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My mathematical research primarily concerns descriptive set theory and its applica-
tions to combinatorics and theoretical computer science.

1 Introduction

1.1 Distributed and LOCAL Algorithms

Distributed computing involves the coordination of computers in a large network to
solve a shared problem. As a prototypical example, consider the network of Wi-Fi routers
in the United States. If all routers operate on the same channel, then a user connected to
one router may experience interference from other nearby routers. Thus, if two routers
are close together, they should operate on different channels.

There is a simple greedy algorithm for assigning channels to routers so that nearby
routers do not interfere: Begin by enumerating the routers. Then, in order, each router
selects the first channel not already chosen by any nearby routers. However, this algorithm
is inefficient. If there are 300 million Wi-Fi routers in the United States, and each router
takes ten seconds to determine the channels on which all nearby routers are operating,
the greedy algorithm will run for nearly 100 years.

The reason for this algorithm’s inefficiency is its nonlocality: Whether or not a specific
channel is available to a given router may depend on the channel assignments of routers
which are arbitrarily far away. It is therefore desirable to study LOCAL algorithms,
in which each router’s channel assignment depends only on other routers within a small
radius. The study of LOCAL algorithms was prompted largely by the seminal 1992 paper
of Linial (|Lin92]) and has since been continued by many theoretical computer scientists
([PS95], BEL3], [CLP20], [GHKM?21]).

In the LOCAL setting, it is often convenient to adopt the language of graph theory. A
computer network may be viewed as a graph in which the vertices are the computers and
two vertices are adjacent if the computers they represent are close together; the channel
assignment problem described above thus becomes a problem of producing a proper graph
coloring, which is a coloring of the vertices of the graph such that adjacent vertices have
different colors.

A LOCAL coloring algorithm for a collection G of finite graphs is a LOCAL algo-
rithm A with the following property: Given a graph G € G, if each vertex in G outputs
the color it computes by executing A, then the coloring of G that results is proper. Note
that each vertex executes the same algorithm. Therefore, it is necessary to break symme-
try; this is typically done by initially assigning an identifier to each vertex using either a
deterministic or a randomized procedure.



1.2 Descriptive Graph Combinatorics

Descriptive set theory is the study of definable subsets of Polish (i.e., separable and
completely metrizable) topological spaces. The meaning of “definable” depends on the
context; notions of definability which interest descriptive set theorists include Borel mea-
surability, p-measurability with respect to a (Borel) measure p, and Baire measurability.
A compelling motivation for studying descriptive set theory is that definable sets enjoy
regularity properties not typically shared by non-definable sets.

A prominent subfield of descriptive set theory is descriptive graph combinatorics,
the study of the definable combinatorics of definable graphs. Here, “definable graph” is
typically synonymous with “Borel graph”, where a graph is Borel if its vertex set is
a Polish space X and its edge relation is Borel as a subset of X? with the product
topology. Research on descriptive graph combinatorics began with the seminal 1999
paper of Kechris, Solecki, and Todorcevi¢ ([KST99]) and continues to be active today
([CM16], [Mar16], [CMT16], [CIM™20], [CIM™T22], [GIKS23]).

Much of this body of work is dedicated to improving our understanding of the sim-
ilarities and differences between classical (i.e., finitary) and definable combinatorics. In
the finite setting, the notion of definability is not meaningful: Any finite set with the
discrete topology is Polish, and any finite subset of a Polish space is Borel. Therefore,
all finite graphs are Borel, and on finite graphs all standard combinatorial constructions
— including vertex colorings, edge colorings, and perfect matchings — are definable. As a
result, descriptive graph combinatorics is primarily concerned with infinite graphs.

1.3 Connections between Descriptive Combinatorics and LOCAL
Algorithms

At first blush, descriptive set theory, which deals with infinite graphs, appears unrelated
to distributed computing, which deals with finite graphs. Indeed, for two decades, the
study of definable colorings remained largely separate from the study of LOCAL coloring
algorithms. Then, in 2020, Bernshteyn revealed a profound connection between these two
perspectives: Let G be a collection of finite graphs satisfying a mild closure condition,
and let G’ be a bounded-degree Borel graph whose finite induced subgraphs all belong to
G. If there is a sufficiently loca]E] deterministic (resp., randomized) algorithm for properly
coloring the graphs in G with d € N colors, then there is a Borel (resp., p-measurable or
Baire measurable) proper d-coloring of G ([Ber23]).

This result is an instance of a common mathematical theme; infinite limits of increas-
ingly large finitary objects reflect the properties of their finite constituents. Work at
the intersection of definable combinatorics and LOCAL algorithms has since resulted in

many fruitful collaborations between descriptive set theorists and theoretical computer
scientists ([BCGT21], [BD23], [GR23]).

2 Research Direction #1: Descriptive Digraph Combinatorics

So far, most of the work within the intersection of descriptive combinatorics and LOCAL
computing has focused on undirected graphs. However, relatively little is known con-

IThe algorithm must be such that, when a graph G of size n € N is given as input, each vertex needs
to query only the vertices in its o(log(n))-neighborhood to determine its color.



cerning directed graphs (or digraphs) in this context. A directed graph consists of
a set of vertices and a set of directed edges, which are ordered pairs of vertices. Note
that the edge relation of a digraph need not be symmetric. A vertex coloring ¢ of a
digraph is a dicoloring if there are no c-monochromatic directed cycles. This is a useful
combinatorial notion that has been well-studied in the classical literature.

Currently, I am analyzing the combinatorics of digraphs from the perspectives of both
descriptive set theory and LOCAL computing. This work is uncovering further connections
between these two areas by exploring how they relate in a new context.

A natural starting point is to extend the classical combinatorial theorems on digraphs
to the definable and LOCAL settings. Such extensions have been successful for undirected
graphs. For instance, in 1941, Brooks classified the finite undirected graphs of degree
bounded by d € N which are not properly d-colorable: If d = 2, then the only such
graphs are those containing odd cycles; if d > 3, then the only such graphs are those
containing the complete graph on d vertices ([Bro4l]). Today, due to work of Ghaffari,
Hirvonen, Kuhn, and Maus ([GHEKM21]), there is a highly local randomized algorithm for
Brooks’s theorem. Furthermore, there are y-measurable and Baire measurable versions
of Brooks’s theorem due to work of Conley, Marks, and Tucker-Drob ([CMT16]).

In [HM11], Harutyunyan and Mohar prove a version of Brooks’s theorem for digraphs.
Here some additional terminology is needed. For any vertex v in a digraph D, the out-
degree (resp., in-degree) of v is the number of out- (resp., in-) edges in D incident on v,
and the max-degree of v is the maximum of its out-degree and its in-degree. A digraph
is symmetric if, whenever there is an edge oriented from a vertex v to a vertex w, there
is also an edge oriented from w to v.

Theorem 2.1 ([HM11], Theorem 2.1). Let d > 1. Suppose D is a digraph of max-degree
bounded by d that is not d-dicolorable. If d = 1, then D contains a directed cycle; if
d = 2, then D contains an odd symmetric cycle; and if d > 3, then D contains the
complete symmetric digraph on d vertices.

The proof of this result uses purely classical combinatorial techniques and cannot be
directly adapted to the definable or LOCAL settings. Recently, however, I showed the
following.

Theorem 2.2. Let d > 3. There is a deterministic algorithm A that does the following:
For eachn € N, if D is a size-n digraph of max-degree bounded by d that does not contain
the complete symmetric digraph on d wvertices, then A returns a d-dicoloring of D such
that each vertex needs to query only the vertices in its O(d - poly(log(n)))-neighborhood.

The proof combines the results of Harutyunyan and Mohar with a distributed layering
technique which Ghaffari, Hirvonen, Kuhn, and Maus used to produce a deterministic
LOCAL algorithm for the undirected version of Brooks’s theorem ([GHKM21]). (The
aforementioned randomized algorithm that appears in the same paper is, in a technical
sense, “more local” than this deterministic algorithm.)

[ believe the following (related) problems are now quite accessible.

Problem 2.3. Let d > 3. Show that any Borel digraph on a Polish space X which does
not contain the complete symmetric digraph on d vertices has, for each Borel probability
measure |1 on X, a proper p-measurable d-dicoloring and also a proper Baire measurable
d-dicoloring.



Problem 2.4. Let d > 3. Describe a randomized algorithm that, when given a size-n
wput digraph D that does not contain the complete symmetric digraph on d vertices,
produces a d-dicoloring of D such that each vertex needs to query only the vertices in its
o(log(n))-neighborhood.

There are two feasible approaches, and preliminary results indicate that both are
fruitful. The first is to adapt the one-ended spanning forest technique used by Conley,
Marks, and Tucker-Drob in [CMT16] to the digraph setting. The second is to apply the
slack placement technique used by Ghaffari, Hirvonen, Kuhn, and Maus in [GHKM21] to
digraphs.

Several other combinatorial problems — in particular, problems concerning edge color-
ings and perfect matchings — that interest theoretical computer scientists and descriptive
set theorists alike appear to be both meaningful and tractable for digraphs. I plan to
investigate these problems further in the near future.

3 Research Direction #2: The Complexity of Coloring Problems

In descriptive set theory, it is often desirable to determine the complexity of a combina-
torial problem. In this context, the term “complexity” has a topological meaning. For
instance, if the collection of graphs on which the combinatorial problem is solvable is an
open set in some Polish space, then the problem is simple; if the collection of graphs on
which the problem is solvable is an analytic non-Borel set, then the problem is complex.
Complexity computations are motivated by the need to compare different problems with
one another.

In their celebrated 2021 paper, Todorcevi¢ and Vidnyénszky prove the following com-
plexity result.

Theorem 3.1 ([T'V21], Theorem 1.3). The collection of acyclic Borel graphs which have
proper Borel colorings with finitely many colors is Xi-complete.

A collection of sets that is Xi-complete may be viewed as “difficult to describe”.
Therefore, this theorem of Todorcevi¢ and Vidnyanszky implies that it is hard to deter-
mine whether a given acyclic Borel graph has a proper Borel coloring with finitely many
colors. The result has since been extended to show that even the smaller collection of
bounded-degree acyclic Borel graphs which have proper Borel colorings with finitely many
colors is 32-complete ([BCGT21]).

It is natural to inquire about the implications of these results for hyperfinite graphs.
A Borel graph is hyperfinite if it is a countable increasing union of Borel graphs with
finite connected components. Hyperfiniteness has long been an object of interest among
descriptive set theorists; it is more complicated than finiteness but still tractable enough
to permit structure theorems. The following is a deep open problem.

Problem 3.2. Determine the complexity of the collection of bounded-degree acyclic hy-
perfinite Borel graphs which have proper Borel colorings with finitely many colors.

While this problem seems difficult to attack directly, there are several important
properties related to hyperfiniteness, and analyzing the combinatorial complexity of these
properties may allow for inferences about the combinatorial complexity of hyperfiniteness.
In a recent paper, Conley, Jackson, Marks, Seward, and Tucker-Drob introduce the fol-
lowing definition, which is a definable generalization of the classical notion of asymptotic
dimension.



Definition 3.3 ([CJM™22|, Definition 3.2). Let G be a locally finite Borel graph on a
standard Borel space X, and let p be the graph metric on G. Assume there exists d € N
such that, for allr > 0, there is a p-bounded Borel equivalence relation E on X such that,
for all x € X, the radius-r ball around x meets at most d + 1 E-classes. Then the least
such d is the Borel asymptotic separation index of G, denoted asig(G).

While currently no direct relationship between being hyperfinite and having Borel
asymptotic separation index at most 1 is known, in the py-measurable setting, these two
properties are equivalent modulo a measure-zero set ([Wei2l]). Therefore, the following
problem may shed light on Problem 3.2.

Problem 3.4. Determine the complexity of the collection of Borel graphs having Borel
asymptotic separation index at most 1.

Currently, Jan Grebik and I are pursuing the conjecture that the complexity is 3.
This work is still at an early stage, but we have some preliminary results already that
demonstrate a relationship between graphs that have Borel asymptotic separation index
at most 1 and graphs on so-called “non-dominating sets”, which are known to have high
combinatorial complexity. We plan to continue this work and explore extensions to, for
instance, bounded-degree graphs.

4 Future Directions

In addition to the future work I outlined above, I would also like to explore how Borel
asymptotic separation index relates to other similar properties, including a strengthen-
ing known as Borel asymptotic dimension and a strong form of hyperfiniteness known
as toast. I would also like to improve our current understanding of the relationship be-
tween combinatorial problems having Borel solutions and combinatorial problems that
are solvable with LOCAL algorithms.
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