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Figure 1: APIC/PIC blends yield more energetic and more stable behavior than FLIP/PIC blends in a wine pour example. APIC/PIC blends
are achieved analogously to FLIP/PIC in that it is a scaling of the particle affine matrices. c©Disney.

Abstract

Hybrid Lagrangian/Eulerian simulation is commonplace in com-
puter graphics for fluids and other materials undergoing large de-
formation. In these methods, particles are used to resolve transport
and topological change, while a background Eulerian grid is used
for computing mechanical forces and collision responses. Particle-
in-Cell (PIC) techniques, particularly the Fluid Implicit Particle
(FLIP) variants have become the norm in computer graphics cal-
culations. While these approaches have proven very powerful, they
do suffer from some well known limitations. The original PIC is
stable, but highly dissipative, while FLIP, designed to remove this
dissipation, is more noisy and at times, unstable. We present a novel
technique designed to retain the stability of the original PIC, with-
out suffering from the noise and instability of FLIP. Our primary
observation is that the dissipation in the original PIC results from
a loss of information when transferring between grid and particle
representations. We prevent this loss of information by augmenting
each particle with a locally affine, rather than locally constant, de-
scription of the velocity. We show that this not only stably removes
the dissipation of PIC, but that it also allows for exact conservation
of angular momentum across the transfers between particles and
grid.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation;

Keywords: PIC, FLIP, MPM, fluids, physically-based modeling,
coupling

1 Introduction

Simulating natural phenomena for virtual worlds and characters is
an important application that remains extremely challenging. An
artist’s need to manipulate and comprehend physical simulations
imposes a significant constraint, all but requiring simulation meth-
ods to involve Lagrangian particles. In addition, the need for com-
putational efficiency, topology change and numerical stability has
led engineers toward hybrid Lagrangian/Eulerian methods. This
is the cause of the ubiquity of incompressible FLIP for simulat-
ing liquids in visual effects [Zhu and Bridson 2005]. While such
hybridizations solve some problems they also create numerous dif-
ficulties. Specifically, while the hybridization allows numerical al-
gorithms to be done in the most appropriate representation, trans-
ferring between representations creates error. In this work we show
how that error can be minimized with minimal effort.

While our approach will apply to a wide range of continuum phe-
nomena, for simplicity, first consider fluid simulation. Here, pres-
sure and viscosity updates are best done on an Eulerian grid while
advection is best done with Lagrangian particles. The first and sim-
plest method of this type is Particle-In-Cell (PIC) [Harlow 1964;
Harlow and Welch 1965]. While this method is remarkably ef-
fective and simple to implement, it suffers from significant dis-



Figure 2: We compare against FLIP and APIC with a granular
material example. Here, a red cube of sand is dropped onto a torus
causing it to exhibit interesting flow patterns. APIC appears more
like a fine powder—while FLIP suffers from excessive noise and
instability. The dissipative nature of PIC causes the sand to clump
together, giving it a wet look that also plagues the FLIP/PIC blend.
c©Disney.

sipation (viscous appearance) due to frequent particle/grid trans-
fers. Dissipation is addressed in the Fluid-Implicit-Particle (FLIP)
method [Brackbill and Ruppel 1986; Brackbill et al. 1988]. The
main idea is to transfer increments of velocities and displacements
from grid to particles, rather than directly interpolating from the
grid. Intuitively, if there is only a small offset, only a small cor-
rection will be made, typically reducing the dissipation. Unfortu-
nately, there are other errors besides dissipation inherent to hybrid
Lagrangian/Eulerian material representations.

Specifically, the mismatch in particle and grid degrees of freedom
leads to a loss of information. Since there are often more particles
than grid nodes, some particle modes are not seen by the grid and
get no physical response. This is the so-called “ringing instability”
(see Figure 4) which was first-discovered in PIC [Brackbill 1988]
but is even more-pronounced in FLIP [Love and Sulsky 2006]. In-
tuitively, this problem is worse in FLIP, because in PIC, particle-
to-grid transfer followed by grid-to-particle transfer is a true filter-
ing of the instability. However, while PIC forces all information
through the grid, FLIP preserves some particle information which
allows the instability to persist and grow unpredictably over mul-
tiple time steps. This might lead one to believe that the ringing
instability should not exist for PIC, however it does to a lesser ex-
tent since movement of particles re-creates the instability in the next
time step. In graphics simulations these instabilities lead to practi-
cal particle positional artifacts such as noise, clumping and volume

Figure 3: We compare APIC with PIC, FLIP and FLIP/PIC blends
for an MPM simulation of granular materials. Notice PIC and
FLIP/PIC blend are stable but exhibit overly viscous behavior,
while pure FLIP is unstable and noisy as evidenced by stray parti-
cles and excessive mixing. APIC however is both stable and nearly
dissipation free. c©Disney.

change.

A particularly problematic artifact of the dissipation with the tra-
ditional PIC approach is loss of angular momentum. The standard
PIC transfer from grid to particles dissipates a significant amount of
angular momentum, which leads to serious rotational artifacts (see
Figure 4). Objects in free fall disturbingly stop rotating as if under
the action of a viscous fluid drag. While FLIP was developed to
reduce the dissipation of PIC, it also greatly improves the angular
momentum conservation. However, FLIP will only guarantee exact
conservation of angular momentum with the use of a non-diagonal
(consistent) mass matrix, which is not possible in practice since the
consistent mass matrix can be singular for some configurations of
the particles [Love and Sulsky 2006]. This can be remedied in prac-
tice by using an effective mass matrix equal to a weighted average
of a lumped mass matrix and the consistent mass matrix, and while
this does not perfectly conserve angular momentum, it is still a vast
improvement over the original PIC [Love and Sulsky 2006].

In graphics Zhu and Bridson [Zhu and Bridson 2005] advocate
blending between pure PIC and FLIP to stabilize the simulator.
While this does produce more stable behavior, it re-introduces dis-
sipation and may require manual tuning of the blend weights on a
case-by-case basis. The problem is particularly bad for thin sheets
of fluid. This has been addressed in a number of ways includ-
ing increasing resolution and adaptivity [Hong et al. 2008b; Hong
et al. 2009; Ando and Tsuruno 2011; Ando et al. 2012; Ando et al.
2013]. For similar reasons, Um et al. develop a sub-grid-cell cor-
rective forcing procedure to prevent particle bunching in [Um et al.
2014]. Also, Edwards and Bridson add a regularization term to di-
minish particle noise not corrected by the grid [Edwards and Brid-
son 2012].

The current state leaves us with the difficult choice for every simu-
lation we run: (1) bias our simulation toward PIC, effectively avoid-
ing instability at the expense of dissipation, or (2) bias our simula-
tion toward FLIP, getting more lively simulations at the expense of
noise and possible unstable behavior. In this paper we present a
third option. In particular, we control noise by keeping the pure
filter property of PIC but minimizing information loss by enriching
each particle with a 3×3 matrix giving locally affine (rather than lo-
cally constant) description of the flow. This Affine Particle-In-Cell
(APIC) method effectively reduces dissipation, preserves angular
momentum and prevents instabilities. Furthermore, we demonstrate
that the method is applicable to both incompressible liquids and
Material Point Method (MPM) simulations [Sulsky et al. 1995].



Figure 4: For illustration, we compare performance with some simple 2D examples. The top row compares the methods in a dam break,
free surface test. Note that APIC preserves more vorticity than even pure FLIP, while also remaining less noisy. The second row illustrates
the angular momentum conservation properties of the methods. The blue spiral indicates how far the circle has rotated. The bottom row
illustrates the ringing instability. Note that for pure FLIP, the velocities are large on particle but zero when transferred to grid.

2 Previous work

PIC/FLIP: Foster and Metaxas first introduced PIC techniques
to computer graphics with liquid simulation [Foster and Metaxas
1996]. Zhu and Bridson popularized the now widely-used linear
combination of FLIP and PIC [Zhu and Bridson 2005]. Bridson et
al. developed a number of extensions to [Zhu and Bridson 2005], in-
cluding improved treatment of boundary conditions in irregular do-
mains and coupling with rigid bodies [Batty et al. 2007], viscosity
treatment [Batty and Bridson 2008], Discontinuous-Galerkin-based
adaptivity [Edwards and Bridson 2014], multiphase flow [Boyd and
Bridson 2012] and higher-order accuracy [Edwards and Bridson
2012]. Notably, the approach of Edwards and Bridson in [Edwards
and Bridson 2014] is similar to ours in that both can be seen to im-
prove results by using more data per cell. [Cornelis et al. 2014] cou-
ple high-resolution FLIP with a low-resolution implicit Smoothed
Particle Hydrodynamics (SPH) from [Ihmsen et al. 2013]. Ger-
szewski and Bargteil use mass-full FLIP with a unilateral incom-
pressibility constraint to resolve large-scale splashing liquids [Ger-
szewski and Bargteil 2013]. Narain et al. also use FLIP techniques
for the simulation of sand dynamics [Narain et al. 2013]. Stom-
akhin et al. use MPM to simulate snow [Stomakhin et al. 2013] and
melting/freezing [Stomakhin et al. 2014].

Figure 5: Here we compare the methods on a fountain simulation
of free-surface flow. The top row shows that while APIC and FLIP
are the least dissipative in the initial stages, the FLIP surface is al-
ready displaying a noisy leading edge relative to the more smoothly
resolved APIC. The bottom row shows that the entire surface of the
fountain becomes noisy with FLIP in the later stages. c©Disney.

Level Sets: Many other graphics approaches utilize similar hybrid
particle/grid data structures, particularly for resolving free-surface
flows. [Enright et al. 2002] use Lagrangian marker particles to im-
prove the accuracy of the level set method for free-surface flows
with the Particle Level Set Method (PLS). [Mihalef et al. 2007]
take a similar approach but concentrate particles directly on the
zero isocontour of the level set. Patkar et al. couple Lagrangian
particles with the Particle Level Set Method [Enright et al. 2002] to
simulate compressible bubbles in incompressible flow [Patkar et al.
2013]. Kim et al. explore further use of the escaped particles from
[Enright et al. 2002] in [Kim et al. 2006]. Song et al. apply the
Constrained Interpolation Profile (CIP) [Yabe et al. 2001] approach
with [Enright et al. 2002] by allowing particles and grid to store
velocity and level set derivative information in [Song et al. 2009].

Hybrid particle/grid: Several works couple SPH with grid-based
techniques [Losasso et al. 2008; Hong et al. 2008a; Lee et al. 2009;
Gao et al. 2009; Zhu et al. 2010; Raveendran et al. 2011]. Sin
et al. couple particles with a Voronoi grid-based pressure projec-
tion [Sin et al. 2009]. Feldman et al. simulate explosions with a
particle-based advection and grid-based pressure solve [Feldman
et al. 2003]. Chentanez et al. couple Lagrangian particles with
shallow water and semi-Lagrangian techniques to adapt level of de-
tail in [Chentanez and Muller 2010; Chentanez and Muller 2014]
and use particle reseeding for sub-cell detail [Chentanez and Muller
2011]. Muller et al. in [Muller et al. 2015] recently developed an
SPH approach that augments particles with a sample of angular mo-
mentum. This is similar in spirit to some aspects of our approach.
However, because their method is SPH based they do not use a grid
and thus they do not use this to define particle-grid transfers. In
contrast, we only use this information to improve transfers.

3 Method Outline

A Lagrangian/Eulerian hybrid simulation time step follows a sim-
ilar pattern regardless of whether one is simulating fluids with in-
compressible FLIP or solids with MPM. Abstractly, kinematic steps
are done on particles and dynamic steps are done on the grid. The
exact form of those steps may be different with each phenomenon,
and one can see examples of a canonical fluid loop in [Zhu and
Bridson 2005] or MPM loop in [Stomakhin et al. 2013]. As such
the basic timestep loop for PIC, FLIP and our method is shown



Figure 6: We compare APIC with FLIP and PIC during a lava
in free-fall example. Pure FLIP is unstable which leads to parti-
cles exploding out from the interior. FLIP/PIC blends do not suffer
from this, but they cannot resolve the detailed flows shown in APIC.
c©Disney.

in Figure 7. The only difference between the methods is how the
transfer between grid and particles is done. This difference is the
focus of our paper.

PIC is the canonical technique for coupling, and its diagram clearly
shows that all data flows through the grid, and in fact the transfer
from particle to grid is a prefilter to the grid dynamics. By contrast,
even though FLIP has the same prefilter when going from particles
to the grid, it introduces an additional data path directly from the
original particle state. The advantage is less dissipation, but the
disadvantage is an unsafe path that can lead to instability. We will
show that this path is not the only way to reduce dissipation. In fact,
we show that we can obtain low-dissipation simulations while still
maintaining the safety of the PIC filtering scheme.

The key observation is that normally a single particle receives data
from multiple grid points, but it is typically forced to reduce those
influences to a single constant value, leading to loss of information
(e.g. dissipation). In Section 5 we develop two approaches for en-
riching particles to avoid this loss. Rigid Particle-in-cell (RPIC) is
introduced in Section 5.2, and it augments each particle with the an-
gular momentum lost in the grid to particle transfer. Unfortunately
this is insufficient because shearing modes are still lost. This leads
to our final method Affine Particle-in-cell (APIC) in which particles
are endowed with a full affine representation of the local grid data,
which we discuss in Section 5.3.

With our transfer technique developed, we show how to apply it to
fluids in Section 6. In Section 7, we include a novel Lagrangian
coupling technique for simulating a wide range of interesting be-
haviors that were impractical without APIC. Lastly, we demonstrate
this method on a range of interesting materials in Section 8.

4 Notation

Before describing out method in detail, we begin by laying out the
notation that we use in this paper. Many quantities have subscripts
(mp), and some have superscripts as well (vnp ). Subscripts p and q
are used to refer to particles, and subscripts i and j are used to refer
to regular grid indices. When dealing with MAC grids, the subscript
a refers to an axis direction (ea, where a ∈ {1, 2, 3} in 3D), and
faces are referred to by cell index and axis (mn

ai). The superscript
distinguishes quantities available or computed at the beginning of
the time step (vnp ) from quantities that are computed for use at the
beginning of the next time step (vn+1

p ). We use lowercase bold
for vectors (vnp ) and uppercase bold for matrices (Bn

p ), with the

Symbol location type meaning
mp p s mass
xnp p v position
vnp p v velocity
Fp p m deformation gradient
fp p v force
ωnp p v angular velocity
Lnp p v angular momentum
Kn
p p m inertia tensor

Bn
p p m affine state

Cn
p p m velocity derivatives

cnpa p v velocity derivatives (MAC only)
Dn
p p m inertia-like tensor

mn
i n s mass

xi n v position
vni n v velocity

ṽn+1
i n v intermediate velocity
fi n v force
wnip n+p s weights
∇wnip n+p v weight gradients
mn
ai f s mass

xai f v position
vnai f s velocity
ṽn+1
ai f s intermediate velocity
wnaip f+p s weights
∇wnaip f+p v weight gradients

Φ g s total potential energy
LP,ntot g v total particle angular momentum
LG,ntot g v total grid angular momentum
N(x) g s interpolation kernel
∆x g s grid spacing
ea g v axis vector
v∗ g m cross product matrix of v
ε g t permutation tensor
I g m identity matrix

Table 1: Summary of notation used in this paper. Locations are p
(particle), n (regular grid node), f (MAC face center), or g (global;
does not live at any location in space). Quantities are of type s
(scalar), v (vector), m (matrix) or t (rank-3 tensor).

exception of angular momentum, a vector quantity that is normally
denoted by Lnp . The notation we use is summarized in Table 1.

5 Particle-grid transfers

5.1 PIC

The standard PIC routine stores massmp, position xnp , and velocity
vnp . Note that mp lacks a time n superscript because it is never
changed to ensure mass conservation. Each time step begins with a
transfer of mass and momentum from particles to a collocated grid
according to

mn
i =

∑
p

wnipmp, mn
i v

n
i =

∑
p

wnipmpv
n
p , (1)

where wnip = N(xnp − xi) are our interpolation weights and xi
denote the regular Cartesian grid node locations. With mass and
momentum on the grid, we apply forces to the velocities in a grid-
based update, vni → ṽn+1

i . Note that we have used ṽn+1
i rather

than vn+1
i to distinguish them from vni at the next time step. Fi-

nally, we interpolate the velocity back to particles with

vn+1
p =

∑
i

wnipṽ
n+1
i . (2)
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Figure 7: (a) The traditional view of PIC is of a grid filter, which averages particles to a grid node. (b) An equivalent view is of a filter on
particles, which assigns contributions to particles. With this view, particles are naturally fuzzy and have size, which makes it meaningful for
particles to have properties like angular momentum. (c) The basic dataflow of various hybrid particle/grid simulation techniques. Both our
method and PIC gain stability by using a true filtering transfer.

A major problem with PIC is that it severely damps rotational mo-
tion. We can get some insight into this by considering the angular
momentum conservation properties in the transfers. Note that lin-
ear momentum is conserved by both transfers. The total angular
momentum over the particles and grid at time tn are given by

LP,ntot =
∑
p

xnp ×mpv
n
p LG,ntot =

∑
i

xi ×mn
i v

n
i . (3)

While the transfer from particles to the grid conserves angular mo-
mentum, the transfer from the grid back to particles does not. This
loss of angular momentum manifests as rotational motion damping
(see Figure 4).

5.2 Rigid Particle-In-Cell (RPIC)

In our efforts to reduce the information loss when transferring from
particles to grid and vice versa, we first develop modifications to the
original PIC transfer designed to facilitate conservation of angular
momentum in the grid to particle transfer. Consider the case of a
single particle. PIC typically transfers information to multiple grid
locations since wnip is generally non-zero for a few grid nodes at a
time. Thus, even for a single particle of material, its corresponding
representation on the grid is capable of storing angular momentum
(by virtue of consisting of multiple grid nodes). However, one par-
ticle is incapable of representing angular momentum. Therefore,
to improve the compatibility of the particle representation with the
grid representation, we can additionally store a sample of local an-
gular momentum Lnp on each particle. This way, even in the case of

Figure 8: APIC resolves the complex free-surface dynamics of a
rushing river on a rocky terrain. c©Disney.

one particle, we can prevent the loss of angular momentum when
transferring from grid to particle.

The angular momentum that would normally be lost in the transfer
from grid to particles is

Ln+1
p =

∑
i

wnip(xi − xnp )×mpṽ
n+1
i . (4)

With this definition, the total angular momentum on particles be-
comes

LP,ntot =
∑
p

(xnp ×mpv
n
p + Lnp ). (5)

Also, with this definition, the transfer from grid to particles trivially
conserves angular momentum. Next, we must define the transfer
from particles to the grid. If we consider the particles to be rigid
bodies with inertia tensors Kn

p , then we can define the angular ve-
locity ωnp = (Kn

p )−1Lnp . The rigid body’s local velocity at a grid
node is vnp +ωnp × (xi − xnp ), which suggests the natural transfer

mn
i v

n
i =

∑
p

wnipmp(v
n
p + ((Kn

p )−1Lnp )× (xi − xnp )), (6)

One may imagine this transfer as distributing the masses wnipmp

from the rigid body to the grid node i. This suggests using

Kn
p =

∑
j

wnjpmp(xj − xnp )∗(xj − xnp )∗T (7)

for the rigid body’s inertia tensor, where v∗ is the cross-product
matrix associated with vector v. Performing the transfer from par-
ticles to grid in this way conserves angular momentum as shown in
a supplementary document.

Figure 9: APIC can handle non-uniform particle distributions. It
rotates cleanly even when the particle distribution is higher near
the boundary, such as in this example where particle sampling (and
mass) is quadrupled in a thin band near the interface.



Figure 10: We compare APIC with FLIP and PIC in a high energy collision example. APIC resolves interesting spiral shedding behavior
that the other methods cannot. c©Disney.

5.3 Affine Particle-In-Cell (APIC)

While the piecewise rigid formulation corrects rotational artifacts
arising from loss of angular momentum in PIC, it still damps out
non-rigid motions such as shearing (see supplemental video). We
can extend the idea of enriching our velocity representation to han-
dle shearing modes by idealizing the velocity as locally affine on
each particle. This requires the introduction of a matrix Cn

p , and
the local velocity represented by a particle at the grid node xi is
then vnp +Cn

p (xi−xnp ). This can be used to define a transfer from
particles to grid as in the piecewise rigid case. However, uniquely
defining the nine components of Cn

p from the three components of
Lnp as in the piecewise rigid case is not possible, which complicates
the process of deriving the transfer from grid to particles.

An important feature of the piecewise rigid formulation is that
translational and rotational velocity fields are transferred exactly
from particles to the grid and vice versa. Rather than explicitly
trying to conserve angular momentum in the transfer from grid
to particles, we seek to preserve affine velocity fields across both
transfers. However, we show that a simple solution derived from
the preservation of affine velocity fields also conserves angular mo-
mentum in a supplementary document.

The transfer from particles to grid is motivated analogously to the
piecewise rigid case and is of the form

mn
i v

n
i =

∑
p

wnipmp(v
n
p + Bn

p (Dn
p )−1(xi − xnp )), (8)

where Cn
p = Bn

p (Dn
p )−1 and Dn

p is analogous to an inertia tensor.
Dn
p is given by

Dn
p =

∑
i

wnip(xi − xnp )(xi − xnp )T (9)

and is derived by preserving affine motion during the transfers. The
corresponding transfer from the grid back to particles is

Bn+1
p =

∑
i

wnipṽ
n+1
i (xi − xnp )T . (10)

To discuss the angular momentum conservation properties of the
transfer, we must first define angular momentum over the new par-
ticle state. A natural definition is the angular momentum on the grid
after the transfer in Equation 8. This takes the form

Memory Consumption PIC/FLIP Blend
Simulation Particles FLIP Base Affine Overhead 1.00 0.99 0.95 PIC APIC
Wine 4.3× 104 360 MB 1.5 MB 1.2 1.1 1.1 1.0 1.1
River 1.4× 106 2.2 GB 50 MB - 1.0 1.1 1.0 1.2
Collision 1.1× 106 296 MB 40 MB 9.5 3.2 1.5 1.0 5.0
Lava free-fall 1.9× 106 511 MB 68 MB 2.5 1.1 0.9 1.0 1.3
Water fountain 3.4× 105 677 MB 12 MB 1.1 1.2 1.5 1.0 1.0
Sand incline 2.9× 105 78 MB 10 MB 4.0 1.9 1.5 1.0 2.2

Table 2: Performance statistics for our 3D simulations. The last
five columns present runtimes as a multiple of the runtime for the
PIC simulation to eliminate the performance impact from our par-
ticular simulator. Typically simulation performance is correlated to
CFL, thus unstable and lively simulations take longer.

LP,ntot =
∑
p

mp(x
n
p × vnp + (Bn

p )T : ε), (11)

where ε is the permutation tensor. We take the convention that
A : ε means the same thing as Aαβεαβγ . Note that the skew-
symmetric component of Bn

p contains all of the angular momen-
tum information. In this way, it is analogous to Lnp = Kn

pω
n
p

which combined with Bn
p = Cn

pD
n
p illustrates that Dn

p is analo-
gous to the inertia tensor. Using this definition, conservation during
transfer from particles to grid is automatic. We show that angular
momentum is conserved during the transfer from grid to particle in
a supplementary document. We note that momentum conservation
allows us to resolve rotations correctly; we do not rely on uniform
sampling or fortuitous cancellation to achieve this (See Figure 9).

Note that despite these similarities (9) this is not quite the same
as (7), and Dn

p does not strictly speaking have the properties of
an inertia tensor. Conveniently, Dn

p takes on a surprisingly simple
form in the case of the quadratic (Dn

p = 1
4
∆x2I) and cubic (Dn

p =
1
3
∆x2I) interpolation stencils commonly used for MPM. Note that

for these interpolating stencils, multiplying by (Dn
p )−1 amounts to

a constant scaling factor. For trilinear interpolation, a complication
arises since Dn

p may be singular if a particle lies on a grid facet
(node, edge or face). However, in the special case of a trilinear
stencil, we have the convenient identity wnip(D

n
p )−1(xi − xnp ) =

∇wnip, which allows us to avoid this numerical difficulty entirely
since Equation 8 can be readily evaluated without forming (Dn

p )−1.

6 Fluids
To apply these ideas to MAC-based fluid simulations, we formulate
a set of transfers between particles and MAC faces. Instead of ma-
trix Bp, we store three vectors per particle denoted by cpa, where
a represents an x, y or z face direction. We transfer from particles
to faces using

mn
ai =

∑
p

mpw
n
aip (12)

mn
aiv

n
ai =

∑
p

mpw
n
aip(e

T
a v

n
p + (cnpa)T (xai − xnp )) (13)

Figure 11: An APIC coupled simulation of elastoplastic frozen yo-
gurt and elastic cloth where coupling is achieved using our MPM
approach with Lagrangian energy-based forces. c©Disney.



Figure 12: We compare APIC with FLIP and PIC using the Lagrangian force model from Section 7 and a collision scenario with significant
angular momentum. APIC preserves angular momentum better than even pure FLIP, and is at the same time the most stable of the various
options. In the bottom row we show that the cube surface remains smooth after collision with APIC relative to the behavior of FLIP. c©Disney.

and from faces to particles using

vn+1
p =

∑
a,i

wnaipṽ
n+1
ai ea and cn+1

pa =
∑
i

∇wnaipṽn+1
ai . (14)

Here, xai is the location of a MAC face associated with direction
a. The weights are wnaip = N(xai−xnp ), whereN(x) is chosen to
be the trilinear interpolation kernel. mn

ai and vnai are the mass and
velocity component on the MAC face, and cnpa is a vector per axis,
notably requiring the same amount of storage as the collocated case.
Incompressibility is enforced in the standard way [Bridson 2008].

7 Lagrangian forces

Here we describe a new useful model for MPM force computation
that we used in a few of our examples. The discussion in this section
is independent of grid-particle transfers and works with even the
traditional PIC/FLIP based MPM.

For most of our simulations, we compute forces as in [Stom-
akhin et al. 2013]. This approach has the advantages of a mesh-
free method, such as effortless topology change. For objects that
are not intended to undergo topology change, a meshed approach
is also available using the ideas in [Sifakis et al. 2007]. In this
case, we can use any Lagrangian force model (springs, finite ele-
ments, etc.) for which we can write down total potential energy
Φ(xp). Corresponding to this Lagrangian force model, we com-
pute forces fp = − ∂Φ

∂xp
. We also assume that given any vector

δuq on particles we can multiply by force derivatives ∂fp
∂xq

to ob-

tain δfp =
∑
q

∂fp
∂xq

δuq . Since these force-related constructs are
purely Lagrangian and are computed in the usual way, we will not
elaborate on them here.

Although we have defined our mesh-based forces as Lagrangian
forces, we must still apply them through the grid. We must describe
how particle positions xp relate to our (conceptually) moving grid
nodes xi so that forces can be evaluated. Then, we must compute
fi from fp and find a means of computing δfi given δui. Doing this
allows us to use Lagrangian forces as Eulerian forces. Comparing

our update rules for xp and xi we find xp =
∑
i w

n
ipxi. Using the

chain rule,

fi =
∑
p

wnipfp δfi =
∑
p,q,j

wnip
∂fp
∂xq

wnjqδuj . (15)

Although this formula is written with three nested summations, the
computation can be done efficiently by computing the summations
consecutively. Since these forces are applied to the grid, both the
MPM and Lagrangian approaches can be employed in the same
simulation. Each particle is labeled as an MPM particle or a meshed
particle. Note that the deformation gradient Fnp stored on meshed
particles is never used, since for those particles this quantity is com-
puted using the mesh. This provides an effective means of coupling
MPM with mesh-based approaches, such as shown in Figure 11.
This gives the precise surface tracking of Lagrangian techniques
coupled with the automatic collision handling of Eulerian grids.

8 Results

Free-surface flow: The most common graphics application of PIC
and FLIP is free-surface incompressible flow (Figure 8). We com-
pare APIC with pure FLIP, PIC and FLIP/PIC blends in a number of
free-surface calculations. Figure 5 shows a comparison with a foun-
tain example. The top row (earlier time) shows that while APIC and
FLIP start as the least dissipative, the FLIP surface is already dis-
playing a noisy leading edge relative to the more smoothly resolved
APIC. PIC is the most damped, and any amount of PIC/FLIP blend-
ing leads to a damped leading edge position. The bottom row (later
time) shows that FLIP simulates a noisy surface which is still vis-
ible on FLIP/PIC blends. In Figure 1 we demonstrate the behav-
ior of APIC/PIC blends compared to FLIP/PIC. We note that un-
like with FLIP, pure APIC is clearly superior to APIC/PIC blends.
Note that APIC produces more smooth and stable wine surfaces
than FLIP/PIC blends while simultaneously resolving more ener-
getic splashing behavior than even pure FLIP.

Granular materials: In Figure 3 we compare APIC with FLIP and
FLIP/PIC blends. We model the sand as a granular material using
the constitutive model from [Stomakhin et al. 2013]. We use an



Time

T
o
ta

l 
E
n
e
rg

y

(a) Rotation

Time

(b) Oscillating Circle

Time

(c) Lagrangian Collision

APIC
RPIC
PIC
FLIP
FLIP 0.99
FLIP 0.95

Figure 13: Total energy is plotted over time for the rotation test (a), an oscillating circle test (b), and the Lagrangian collision test (c). Note
that APIC and RPIC are quite effective at resolving rotation, but FLIP is more consistent about retaining energy. FLIP is able to retain
kinetic energy by holding it in transfer null modes, where it is immune to dissipation. This is particularly evident in the Lagrangian collision
test, where FLIP particles have a significant amount of kinetic energy, even though the objects are not moving. Slight energy increases are
observed to occur rarely across the grid update, but energy increase is never observed across the APIC transfers (from grid to particle and
back to grid).

inlet condition at the top of the slide to induce a mixing flow. The
dynamics demonstrate the noise of pure FLIP and the dissipation
of PIC and FLIP/PIC blends. APIC is able to retain the stability
of PIC and FLIP/PIC blends without the excessive dissipation. We
show another comparison with granular materials in Figure 2. Here,
FLIP again exhibits overly noisy behavior. The dissipation in the
PIC method causes the sand to bunch together giving it a wet look.
While the FLIP/PIC blend is more stable than pure FLIP, it also
suffers from the clumping, wet look of PIC. However, APIC stably
resolves the dynamics of a fine powdery sand. In Figure 10 we
show that APIC is better able to retain angular momentum without
the dispersive behavior of FLIP.

Coupling MPM and Lagrangian: We demonstrate the accuracy
and robustness of APIC with a coupling example in Figure 11.
Here we use a traditional MPM discretization of the elastoplastic
constitutive model from [Bargteil et al. 2007] to simulate frozen
yogurt. We couple this with an elastic cloth using the Lagrangian
force model outlined in Section 7. The cloth is modeled using a
standard mass-spring energy. In Figure 12 we show a comparison
using mesh-based cubes with a Lagrangian finite element constitu-
tive model. Here, APIC retains angular momentum and energetic
behavior better than PIC, FLIP, and FLIP/PIC blends. FLIP and
FLIP/PIC blends produce ringing during the collisions between the
cube and the glass plates and flexible block.

Lava: We demonstrate the benefits of APIC for lava flows using the
model from [Stomakhin et al. 2014]. In Figure 16 we show interest-
ing lava flows over a rocky terrain. We directly compare APIC with
FLIP and FLIP/PIC blends in Figure 6. In this example, a spout
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Figure 14: Energy loss per frame is shown (on a logarithmic scale)
for an oscillating circle test, broken down by whether the energy
was lost due to the transfer step or due to grid-based sources such
as the backward Euler step. Total energy loss for the entire simula-
tion due to transfers is 82% for APIC compared to 95% for PIC.

pours lava with cooler, rockier properties near the outer circum-
ference into free-fall. APIC resolves an interesting periodic flow,
while pure FLIP goes unstable, with hotter interior particles noisily
exploding outwards. FLIP/PIC blends stabilize this behavior, but
do not produce flows as detailed as with APIC.

Energy: To explore energy loss, we set up an oscillating circle test
with domain [0, 1] × [0, 1] and resolution 32 × 32 in which we
create a circle centered at (0.5, 0.5) with radius 0.3 by uniformly
sampling four particles per grid cell. The circle has density 2, initial
velocity 〈x − 0.5, 0〉, and the constitutive model from [Stomakhin
et al. 2013] with parameters E = 0.5 and ν = 0.4. Results are
shown in Figure 13 and Figure 14.

9 Discussion and limitations

Although we eliminate nearly all of the artificial dissipation of pure
PIC (see Figure 14 for a detailed comparison), our method neither
improves nor exacerbates the ringing instability. This is quite unlike
FLIP, which avoids dissipation at the cost of losing stability. How-
ever, our method does filter information in the transfer from grid
to particle while FLIP does not. For example Figure 13 shows that
FLIP does a better job than APIC and RPIC preserving energy in
many cases. This could be an advantage for FLIP if stability could
be achieved by some other means.

Another minor disadvantage of the approach is the need to store an
extra matrix per particle and perform a few extra operations during
the transfers. In practice, we have found the extra storage and trans-
fer cost to be negligible as runtime costs are typically dominated
by the magnitude of the velocities and our CFL (see Figure 15 for
timing breakdown over a typical time step and Table 2 for typical
memory usage). PIC tends to be fastest, since it damps out motion
and has the smallest velocities. On the other hand, FLIP tends to
be slowest due to its instability and consequent larger velocities. In
particular, we see that the wine timings in Figure 15 are fairly uni-
form across all methods, because the maximum velocity is similar.
Similarly, unstable FLIP simulations like the high energy collision
tend to be very slow.

It is interesting to note that a stable PIC/FLIP blend often con-
tains artifacts that are desirable, especially in the case of liquids
and wet sand. FLIP in some ways is akin to forcing functions that
are required to make grid-based smoke solvers visually interesting.
We assert, however, that if such instabilities are desirable, the artist
would prefer to create them in a way they desire rather than have
them uncontrollably imposed by the method.
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