplicity of handling contact and collision through the constitutive
modeling alone. Furthermore, it naturally allows for coupling with
multiple materials. We demonstrate this by simulating a range of
coupled elastic surfaces and curves, fluids and granular materials
with millions of degrees of freedom in a few minutes per frame. We
investigated both implicit and explicit versions of the grid based
momentum update inMPM. For explicit time stepping, we developed
a novel damping model that does not penalize rigid motions and that
unlike standard approaches like Rayleigh damping, does not impact
the time step restriction. To summarize, we list our contributions
below.

• Elasticity models that cleanly relate the elastic response
in the surface or curve to the response in the orthogonal
directions.

• Anisotropic plasticity models that characterize frictional
contact with elastic surfaces and curves.

• A return mapping algorithm to temporally discretize the
plastic flow.

• A hybrid Lagrangian/Eulerian MPM discretization of the
deformation gradient.

• An explicit damping model that does not penalize rigid
modes.

2 PREVIOUS WORK

2.1 Cloth
Clothing simulation has a long history in computer graphics. Thor-
ough summaries can be found in Choi and Ko [2005], Nealen et al.
[2006] and Thomaszewski et al. [2007]. Baraff and Witkin [1998]
use dynamically defined stiff springs that prevent cloth/cloth pene-
tration and apply an implicit integration scheme for efficiency. Choi
and Ko [2002] develop a semi-implicit treatment that efficiently han-
dles buckling instabilities. Bridson et al. [2002] process collisions
for all point/triangle and edge/edge pairs in the mesh via impulsive
response. Harmon et al. [2008] provide an improved alternative to
the failsafe rigid impact zones of Provot [1997] and Bridson et al.
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Fig. 6. Our method is able to capture many intricate features of tearing
apart a fibrous material consisting of 2.15M particles.

[2002]. In [2009] Harmon et al. combine asynchronous variational
integration with kinetic data structures. Collision resolution is done
with barrier potentials that they efficiently approximate with nested
families of quadratic potentials. In Ainsley et al. [2012], they fur-
ther accelerate this approach by two orders of magnitude. Otaduy
et al. [2009] use an implicit treatment of complimentary collision
constraints and a new solver for large mixed linear complementar-
ity problems. Recent work has shown that implicit time stepping
for cloth can be performed more efficiently via optimization with
auxiliary variables representing strain [Bouaziz et al. 2014; Liu et al.
2013].

2.2 Yarn and knits
In the seminal work of Kaldor et al. [2008] it was shown that elastic
curves representing individual yarns can be used with stunning
effect to create knit garments. In Kaldor et al. [2010] they improve
performance with infrequently updated locally co-rotated linear
approximations of the barrier potential to provide a five fold speed
up. Cirio et al. [2014] build on the work of Sueda et al. [2011] to
resolve warp/weft intersections with a point that connects the two
curves. Breen et al. [1994] also demonstrated yarn-level simulation.

2.3 Hair
A good survey of hair simulation in computer graphics is provided
in Ward et al. [2007]. Many researchers have modeled hair with
various elasticity models per strand [Bando et al. 2003; Choe et al.
2005; Kaufman et al. 2014; McAdams et al. 2009; Selle et al. 2008].
Others model hair as inextensible[Anjyo et al. 1992; Chang et al.
2002; Choe et al. 2005; Müller et al. 2012]. Bertails et al. use Kirchhoff
elastic rod models, which naturally enforce inextensibility [2009;
2006]. Much recent work has shown the importance of including
frictional effects [Bertails-Descoubes et al. 2011; Daviet et al. 2011;
Derouet-Jourdan et al. 2013; Kaufman et al. 2014]. Kaufman et al.
[2014] note that typical impulse based collision models for elastic
rods can lead to instabilities via excitation of stretching modes and

that an improved, adaptively nonlinear model for collision leads to
more robust and accurate simulations.

2.4 Parallel computing
Selle et al. [2009] developed a distributed memory, parallel version
of Bridson et al. [2002] capable of simulating cloth meshes with
millions of triangles. Tang et al. [2013] were the first to implement
all components of a cloth solver on the GPU and achieve speed-ups
of 10-14X over Selle et al. [2009]. They improve on this further in
Tang et al. [2016] with an implicit GPU implementation that adopts
the inelastic impact zone response from Harmon et al. [2008]. Other
CPU/GPU level parallelism is explored in [Li et al. 2011; Schmitt
et al. 2013]. Ni et al. [2015] accelerate the asynchronous contact
mechanics approaches [Ainsley et al. 2012; Harmon et al. 2009] by
up to 12 times with a 384 core Cray XC30.

2.5 Reduced and adaptive models
Recently, much progress has been made in reduced models that can
simulate clothing at interactive rates in many scenarios [de Aguiar
et al. 2010; Feng et al. 2010; Kavan et al. 2011; Kim et al. 2013; Wang
et al. 2010; Zurdo et al. 2013]. For hair, Chai et al. [2014] use a re-
duced model driven by high-resolution simulation data to incredibly
simulate up to 150 thousand strands in real-time. Adaptivity has
also been shown to produce stunning detail at modest cost in [Koh
et al. 2015; Lee et al. 2010; Narain et al. 2012].

2.6 Eulerian and continuum collision/contact
Goktekin et al. [2004] use an Eulerian approach to simulate viscoelas-
tic materials without need for explicit contact modeling. Levin et al.
[2011] advect the reference configuration in an Eulerian approach
to volumetric elastic object simulation that drastically reduces the
complexity of collision modeling. Fan et al. [2013; 2014] further
improve this by reducing memory and computational cost. Teng el
al. [2016] show that a similar approach handles hyperelastic solids
coupled with incompressible fluids. Li et al. [2013] use an Eulerian
view of hyperelastic surfaces to model skin/tissue contact. Con-
tinuum friction models have proven useful for collision models of
crowd interactions [Golas et al. 2014; Narain et al. 2009]. The hybrid
Lagrange/Eulerian PIC/MPM has been used for sand animation in
[Daviet and Bertails-Descoubes 2016; Klár et al. 2016; Narain et al.
2010; Zhu and Bridson 2005]. Also, MPM has been used for various
elastoplastic materials [Jiang et al. 2015; Stomakhin et al. 2013; Yue
et al. 2015]. Müller et al. [2015] mesh the space surrounding elastic
objects and enforce an incompressibility constraint on the mesh.
Wu and Yuksel [2016] use hair volume meshes to simulate hair in
real time. Others have experimented with meshes with dynamic
connectivity for collision processing [Chang et al. 2002; Kim and
Neumann 2000; Sifakis et al. 2008]. Macklin et al. [2014] model
both constitutive response and collision via constraints. Hadap et al.
[2001], Bando et al. [2003] andMcAdams et al. [2009] use continuum
fluid concepts to accelerate collision processing for hair.

3 MATHEMATICAL BACKGROUND
We represent codimensional objects as volumetric elastoplastic con-
tinua. While our objects are thin surfaces or even curves in 3D, it
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Fig. 7. A sweater dropped onto a rising sphere, stretched and then folded
on the ground. The simulation takes 13 seconds per frame.

is useful to conceive of their dynamics as if they have appreciable
thickness in a continuum, e.g. as is done with granular materials in
[Daviet and Bertails-Descoubes 2016; Klár et al. 2016; Narain et al.
2010]. Given the similarities in our assumptions, we adopt the nota-
tion of Klar et al. [2016], where the state can be described at each
location by its density ρ (x, t ) and velocity v(x, t ). The governing
equations come from conservation of mass and momentum (see
[Bonet and Wood 2008; Gonzalez and Stuart 2008] for derivations)

Dρ

Dt
+ ρ∇ · v = 0, ρ

Dv
Dt
= ∇ · σ + ρg. (1)

Here σ is the stress, g is gravity and D
Dt is the material derivative.

3.1 Deformation gradient
The material deformation is characterized in terms of the flow map,
ϕ which maps points in the original configuration of the material X
to points in the time t configuration x as ϕ (X, t ) = x. The Jacobian
of this mapping F = ∂ϕ

∂X (X, t ) is often referred to as deformation
gradient, and it represents the local deformation of the material.
That is, the deformation gradient yields the best local linear approx-
imation to the mapping: ϕ (X̃, t ) ≈ F(X̃ − X) + x for X̃ near X. For
example, if the material is undeformed local to X then F will be
a rotation. If det(F) < 1, the material loses volume locally, and if
det(F) > 1, it gains volume locally.

Codimensional deformation is expressed via components of F. We
define material directionsD1,D2,D3 at pointX. In the case of elastic
surfaces D1 and D2 are tangent to the initial configuration of the
surface and D3 is normal to the surface. In the case of curves, D1 is
tangent to the curve and D2 and D3 are orthogonal to D1. We define
di = FDi , i = 1, 2, 3. With this convention, the di represent the
local direction and stretching of material in the Di direction under
ϕ. Thus for curves, all deformation in the manifold is expressed via
d1 and for surfaces, via d1 and d2. The remaining di represent the
deformation of material normal to the manifold. Thus we can both
account for deformation in the manifold, deformation normal to the
manifold and shearing of material relative to the manifold in terms
of the di and their relation to one another. For example for surfaces,
while D3 is normal to the initial surface, d3 will not be when there

is a shearing motion relative to the manifold. We visualize the case
of a curve in 2D in Figure 8.

3.2 Codimensional anisotropic plasticity
Large strain elastoplasticity is modeled by factoring the deformation
gradient into elastic and plastic parts as F = FEFP . The plastic part
FP represents deformation history that has been lost and will no
longer be penalized elastically. The elastic part FE remains and is
penalized elastically. We use a hyperelastic potential energy density
that increases with increasing deformation in FE .
As in Klar et al. [2016], we model frictional contact with elasto-

plasticity. However, unlike for granular materials where collision
can occur in any direction local to a grain, we only consider con-
tact to occur in the direction orthogonal to the elastic surface or
curve. Therefore, the plasticity should only modify the codimen-
sional components of the deformation. The mechanical response
to deformations in the manifold is purely elastic. This places an
anisotropic constraint on the multiplicative decomposition. To guar-
antee that deformation in a curve is purely elastic, our plasticity
model must satisfy FD1 = FED1 (equivalently D1 = FPD1). To
guarantee that the deformation in a surface is purely elastic, we
additionally require FD2 = FED2 (equivalently D2 = FPD2). By
satisfying these constraints, we guarantee that all non-rigid defor-
mation of the surface or curve is penalized elastically. Plasticity
is only allowed to effect the components of the deformation that

Fig. 8. Left: F is decomposed into FP , the forgotten sliding and separa-
tion, and FE the remembered stretching, collision and shearing. Right: FE

deforms D1 and D2 into d1 and dE2 .

Fig. 9. Here we show two way coupling between 7M sand grains and a piece
of elastic cloth.
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provide compression, extension and shearing in directions normal
to the manifold.

3.3 Codimensional anisotropic elasticity
As in [Klár et al. 2016; Stomakhin et al. 2013] we use a model that
is hyperelastic in FE , where the elastic potential energy density
increases with deformation of the elastic part of the deformation
gradient. The Cauchy stress in the material is σ = 1

det(F)
∂ψ
∂FE F

ET .
Here ψ (FE ) is the elastic energy density for penalizing non-rigid
FE . In our case, it serves two purposes. First, it expresses the resis-
tance to deformations that change the shape of the surface or curve
manifold. However, as in the Klar et al. [2016] approach to granular
materials, it also defines the resistance to contact and frictional slid-
ing. In the case of codimensional elasticity, this resistance is only to
deformations normal to the manifold and we design an anisotropic
energy density that takes this dual nature into account.
We define our potential with respect to the local material direc-

tions D = [D1,D2,D3] as ψ (FE ,D). The elastic potential must be
invariant under world space rotations, and so we are free to choose
a convenient basis. One natural choice is given by orthogonalizing
the vectors dEi = FEDi , the elastically deformed material directions,
with the Gram-Schmidt process to obtain Q = [q1, q2, q3]. Equiva-
lently, QR = FED is the QR-decomposition of FED. We then define
ψ (FE ,D) = ψ̂ (R). This is similar to the isotropic case where the
additional material frame invariance allows one to choose ui and
vi such that FEvi = σiui , and defineψ (FE ) = ψ̃ (Σ).

Another common stress measure is the first Piola-Kirchhoff stress,
defined as P = ∂ψ

∂FE (F
P )−T , and related to σ with σ = 1

J PF
T . If we

further denote FED with dE , we have ∂ψ
∂FE =

∂ψ
∂dE D

T . We show in

[Jiang et al. 2017a] that ∂ψ
∂dE = Q

(
T (K) + T (K)T − D (K)

)
R−T ,

where K = ∂ψ̂
∂R R

T . Here T and D are operators on matrices that
keep upper triangular part and diagonal part respectively.

3.3.1 Curves: We model elastic curves with rotational material
symmetry around the fiber direction D1. In other words for our
curves, the material directions D2 and D3 are regarded as essen-
tially arbitrary and any choices which are mutually orthogonal
with D1 should give the same potential. Guided by this material
symmetry, we decompose R = R3R2R1 into a composition of three
deformations, first (R1) a stretching of the fibers, second (R2) a shear-
ing of the fibers and finally (R3) a deformation of the cross section
of the fibers

R1 =
[
r11 0 0
0 1 0
0 0 1

]
, R2 =

[1 r12 r13
0 1 0
0 0 1

]
, R3 =

[1 0 0
0 r22 r23
0 0 r33

]

Based on this decomposition, we write our elastic potential for
curves as a sum of 3 terms ψ̂ (R) = f (R1) + д(R2) + h(R3). The
first term f (R1) = k

2 (r11 − 1)2 penalizes change of fiber length,
for the second term д(R2) =

γ
2 (r

2
12 + r

2
13) penalizes shearing along

the fibers. In absence of other deformations, we would like a cross
section of the fibers to behave like material in frictional contact,
resisting compression and shearing. Thus for the third term h(R3),
we use the two dimensional version of the elastic potential from
Klar et al. [2016], since it naturally enforces such frictional contact
(when combined with appropriate plasticity law). That is h(R3) =

µ (ϵ21 + ϵ
2
2 ) +

λ
2 (ϵ1 + ϵ2)

2, where ϵ1 and ϵ2 are the logarithms of the
nontrivial singular values of R3.

3.3.2 Surfaces: For the surface energy, we think of the surface
itself as being isotropic, i.e. the potential is invariant under rotation
of the material directions D1 and D2. Again we decompose R =
R3R2R1 into a composition of three deformations, first (R1) an in-
plane deformation of the surface, second (R2) a shearing of surface
normal and finally (R3) a compression or stretching of the surface
normal

R1 =
[
r11 r12 0
0 r22 0
0 0 1

]
, R2 =

[1 0 r13
0 1 r23
0 0 1

]
, R3 =

[1 0 0
0 1 0
0 0 r33

]

Then we write the energy as a sum of three terms, ψ̂ (R) = f (R3) +
д(R2)+h(R1). For the first term f (R3), we only penalize compression
of the material in the normal direction, as we think of the surface as
being mostly surrounded by empty space which can expand freely

f (R3) =
{ k

3 (1 − r33)
3 r33 ≤ 1

0 r33 > 1
.

For the second term we use д(R2) =
γ
2 (r

2
13 + r223) to penalize

shearing of the normal to the surface. For the third term h(R1) we
use the two dimensional version of the fixed corotated potential
from Stomakhin et al. [2012] to penalize deformation of the surface,
although any in-plane energy can be used (e.g., the in-plane surface
energy from [Baraff and Witkin 1998]) with no change except to
the stress and stress derivatives.

3.4 Friction and plastic yield condition
With Coulomb friction, the frictional force ff must be smaller than
a constant cF , the coefficient of friction, times the normal force fn :
ff ≤ cF fn . In the continuum view, at a given point x in world space
and a normal vector n, the traction vector t gives the local force
per area that the material on one side of the plane with normal n
exerts on the other side [Gonzalez and Stuart 2008]. The traction
has normal and shearing components fn = −nT t and fs = s(n,θ )T t
respectively where s(n,θ ) is an arbitrary vector in the plane with
normal n, and θ indicates its direction in the plane. Note that we
use the convention that compressive force fn is positive as in the
Coulomb model. If the material is in frictional contact in direction
n, then ff = fs is the component of the frictional response in the
direction s(n,θ ) and for all angles θ , the inequality s(n,θ )T t ≤ cF fn
must be satisfied.

Expressing the traction in terms of the Cauchy stress σ as t = σn,
shows that the Coulomb model places constraints on the stress:
s(n,θ )Tσn+cF nTσn ≤ 0 for all θ given frictional contact direction
n. This is the idea behind the frictional contact model with Drucker-
Prager for granular materials [Daviet and Bertails-Descoubes 2016;
Klár et al. 2016; Narain et al. 2010]. However, in the case of a grain,
contact is assumed to happen in all directions. For cloth or curves
we only consider the directions orthogonal to the manifold to be
in frictional contact. Together with our choice of elastic potential,
this results in a less restrictive constraint that does not effect elastic
deformation in the manifold. For frictional contact between surfaces,
we only consider contact in the direction normal to the surface:
n = q3. For curves, there is a two dimensional normal space spanned
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Fig. 10. We demonstrate the effect of different choices of deformation gradient discretization as well as the effect of plasticity in this fiber piling example. (a)
shows standard MPM deformation gradient; (b) shows the codimensional Lagrangian deformation gradient from Jiang et al. [2015] ; (c) shows our model
without any plasticity; (d) is our full elastoplasticity model.

by q2 and q3 and thus we consider contact in all directions n =
cos(θ̂ )q2 + sin(θ̂ )q3.
In order to satisfy the stress constraints the material will yield.

Physically this yielding manifests as the cloth or fibers sliding, and
“forgetting” some of the shearing deformation. This “forgetting”
occurs by some of the incremental deformation being stored in FP

as opposed to FE , as the stress is a function of FE and not FP . We
discuss these aspects in (§4.5).

4 DISCRETIZATION
OurMPM discretization is the key to translating from the theoretical
continuum equations into an algorithm that resembles traditional
approaches to codimensional elasticity with contact. PIC and there-
fore MPM are hybrid particle/grid methods. From the continuum
point of view, the particles represent discrete samples of the con-
tinuous material and the grid is just a helper for computing their
physical interactions. For example, with sand in [Daviet and Bertails-
Descoubes 2016; Klár et al. 2016; Narain et al. 2010], the particles
can be rendered as individual grains and the grid update, whose
essential features are inherited from the continuum, can be seen as a
means for processing their frictional contact interactions. However,
for codimensional elasticity, we conceive of our continuum samples
as coherent surface or curve meshes, rather than as unstructured
particles. This aspect is the primary difference from traditional MPM
approaches.
Because our MPM discretization has many similar features to

most other MPM approaches in computer graphics [Daviet and
Bertails-Descoubes 2016; Jiang et al. 2015; Klár et al. 2016; Stom-
akhin et al. 2013; Yue et al. 2015], we briefly cover aspects of the
algorithm that are common to these approaches and address in
more detail our novel modifications. These are primarily related to
an improved version of the codimensional sampling in Jiang et al.
[2015] that allows for self-collision (§4.3) and its ramifications in
the grid momentum updates (§4.4), as well as the novel aspects of

particle type (i)
particle type (ii)
particle type (iii)

Fig. 11. Particle types. (i ) Traditional MPM particles, (ii ) Lagrangian mesh
vertex particles, (iii ) Lagrangian mesh element quadrature particles.

the associated elasticity and plasticity updates (§4.5). We summarize
essential steps in the algorithm below.

(1) Transfer to grid: Use APIC [Jiang et al. 2015] to transfer
mass and momentum from particles to the grid. Divide grid
momentum by grid mass to define grid velocity. (§4.2)

(2) Update grid momentum Use either explicit symplectic
Euler or backward Euler to update grid momentum. (§4.4)

(3) Transfer to particles: Use APIC to transfer velocities and
affine matrices from grid to particles [Jiang et al. 2015].
(§4.2)

(4) Update particles: Update particles positions (§4.2) and
deformation gradients (§4.3).

(5) Update plasticity: Project the deformation gradient for
plasticity, updating the elastic and plastic parts. (§4.5)

4.1 Lagrangian state
The Lagrangian particle state is the primary representation of ma-
terial for MPM. We classify particles as either: (i ) traditional MPM
particles, (ii ) Lagrangian mesh vertex particles or (iii ) Lagrangian
mesh element quadrature particles (Figure 11). Type (ii ) particles
are used to track the in-manifold deformation of the elements as in
traditional FEM solvers. Type (iii ) particles are used to track to the
codimensional deformation in an updated Lagrangian manner. The
details of this deformation tracking are discussed in Section (§4.3).
At time tn , we store the particle positions xnp , velocities vnp , initial
massmp , elastic deformation gradient FE,np , initial volumeV 0

p , affine
velocityCnp and undeformedmaterial directionsDp .Dp is not stored
for particles of type (i ) and (ii ). FE,np is not stored for particles of
type (ii ). We set massmp = ρV

0
p , and we set V 0

p according to the
total volume divided by the number of particles for type (i ) par-
ticles. For particles of type (ii ) and (iii ), we divide the volume of
each triangle/segment equally among the type (ii ) and type (iii )
particles incident to it and then add this to each particle’s V 0

p .
In the following sections, we use the notation I (i ) ,I (ii ) ,I (iii )

to represent the sets of particle indices of types (i ),(ii ) and (iii )
respectively. E.g. for any particle index p it is in exactly one of
I (i ) ,I (ii ) or I (iii ) , depending on its type.

4.2 Grid transfers
4.2.1 Particle to grid: We transfer particle mass and momentum

to the grid using APIC [Jiang et al. 2015, 2017b]. As with standard
PIC, we associate with each particle p and grid node i a weight
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Fig. 12. We demonstrate the effect of increasing friction in this 2 dimensional piling example. Friction increases from left to right.

Fig. 13. A hair tube with 2655 strands is dropped onto another tube of hairs,
showing detailed dynamics due to frictional contact between hairs. The
simulation runs at 11 seconds per frame.

wn
ip = N (xnp − xi ) where xi is the location of the grid node and

N (x) are linear, quadratic or cubic b-spline kernels. These weights
define the contribution of quantities on particle p to grid node i .
The mass contribution from particle p to grid node i iswn

ipmp . The
total mass on grid node i is the sum of the contributions from all
particlesmn

i =
∑
p w

n
ipmp .

With APIC, each particle also stores matrix Cnp to define an affine
velocity local to the particle. With this convention, the momentum
contribution from particle p to node i iswn

ipmp
(
vnp + C

n
p (x

n
i − x

n
p )
)
.

For each grid node i , we sum the contribution from all particles p
to get grid momentum and then divide by the grid mass to get the
grid velocity as vni =

1
mn
i

∑
p w

n
ipmp (vnp + C

n
p (x

n
i − x

n
p )).

4.2.2 Grid to particle: After the update of grid node momentum,
we transfer grid velocities to particles. We use ṽn+1i to denote grid
node velocities after the momentum updates (see Section (§4.4)). The
grid to particle transfer with APIC is written as vn+1p =

∑
i w

n
ip ṽ

n+1
i

and C̃n+1p =
∑
i w

n
ip ṽ

n+1
i (( 6−b

d

h2 ) (xni − xnp ))
T , where bd is the b-

spline degree (bd = 3 for cubic b-spline interpolation, bd = 2 for
quadratic b-spline interpolation) and h is the Eulerian grid spacing.
For the linear kernel, C̃n+1p reduces to the velocity gradient. In that
case it can be computed as C̃n+1p =

∑
i ṽn+1i (∇wn

ip )
T .

For traditional MPM particles and Lagrangian mesh vertex parti-
cles, we update their positions with xn+1p = xnp +∆tv

n+1
p . We enslave

the positions of Lagrangian mesh element quadrature particles to
the barycenters of their corresponding Lagrangian elements to pre-
vent drifting that would occur with a traditional MPM update of
these positions.

4.2.3 Damping: The Rigid Particle-in-Cell (RPIC) introduced in
Jiang et al. [2015] can be thought of as a reduced APIC scheme that
damps out stretching and shearing motions while conserving rigid
velocity modes. APIC degrades to RPIC if only the skew symmetric
part of C̃n+1p is kept. More importantly, if we decompose C̃n+1p into
the symmetric part C̃n+1,sp and the skew symmetric part C̃n+1,kp , we
can stably introduce damping to the system by scaling C̃n+1,sp :

Cn+1p = C̃n+1,kp + (1 − ν )C̃n+1,sp , (2)

where ν ∈ [0, 1] is the damping coefficient. This allows us to con-
trol the damping on stretching and shearing without damping local
or global rigid motions. In practice any value of ν may be chosen
depending on how energetic a simulation needs to be. Similarly to
Muller et al. [2007] and Kaldor et al. [2008], our damping scheme
damps non-rigid motion in a stable way without introducing any
additional time step restriction. Notably, this works well with ex-
plicit symplectic Euler time stepping, unlike many more standard
approaches like Rayleigh damping.

4.3 Deformation gradient update
It is essential to conceive of our continuum samples as coherent sur-
faces or curves, rather than as unstructured particles. This was first
observed for elastic volumes and surfaces (without self-collision)
by Jiang et al. [2015]. For these meshes, they abandon the tradi-
tional Eulerian MPM update of the deformation gradient and use
the mesh connectivity to compute the manifold components of the
deformation gradient. We also use this approach for our triangulated
surfaces and segmented curves. This allows for a Lagrangian update
of the deformation gradient that does not suffer from the numerical
plasticity or fracture of the Eulerian update. While their approach
allowed for coupling of Lagrangian elastic meshes with standard
MPM materials, self-contact with codimensional meshes is not well
resolved. Our approach combines the method of Jiang et al. [2015],
with the Eulerian deformation of the grid, to obtain the full rank de-
formation gradient, which allows for penalizing self-contact, while
still preventing numerical plasticity and fracture. A comparison of
these methods is shown in Figure 10.

The deformation gradient is updated in terms of the motion of the
grid over a time step. We describe this in terms of xi , the Eulerian
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Fig. 14. Left: A knitted curtain is pushed by a sphere and folds back. Right: A cloth curtain with around 1.78M triangles is hit by a ball.

grid nodes at the beginning of the time step and x̂i their location
after a grid update. Although we never deform the grid, it is useful
to conceive of the grid momentum update in terms of the motion it
would cause on the grid. In particular this allows us to define the
elastic grid forces through the differentiation of a potential. This use
of incremental grid node motion, is called the updated Lagrangian
view, as we essentially view the motion of the grid as Lagrangian,
albeit from the grid configuration at time tn , instead of the rest
configuration. Using v̂n+1i to denote the grid node velocity after the
momentum update (see (§4.4)), we have x̂i = xi + ∆t v̂n+1i . Using
x̂, v̂ to denote the vector of all moved grid positions x̂i and velocities
v̂n+1i respectively we can define the deformation gradient update
on particle p in terms of F̂Ep (x̂).
For traditional MPM particles (type (i )), the elastic deformation

gradient is updated as

F̂Ep (x̂) = (∇x̂)pF
E,n
p , (3)

where (∇x̂)p =
∑
i x̂i (∇wn

ip )
T and F0p = I assuming no initial de-

formation. For mesh vertex particles (type (ii )), we do not store
the deformation gradient so nothing needs to be done. For a La-
grangian mesh element quadrature particle (type (iii )), we use

Fig. 15. By stretching, twisting and releasing a knitted cloth from different
directions, we demonstrate the ability of our method in handling yarn level
anisotropic characteristics.

F̂Ep (x̂) = d̂EpD
−1
p . Here d̂Ep (x̂) =

[
d̂Ep,1 (x̂), d̂

E
p,2 (x̂), d̂

E
p,3 (x̂)

]
and D =

[
Dp,1,Dp,2,Dp,3

]
are matrices whose columns are respectively the

deformed elastic and initial material directions. For the ζ (1 for
curves and 2 for surfaces) directions tangent to the manifold we
choose Dp,β = Xmesh(p,β ) −Xmesh(p,0) , to be the undeformed mesh
element edge vectors (where β = 1, ..., ζ ), and then d̂Ep,β (x̂) =

d̂p,β (x̂) = x̂mesh(p,β ) − x̂mesh(p,0) are the deformed edge vectors,
where the deformed mesh particle positions are interpolated from
the deformed grid node positions x̂q =

∑
i x̂iwn

iq . Note that we
do not need the superscript E for ζ directions d̂p,β tangent to the
manifold since they will not experience plasticity. Also, we use
the notation mesh(p, β ) for β = 0 . . . ζ to denote the mesh vertex
particle (type (ii )) indices of the mesh element corresponding to
Lagrangian mesh element quadrature particle p. We choose the re-
maining 3 − ζ directions Dβ to be of unit length and normal to the
manifold, and evolve them as in traditional MPM via

d̂Ep,β (x̂) = (∇x̂)pd
E,n
p,β . (4)

In both cases, F̂Ep is updated ignoring any further plasticity. F̂Ep will
be further processed for plasticly to obtain FE,n+1p in (§4.5).

4.4 Grid momentum update
Here we describe the update of the grid node momentum (i.e. ve-
locities since the grid node masses do not change in the update):
vni → v̂n+1i . We use the hat in v̂n+1i to distinguish this update from
the velocities that would transferred to the grid in the next time
step vn+1i . As in (§4.3), we use x̂, v̂ to denote the vector of all grid
moved positions x̂i and velocities v̂n+1i respectively. We can denote
the grid momentum update as

v̂n+1i = vni +
∆t

mn
i
fi (x̂(q̂)) + ∆tg, (5)

where f is the elastic force, g is the gravitational acceleration and
q̂ = 0 for symplectic Euler or q̂ = v̂ for backward Euler. We use
the notation x̂(q̂) to emphasize the dependence of the moved grid
nodes through x̂i = xi + ∆tqn+1i .
The elastic force f is defined in terms of the elastic potential

energy. Given elastic energy densityψ , the total potential is com-
puted as Φ =

∫
Ω
ψ dV over material domain Ω. When discretely

approximated on particles, we have
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ρ E η γ k ΦF ν

Cloth Curtain (Fig. 14) 2 400 0.3 0 800 0◦ 0.8
Cloth Curtain ×3 (Fig. 1) 2 400 0.3 0 800 0◦ 0.8
Cloth & Ball (Fig. 3) 2 200 0.3 0 100 0◦ 0.7
Cloth Twister (Fig. 4) 2 200 0.3 0 400 0◦ 0.1
Knit Sweater (Fig. 7) 4 500 0.3 100 500 10◦ 1.0
Knit Poncho (Fig. 17) 4 500 0.3 500 2000 40◦ 1.0
Knit Twister (Fig. 5) 4 500 0.3 500 2000 40◦ 1.0
Knit Curtain (Fig. 14) 4 500 0.3 500 500 20◦ 1.0
Knit Anisotropy (Fig. 15) 4 500 0.3 0 10000 0◦ 1.0
Shag Carpet (Fig. 2) 2 400 0.3 0 800 0◦ 0.8
Tearing Fiber (Fig. 6) 4 100 0.3 500 8000 40◦ 0.5
Hair Tubes (Fig. 13) 1 60 0.3 10 2000 15◦ 0.07
Curtain & Goo (Fig. 19) 2 400 0.3 0 40000 0◦ 1.0
Cloth & Slime (Fig. 18) 2.5 15000 0.35 0 20000 0◦ 0.85
Curtain & Sand (Fig. 19) 2 400 0.3 0 200000 0◦ 0.0
Cloth & Sand (Fig. 9) 2 200 0.3 0 40000 0◦ 0.0

Table 1. Material Parameters: Here ρ refers to the density, E to the Young’s
modulus, η to the Poisson’s ratio, γ to the shearing stiffness, k to the
stiffness, ΦF to the internal friction angle, and ν to the damping coefficient.
For surfaces, the friction coefficient cF = tan(ΦF ). For curves, the friction
coefficient along the fiber is β = tan(ΦF ). The one perpendicular to the

fiber is α =
√

2
3

2 sin(ΦF )
3−sin(ΦF )

.

s/Frame Element # Particle # ∆t ∆x Mem(GB)

Cloth Curtain (Fig. 14) 120 1.78M 2.67M 7 × 10−5 2.2 × 10−3 2.36
Cloth Curtain ×3 (Fig. 1) 123 1.39M 2.09M 7 × 10−5 2.2 × 10−3 2.16
Cloth & Ball (Fig. 3) 86 2.00M 3.00M 1 × 10−4 1.5 × 10−3 2.66
Cloth Twister (Fig. 4) 78 1.14M 1.71M 7 × 10−5 3 × 10−3 1.63
Knit Sweater (Fig. 7) 13 0.27M 0.54M 1 × 10−4 1 × 10−2 0.39
Knit Poncho (Fig. 17) 63 0.30M 0.61M 5 × 10−5 1.6 × 10−2 0.56
Knit Twister (Fig. 5) 10 0.31M 0.62M 2 × 10−4 1.6 × 10−2 0.45
Knit Curtain (Fig. 14) 17 0.31M 0.62M 1 × 10−4 4 × 10−3 0.99
Knit Anisotropy (Fig. 15) 38 0.31M 0.62M 5 × 10−5 7 × 10−4 0.46
Shag Carpet (Fig. 2) 26 0.48M 0.97M 1 × 10−4 1 × 10−2 0.65
Tearing Fiber (Fig. 6) 29 1.04M 2.15M 1 × 10−4 3.2 × 10−2 1.09
Hair Tubes (Fig. 13) 11 0.38M 0.76M 2 × 10−4 7 × 10−3 0.20
Curtain & Goo (Fig. 19) 62 0.07M 2.59M 2 × 10−4 7.5 × 10−3 0.83
Cloth & Slime (Fig. 18) 47 0.04M 1.88M 2 × 10−4 1.2 × 10−2 0.59
Curtain & Sand (Fig. 19) 85 0.06M 2.90M 2 × 10−4 7.2 × 10−3 1.36
Cloth & Sand (Fig. 9) 876 0.16M 7.23M 1 × 10−4 5 × 10−3 3.13

Table 2. All simulations are run on Intel Xeon E5-2690 V2 with 19 threads.
Element # denotes number of triangles (for surfaces), number of segments
(for curves) or the total count (for coupling simulations). Memory usage is
measured in the end of the first frame. ∆t here means maximum allowed
time step. The actual running ∆t is adaptive and may be restricted by CFL
condition when the particle velocities are high. In all of our simulations we
use a CFL number equal to 0.3, i.e., we don’t allow particles to move further
than 0.3∆x in a time step.

Φ =
∑

p∈I (i )∪I (iii )

V 0
pψ (F̂

E
p ),

where V 0
p is the undeformed volume of particle p. To compute

grid node forces, we differentiate Φ as a function of x̂, using the
definitions from (§4.3) to express F̂Ep as a function of x̂. The force
on node i is then given as

fi (x̂) = −
∂Φ

∂x̂i
= −

∑
p∈I (i )∪I (iii )

V 0
p
∂ψ

∂FE
(F̂Ep (x̂)) :

∂F̂Ep
∂xi
, (6)

Note that
∂F̂Ep
∂xi

is a third order tensor, and does not depend on x̂
because F̂Ep is linear in x̂i . This tensor has a convenient property that
allows us to split the computation into three parts (see [Jiang et al.
2017a] for a derivation). The first part corresponds to standard MPM
particles andwe denote this as f (i )i (x̂) = −

∑
p∈I (i ) V 0

p

(
∂ψ
∂FE (F̂

E
p (x̂))

)
:

∂F̂Ep
∂xi

. Next, by expressing F using a material space coordinate frame
which is aligned with the element, we can assume that the first
ζ columns of F correspond to the in manifold deformation [Jiang
et al. 2017a]. This means that the first ζ columns of ∂ψ

∂FE correspond
to the stress response inside the manifold and these terms can be
computed by first computing forces on Lagrangian mesh vertex
particles (type (ii )) and then transferring them to the grid. Denoting
these vertex forces with f (ii )p (x̂), their corresponding contribution

to grid node forces can be computed as f (ii )i (x̂) =
∑
p∈I (ii ) wn

ip fp (x̂).

The last 3 − ζ columns of ∂ψ
∂FE correspond to the normal space con-

tribution. This part is computed by summing over all Lagrangian
mesh element quadrature particles (type (iii )). Differentiating the
last ζ columns of F̂Ep (x̂) with respect to x̂i is done similarly to
traditional MPM through dEβ (x̂) = (∇x̂)pd

E,n
β . This contribution to

the force is given as f (iii )i (x̂) = −
∑
p∈I (iii )

∑3
β=ζ +1V

0
p

∂ψ
∂FEβ

dTβ∇w
n
ip ,

where FEβ denotes the β th column of FE . With this view, we have

fi (x̂) = f (i )i (x̂) + f (ii )i (x̂) + f (iii )i (x̂).
When using backward Euler, we solve the system similar to [Stom-

akhin et al. 2013] by utilizing the Hessian of Φ with respect to x̂
and ignoring the effects of plasticity during the solve. The action
of this Hessian on an arbitrary increment δu can be expressed as

δ fiα =
∂fiα
∂x jλ

δujλ = −
∑
p∈I (i )∪I (iii ) V 0

p
∂F Eβζ
∂xiα

∂2ψ
∂F Eβζ ∂F

E
ωσ

∂F Eωσ
∂x jλ

δujλ ,

where we used implicit summation on repeated indices. We use
Newton’s method to solve the nonlinear system. Klar et al. [2016] re-
cently investigated including the effects of plasticity in the implicit
solve, but their approach has non-symmetric force derivatives that
require GMRES when using Newton’s method. Our lagged plasticity
approach has symmetric force derivatives and thus we use MINRES
to solve the linearized systems.

4.5 Return mapping
The return mapping is the discrete version of the yield condition
and flow rule. It takes the form of a projection, which enforces the
yield condition on the stress, with the direction of the flow rule,
defining the direction of the projection. The return mapping is ap-
plied after the deformation gradient update so that the updated
stress satisfies the yield condition. To perform the return mapping,
first we compute the QR-decomposition of d̂E = F̂ED = QR̂. Then
we project Rn+1 from R̂ to satisfy the yield condition, and finally
we construct FE,n+1 = QRn+1 (D−1). We want the stress to satisfy
s(n,θ )Tσn + cF nTσn ≤ 0, for every normal n to the curve, and ev-
ery tangential direction s(n,θ ) perpendicular to n. In the following
discussion we use the convention that σ̂ denotes the stress evalu-
ated at R̂ (the hypothetical stress if no plastic flow occurs), while
σ denotes the stress evaluated at Rn+1 (the stress accounting for
plasticity), and likewise for the f̂n and fn , and other hatted and
non-hatted variables.

4.5.1 Surfaces. For surfaces we fix the normal n = q3, and fur-
ther eliminate s(n,θ ) by noting that maximum of s(n,θ )T t is ob-
tained at the angle corresponding to the projection of t into the
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Fig. 16. The left figure visualizes the return mapping for 2D curve. dE1 is unchanged. Each shaded region corresponds to the feasible state of the deformed
material normal dE2 , and is determined by the yield function. Right figure shows the same yield surface in r12r22 space. The tip of the yield surface corresponds
to the world space manifold normal and is usually different from d2. Return mapping takes a trial strain d̂2 and results in the final dE2 . The green particle
corresponds to d̂2 that is inside the yield surface and exhibits an elastic response. The blue particle corresponds to d̂E2 that is under compression but experiences
more shear than friction allows. Such a configuration is projected to the yield surface along the direction that avoids normal component change. The orange
particle corresponds to d̂E2 that is experiencing tension and is projected to the tip of the yield surface. The corresponding stress is zero, allowing materials to
separate freely. The red particle corresponds to d̂E2 that is inverted from the original side of material (due to discrete numerical step). In this case, we disable
shearing by nullify the r22 component, and rely on elasticity to penalize such configuration. In practice we find that the red case rarely happens.

plane with normal n: maxθ s(n,θ )T t = |t + fnn|. We first check
if r̂33 > 1, if so the normal is in extension and no friction should
occur, so we set r13 = r23 = 0, further we set r33 = 1, as we are
using it to penalize collisions and previous stretching in that di-
rection should not be taken into account. If r̂33 ≤ 1, we check
the condition, |t̂ − (t̂T n)n| + cF nT t̂ ≤ 0, where n = q3. The trac-
tion is given by t(R) = 1

r11r22 (γr13q1 + γr23q2 + k (r33 − 1)
2q3), see

the supplemental technical document [Jiang et al. 2017a] for the
derivation. Thus the magnitude of the normal traction is given by
fn (R) = k

r11r22 (r33−1)
2 and the magnitude of the tangential traction

by ff (R) =
γ

r11r22

√
r213 + r

2
23. If f̂f ≤ cF f̂n is violated, we uniformly

scale r13 = cf
f̂n
f̂f
r̂13 and r23 = cf

f̂n
f̂f
r̂23 so that ff = cF fn . We only

change the r13 and r23 components, as these represent shearing
along the surface of the cloth. Furthermore only the magnitude of
the tangential traction should change, and not the direction, which
explains the uniform scale. Note that the return mapping is inde-
pendent of the choice of in-plane energy h(R1). E.g., one could use
the in-plane surface energy from [Baraff and Witkin 1998] instead.
See Figure 16, for an illustration of the return mapping.

4.5.2 Curves. Many fibrous materials will have anisotropic fric-
tion, for examplemost hair is smoother along the fiber direction than
perpendicular to it. For this reason, we use an anisotropic friction
law, that is stricter and moreover easier to apply. Let σi j = qTi σqj be
the entries ofσ in theQ basis, and J2 = (σ22−σ33)2+4σ23. Then our
conditions are

√
J2 +

α
2 (σ22 + σ33) ≤ 0, which is Mohr-Coulomb in

the q2, q3 plane, and
√
σ 212 + σ

2
13 +

β
2 (σ22 +σ33) ≤ 0 which controls

the friction along the fiber. Where α and β are material parameters,
larger α increases friction perpendicular to the fibers, and larger β
increases friction along the fiber.
To see that these stricter conditions imply that s(n,θ )Tσn +

cF nTσn ≤ 0, with cF = α + β . Observe that the direction s(n,θ ),
can be written as cq1 + sq̂, where c2 + s2 = 1, and q̂ is in the q2,
q3 plane. Thus ff − cF fn ≤ |qT1 σn| + |q̂

Tσn| + cF nTσn. Note that
|q̂Tσn| + cF nTσn ≤

√
J2 +

cF
2 (σ22 + σ33), from the derivation of

2D Mohr-Coulomb in Klar et al. [2016]. Therefore ff − cF fn ≤
√
J2 +

α
2 (σ22 + σ33) +

√
σ 212 + σ

2
13 +

β
2 (σ22 + σ33), which is less or

equal to 0 by assumption.
To enforce these constraints we first perform the 2D volume pre-

serving return mapping from Klar et al. [2016] on R̂3. This is easiest
to describe in terms of ϵ̂1 and ϵ̂2, the logarithms of the singular val-
ues of R̂3 = U exp(ϵ̂ )VT , (with ϵ̂1 > ϵ̂2). First we check if ϵ̂1+ ϵ̂2 ≥ 0,
in which case the hair has expanded laterally and no friction should

occur and ϵ1 = ϵ2 = 0. Otherwise we check
√
Ĵ2 +

α
2 (σ̂22 + σ̂33) ≤ 0,

if so no plasticity occurs and ϵ1 = ϵ̂1 and ϵ2 = ϵ̂2 . Otherwise plastic
flow occurs and we set ϵ1 = ϵ̂1 − η, ϵ2 = ϵ̂2 − η, which will preserve
ϵ1 + ϵ2 = ϵ̂1 + ϵ̂2. We choose η = ϵ̂1−ϵ̂2

2 + αλ
4µ (ϵ̂1 + ϵ̂2) to make

√
J2 +

α
2 (σ22 + σ33) = 0. We then construct R = U exp(ϵ )VT . Then

we check the condition
√
σ̂ 212 + σ̂

2
13 +

β
2 (σ̂22 + σ̂33) ≤ 0 for shearing

tangent to the fibers, and if violated scale r12 = ζ r̂12 and r13 = ζ r̂12,
to satisfy

√
σ 212 + σ

2
13 +

β
2 (σ22 + σ33) = 0, i.e. ζ = − β (σ̂22+σ̂33 )

2
√
σ̂ 2
12+σ̂

2
13

.

5 RESULTS
We list the runtime performance for all of our examples in Table 2.
The parameter choices are given in Table 1. All simulations are run
on Intel Xeon E5-2690 V2 with 19 threads.

5.1 Effect of friction
In Figure 12, we simulate 2D curves with different friction coeffi-
cients dropping on a block. Internal friction is naturally controlled
via adjusting cF .

5.2 Cloth
We demonstrate the efficacy of our surface elastoplasticity model by
simulating cloth triangulated surfaces in various scenarios involv-
ing numerous self collisions (Figure 1, 4, 3, 14). Our elastoplasticity
model successfully resolves frictional contacts with a modest com-
putational cost. Notably, the run time does not typically grow with
the number of colliding primitives. For most cloth examples, we

ACM Transactions on Graphics, Vol. 36, No. 4, Article 152. Publication date: July 2017.



152:12 • Jiang, C. et al.

Fig. 17. A character wearing a knitted poncho performing a jumping motion.
Our fiber elastoplasticity model captures detailed frictional contact behavior
at the yarn level with multiple fiber threads per yarn. The simulation runs
at 1 minute per frame on average.

choose zero friction (cF = 0 and γ = 0) to enable smooth sliding
between cloth pieces.

5.3 Knitted garments, hair and fibers
We demonstrate the fiber elastoplasticity with yarn level simulation
of knitted fabric. We can even simulate multiple threads per yarn.
We use the mesh models from Cirio et al. [2014] and Yuksel et
al. [2012] and simulate different examples including dropping a
sweater (Figure 7), a jumping character wearing a poncho (Figure
17), twisting a knitted cloth with a cylinder (Figure 5), and hitting a
knitted cloth curtain with a ball (Figure 14). By accurately capturing
frictional contact between yarns, our method naturally reproduces
anisotropic stretching behaviors governed by knit patterns (Figure
15). Our fiber model is also suitable for simulating hair (Figure 13),
shag carpet (Figure 2) and other fibrous materials (Figure 6). We
simulate every single strand in these examples. Our method scales
well regardless of the complexity of segment contacts. We use RPIC
damping for stablizing the simulations under large timesteps.

5.4 Two-way coupling
Like other MPM solvers, our method naturally handles multiple
material coupling without requiring any additional treatment. The
constitutive model is defined on each particle. A sand column with
7M particles couples with a piece of cloth, as shown in Figure 9
and Figure 1. In the attatched video we selectively colored the sand
particles white based on their location in the final frame to spell out
the word SIGGRAPH. We simulate a cloth curtain getting hit by a
ball while interacting with sand/goo in Figure 19. In Figure 18, we
drip viscous green slime into an elastic bear geometry. A relatively
high collision stiffness (k) is set on the cloth to prevent sand from
sticking to it.

5.5 Comparison with previous MPM methods
We compare the result of our method with other MPM approaches
by simulating multiple curves dropping onto a block (Figure 10).
Traditional meshless MPM as in Stomakhin et al. [2013] causes
numerical fracture of the material. The method of Jiang et al. [2015]
only models the manifold stress response, resulting in unnatural

clumping and numerical cohesion of curves. With our method, if
we only apply elasticity, curves successfully separate from each
other but exhibit excessive frictional effects. When we adopt the full
elastoplasticity model, the dynamics becomes natural and realistic,
and exhibits a smooth frictional sliding appearance.

6 LIMITATIONS AND FUTURE WORK

6.1 Limitations
Our method uses a regular grid to resolve material interactions.
The apparent thickness of the surface/curve depends on the grid
resolution and on the repulsion energy model. If the grid resolution
is too large, there can be some artifacts, mostlymanifest as numerical
separation where particles tend to stay separated by an amount
about half a grid cell width or numerical stickiness where the motion
of the grid is not accurate enough to resolve the proper behavior.
Therefore it is difficult to simulate perfectly frictionless materials
and it is difficult to control the apparent thickness independent
of the grid. Furthermore the method works best if the size of the
surface or curve elements is at most the size of the grid spacing.
A mesh that is too fine compared to the grid may cause persistent
wrinkles. A mesh that is too coarse compared to the grid may cause
self penetration because the material coverage is not resolved well
enough on the grid. When penetration accidentally happens (due to
∆t being too big), it has a chance of being resolved because elasticity
will still penalize that inverted collision direction. In practice we
try to prevent this from happening by enforcing the CFL condition
when choosing ∆t . We note that this often requires rather small
time steps and increases the overall run time.

While clearly quite different from traditional purely Lagrangian
cloth solvers, our method has many aspects that are analogus to
their standard components. For example, when we transfer from par-
ticles to grid, we essentially determine local neighbor information.
This is analogus to e.g. bounding box hierarchy proximity queries
in a traditional approach. Furthermore, our penalty on compression
in the normal direction is analogus to repulsion springs commonly
used in Lagrangian approaches. Notably, we have no fail-safe to
prevent self penetration when the repulsions fail. We note that in
general for high grid resolution simulation, our approach likely
requires smaller time steps since it does not have fail-safes. Interest-
ingly though, our performance is still very competative for the high
resolution examples. E.g., for the cloth curtain example (Fig. 14),
we achieve computation times of 2 minutes per frame on average
for 1.8 million triangles. Selle et al. [2009] run the same benchmark
with 1.7 million triangles with an average frame computation time
of 45 minutes using 16 processors. Tang et al. [2016] are able to run
the same example at 35 seconds per frame with 1 million triangles
on the GPU. We are also competative with adaptive approaches in
Narain et al. [2012].

6.2 Future work
Our method tends to scale as well as the particle-grid transfers.
Currently, we parallelize this process over multiple CPU threads. In
the future, we believe significant performance gains can be achieved
with a GPU implementation. Also, our discretization of surface
elasticity although derived from a continuum, resembles a Mindlin
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Fig. 18. Our method naturally handles two-way coupling of solids and fluids, as demonstrated with green slime and a cloth bear.

Fig. 19. Top: A cloth curtain is hit by a ball and couples with sand. Bottom: A cloth curtain is hit by a ball and couples with blue goo.

Reissner plate model [Mindlin 1951], in that material local to the
surface moves in straight lines with the normal. Thus it would be
interesting future work to investigate a continuum based bending
model that works with this view.
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